JPS59217334A - Annealing method of compound semiconductor substrate - Google Patents

Annealing method of compound semiconductor substrate

Info

Publication number
JPS59217334A
JPS59217334A JP9276083A JP9276083A JPS59217334A JP S59217334 A JPS59217334 A JP S59217334A JP 9276083 A JP9276083 A JP 9276083A JP 9276083 A JP9276083 A JP 9276083A JP S59217334 A JPS59217334 A JP S59217334A
Authority
JP
Japan
Prior art keywords
annealing
compound semiconductor
semiconductor substrate
ion
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9276083A
Other languages
Japanese (ja)
Inventor
Hirozo Takano
高野 博三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9276083A priority Critical patent/JPS59217334A/en
Publication of JPS59217334A publication Critical patent/JPS59217334A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To prevent reduction of cap effect by annealing two substrates the main surface of which is mirror-polished, ion-injected and warped in concave are placed facing each other with the main surface. CONSTITUTION:A pair of compound semiconductor substrate 4 and 5 wherein the main surface c and d are mirror-polished, ion-injected and concave are placed on a graphite board 1 and the main surfaces face each other. The substrates are annealed under these conditions and the main surfaces (c), (d) injected with ions are separated from the atmosphere in an annealing furnace. This expedites cap effect fully and enables restraining uneven thermal metamorphosis within the substrate surface whereby compound semiconductor elements which have less dispersion of electrical characteristics can be produced in high yield.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は化合物半導体基板へのイオン注入プロセスに
おける注入後のアニーリング方法に関スるものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a post-implantation annealing method in an ion implantation process into a compound semiconductor substrate.

〔従来技術〕[Prior art]

超高速素子の構成材としてヒ化ガリウム(GaAa)結
晶をはじめとする化合物半導体基板が注目を集めている
。ところが、GaAsは蒸気圧の高い元素で構成されて
おシ、従って、不純物のドーピングは低温で実施せねば
ならない。その意味で、イオン注入技術は高温下での拡
散手法とは異なって大きな利点を有している。また、素
子の高速性を保紅する重要技術の一つに微細加工技術が
あるが、これはドーピング不純物の濃度、プロファイル
を精密制御できるイオン注入技術と組み合わされてはじ
めて二次元、三次元での素子の微細化が達成される。
Compound semiconductor substrates including gallium arsenide (GaAa) crystals are attracting attention as constituent materials for ultrahigh-speed devices. However, GaAs is composed of elements with high vapor pressure, and therefore doping with impurities must be carried out at a low temperature. In this sense, ion implantation technology has significant advantages over diffusion methods that operate at high temperatures. In addition, one of the important technologies for maintaining the high-speed performance of devices is microfabrication technology, but this can only be achieved in two and three dimensions by combining it with ion implantation technology that can precisely control the concentration and profile of doping impurities. Miniaturization of elements is achieved.

ところで、化合物半導体基板へ所望のイオンを注入した
後には、これらのイオンを電気的に活性化させることを
主目的として’700 ℃以上の温度でアニーリングを
施す必要がある。そして、このアニーリングには酸化シ
リコン(StO2) 、窒化シリコ7 (Si3N4)
 、酸化7 ルミニウム(A12oa) l多結晶シリ
コン、酸化ガリウム(Ga2o3) 、 Si3N4+
 810゜などの保護膜を化合物半導体基板の主面上に
被着させた状態で行うキャップアニーリング、へ〇加圧
雰囲気で行うキャップレスアニーリング、および水素も
しくは不活性ガスの雰囲気で化合物半導体基板のイオン
注入面を対向密着させた状態で行うグロキシミティ・キ
ャップアニーリングの3種に大別できる。
By the way, after desired ions are implanted into a compound semiconductor substrate, it is necessary to perform annealing at a temperature of 700° C. or higher, with the main purpose of electrically activating these ions. For this annealing, silicon oxide (StO2), silicon nitride 7 (Si3N4)
, 7 aluminum oxide (A12oa) l polycrystalline silicon, gallium oxide (Ga2o3), Si3N4+
Cap annealing is performed with a protective film such as 810° coated on the main surface of the compound semiconductor substrate, capless annealing is performed in a pressurized atmosphere, and ion annealing of the compound semiconductor substrate is performed in a hydrogen or inert gas atmosphere. It can be roughly divided into three types: gloximity and cap annealing, which are performed with the implanted surfaces facing each other in close contact.

