JPS59215728A - Optical cleaning method of surface of semiconductor - Google Patents

Optical cleaning method of surface of semiconductor