これらのアニーリング方法はそれぞれ特色があり、利点
も挙げられるか、以下に述べる欠点を有しており、安定
した特性をもつ化合物半導体ICを高歩留りで、生理性
よく得る上で支障をきたしている。たとえばキャップア
ニーリングの場合、通常は保護膜としてスパッタリング
、・プラズマCvD法などで形成された813N4膜が
よく用いられるが、Si3N。膜の堆積速度、堆積温度
などの膜形成条件、 Si3N4膜中の酸素不純物の挙
動すなわち膜質などの諸パラメータに電気的特性が大き
く依存していることはよく知られている。他の保護膜に
ついても同様であり、これらの保睦膜を被着させた上で
アニーリングされたイオン注入層の特性はこれらの保護
膜の種類、形成方法、膜質などの影響を敏感に受ける。
Each of these annealing methods has its own characteristics and has advantages and disadvantages as described below, which hinder the ability to obtain compound semiconductor ICs with stable characteristics at a high yield and with good physiological properties. . For example, in the case of cap annealing, an 813N4 film formed by sputtering, plasma CVD, etc. is usually used as a protective film, but Si3N. It is well known that electrical characteristics are highly dependent on various parameters such as film formation conditions such as film deposition rate and deposition temperature, behavior of oxygen impurities in the Si3N4 film, or film quality. The same holds true for other protective films, and the characteristics of the ion-implanted layer coated with these protective films and annealed are sensitively affected by the type, formation method, film quality, etc. of these protective films.

一方、Asの加圧雰囲気におけるキャップレスアニーリ
ングではAs分圧で活性化率は微妙に変化する。たとえ
ば、マグネシウム(Mg) 、 siではAs分圧の増
加で活性化率は増大し、一方イオウ(S)はAs分圧の
増加で逆に活性化率が減少するという傾向が見られる。
On the other hand, in capless annealing in a pressurized As atmosphere, the activation rate changes slightly depending on the As partial pressure. For example, the activation rate of magnesium (Mg) and si increases as the As partial pressure increases, while the activation rate of sulfur (S) tends to decrease as the As partial pressure increases.

また、AsH,の加圧雰囲気におけるアニーリングは有
毒ガスを使用するという点で危険を伴い、スループット
の向上が望めない現状である。
Furthermore, annealing AsH in a pressurized atmosphere is dangerous because it uses toxic gas, and currently no improvement in throughput can be expected.

以上のような問題点を軽減する方法として、半導体基板
のイオン注入面を対向密着させるプロキシミテイ・キャ
ップアニーリングが挙げられる。
One method for alleviating the above-mentioned problems is proximity cap annealing, which brings the ion-implanted surfaces of the semiconductor substrate into close contact with each other.

この方法は上述のような種々の保護膜を形成する必要が
ないので工程を簡略化できる大きな特長を有している。
This method has the great advantage of simplifying the process since it is not necessary to form various protective films as described above.

しかし、GaA3基板全体を均一な熱的環境のもとてア
ニールし、熱変成を極力抑えるとともに変成量のバラツ
キも小さくして、注入イオンの活性化率、移動度など重
要なパラメータを所望の水準に精密制御するうえで以下
に述べる難点をもつ。すなわち、対向させたGaAs基
板自体がそれぞれキャップの役目を果たすことが必要十
分灸件であるにもかかわらず、GaAs基板自身がラン
ダムな反9形状、反り量を有するので、キャップの効果
が完全に発揮できない場合が多い。反りは主に、単結晶
を内周刃ブレードでスライスする際の(イ)ブレードの
湾曲、(ロ)基板の裏表の破砕歪の大小、などが原因で
ある。後者はスライス後の基板をエツチングすることで
矯正可能であるが、前者の場合、反りはラップ以降へも
引継がれる。
However, by annealing the entire GaA3 substrate in a uniform thermal environment, thermal metamorphosis is suppressed as much as possible and variation in the amount of metamorphism is also reduced, and important parameters such as activation rate and mobility of implanted ions are kept at desired levels. It has the following difficulties in precise control. In other words, although it is necessary and sufficient that the opposing GaAs substrates themselves play the role of caps, the effect of the caps is not completely effective because the GaAs substrates themselves have a random anti-9 shape and a warped amount. It is often not possible to perform. Warpage is mainly caused by (a) the curvature of the blade when slicing the single crystal with the inner peripheral blade, and (b) the magnitude of crushing strain on the front and back surfaces of the substrate. The latter can be corrected by etching the substrate after slicing, but in the former case, the warpage is carried over to the subsequent layers.

第1図はこのような従来方法(こよるグロキシミテイ・
キャップアニーリングの状況を示す側断面図である。グ
ラファイトボー) (11の上に一対の化合物半導体基
板(2)および(3)がそれぞれのイオン注入面(a)
および(b)を対向させて載置されている。割基板(2
1、(31ともに反りの形状がイオン注入面(a)。
Figure 1 shows such a conventional method (such as gloximity).
FIG. 3 is a side cross-sectional view showing the state of cap annealing. (graphite bow) (A pair of compound semiconductor substrates (2) and (3) are placed on each ion implantation surface (a)
and (b) are placed facing each other. Split board (2
1 and (31), the warped shape is the ion implantation surface (a).

(b)が凸形状になるような状態であるので、イオン注
入面(a) 、 (b)の周縁部はアニール炉雰囲気に
露出されており、前述のような化合物半導体基板(2I
Since (b) is in a convex shape, the peripheral edges of the ion-implanted surfaces (a) and (b) are exposed to the annealing furnace atmosphere.
.

(3)自身によるキャップ効果が著しく損われることは
図から明らかである。
(3) It is clear from the figure that the self-capping effect is significantly impaired.

〔発明の概要〕[Summary of the invention]

この発明は以上のような点に鑑みてなされたもので、化
合物半導体基板の鏡面研摩されイオン注入された主面が
凹状態になるように反った形状のもの同志を互いにその
主面を対向させてアニーリングすることによってキャッ
プ効果を損うことのないグロキシミテイ・キャップアニ
ーリング方法を提供するものである。
This invention has been made in view of the above points, and involves the use of compound semiconductor substrates having mirror-polished and ion-implanted main surfaces that are curved so that they are in a concave state, with their main surfaces facing each other. The object of the present invention is to provide a gloximity cap annealing method that does not impair the cap effect by annealing.

〔発明の実施例〕[Embodiments of the invention]

第2図はこの発明の一実施例によるアニーリング状況を
示す側断面図で、グラファイトボート(l)の上に、そ
れぞれ鏡面研摩されイオン注入された主面(、)および
(d)が凹状態になった一対の化合物半導体基板(4)
および(5)を上記主面(C)および(d)が対向する
ように重ねて載置されている。このような状態でアニー
リングすることによってイオン注入された主面(C) 
、 (d)はアニール炉雰囲気から隔離されているので
、キャップ効果は十分発揮され、基板面内での不均一な
熱変成を抑えることが可能となリ、電気的特性のバラツ
キの少ない化合物半導体素子を高歩留りで生産できる。
FIG. 2 is a side cross-sectional view showing the annealing situation according to an embodiment of the present invention, in which the main surfaces (,) and (d), which are mirror-polished and ion-implanted, are in a concave state on the graphite boat (l). A pair of compound semiconductor substrates (4)
and (5) are placed one on top of the other so that the main surfaces (C) and (d) face each other. The main surface (C) where ions were implanted by annealing in this state
, (d) is isolated from the annealing furnace atmosphere, so the capping effect is fully exerted, and it is possible to suppress uneven thermal transformation within the substrate surface.It is a compound semiconductor with little variation in electrical properties. Devices can be produced with high yield.

なお、基板の反り形状の制御は、スライス時におけるダ
イヤモンドブレードの張力調整、偏心の微調、またはラ
ッピング時でのラップ盤の平坦度。
The warped shape of the substrate can be controlled by adjusting the tension of the diamond blade during slicing, finely adjusting the eccentricity, or the flatness of the lapping machine during lapping.

ラップ量、荷重などを最適にすれば所望の凹形状の反り
を有する化合物半導体基板を得ることができる。
By optimizing the amount of wrap, load, etc., it is possible to obtain a compound semiconductor substrate having a desired concave warpage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明では化合物半導体基板の
プロキシミティ・キャップアニーリングにおいて、鏡面
研摩されイオン注入された主面が凹状態になるように反
った基板を互いに上記主面を対向させてアニーリングす
るようにしたので、キャップ効果を損うことなく良好な
アニーリングが可能である。
As explained above, in the proximity cap annealing of compound semiconductor substrates in the present invention, substrates that have been mirror-polished and ion-implanted are warped so that their main surfaces are in a concave state, and the substrates are annealed with their main surfaces facing each other. This allows for good annealing without impairing the cap effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法によるプロキシミテイ・キャップアニ
ーリングの状況を示す側断面図、第2図はこの発明の一
実施例によるアニーリング状況を示す側断面図である。 図において、(1)はグラファイトポー) 、(4) 
、 (Fitは化合物半導体基板、(c) 、 (d)
はイオン注入主面である。 図中同一符号は同一または和尚部分を示す。 代理人 大岩増雄
FIG. 1 is a side sectional view showing the proximity cap annealing according to a conventional method, and FIG. 2 is a side sectional view showing the annealing according to an embodiment of the present invention. In the figure, (1) is graphite powder), (4)
, (Fit is a compound semiconductor substrate, (c), (d)
is the main surface for ion implantation. The same reference numerals in the drawings indicate the same or Buddhist parts. Agent Masuo Oiwa

Claims (1)

【特許請求の範囲】[Claims] (1]  化合物半導体基板の一方の主面に所望の不純
物イオンを注入し、次いで上記不純物イオンの注入に伴
う結晶欠陥などの損傷を減少させるとともに、上記不純
物イオンを上記基板の結晶格子の置換位置に入れ電気的
に活性化するためのアニーリングを施すに際して、鏡面
研摩された上記不純物イオン注入側の主面が凹面状態に
なるように反った一対の上記基板を上記主面が互いに対
向するように重ねて不活性ガスまたは水素ガス雰囲気中
でアニールすることを特徴とする化合物半導体基板のア
ニーリング方法。
(1) A desired impurity ion is implanted into one main surface of a compound semiconductor substrate, and then damage such as crystal defects caused by the implantation of the impurity ion is reduced, and the impurity ion is placed at a replacement position in the crystal lattice of the substrate. When annealing is performed for electrical activation, the pair of mirror-polished substrates, which are warped so that the impurity ion-implanted main surfaces are concave, are placed so that their main surfaces face each other. A method for annealing compound semiconductor substrates, which comprises stacking and annealing in an inert gas or hydrogen gas atmosphere.
JP9276083A 1983-05-24 1983-05-24 Annealing method of compound semiconductor substrate Pending JPS59217334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9276083A JPS59217334A (en) 1983-05-24 1983-05-24 Annealing method of compound semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9276083A JPS59217334A (en) 1983-05-24 1983-05-24 Annealing method of compound semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS59217334A true JPS59217334A (en) 1984-12-07

Family

ID=14063378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9276083A Pending JPS59217334A (en) 1983-05-24 1983-05-24 Annealing method of compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS59217334A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830987A (en) * 1987-11-19 1989-05-16 Texas Instruments Incorporated Contactless annealing process using cover slices
JP2016115868A (en) * 2014-12-17 2016-06-23 富士電機株式会社 Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830987A (en) * 1987-11-19 1989-05-16 Texas Instruments Incorporated Contactless annealing process using cover slices
JP2016115868A (en) * 2014-12-17 2016-06-23 富士電機株式会社 Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6064081A (en) Silicon-germanium-carbon compositions and processes thereof
US20240022229A1 (en) Composite substrate
US4615766A (en) Silicon cap for annealing gallium arsenide
CA1253263A (en) Back sealing of silicon wafers
US4662956A (en) Method for prevention of autodoping of epitaxial layers
JP3454033B2 (en) Silicon wafer and manufacturing method thereof
US6436846B1 (en) Combined preanneal/oxidation step using rapid thermal processing
EP0209648B1 (en) Wafer base for silicon carbide semiconductor device
JPS59217334A (en) Annealing method of compound semiconductor substrate
EP0982764A2 (en) Method of forming a gate oxide layer for transistors
JP3344205B2 (en) Method for manufacturing silicon wafer and silicon wafer
JPH0473930A (en) Substrate for heteroepitaxial growth
JPS6226569B2 (en)
JPS6130030A (en) Method of annealing multi-element semiconductor
JPH0143454B2 (en)
JPS63291897A (en) Method for growing single crystal membrane
JPH09266175A (en) Semiconductor wafer manufacturing method and semiconductor wafer
JPS60193332A (en) Method of annealing compound semiconductor substrate
JPS59141221A (en) Annealing method of compound semiconductor substrate
JPH097907A (en) Wafer having rear face polysilicon and its manufacturing method
JPS6022316A (en) Manufacture of compound semiconductor apparatus
JPS60121725A (en) Annealing method for ion-implanted compound semiconductor device
TW202344699A (en) Production method for single crystal semiconductor film, production method for multilayer film of single crystal semiconductor film, and semiconductor element
JPS63271923A (en) Heat treatment of compound semiconductor substrate
JPH04188720A (en) Etching of vapor growth susceptor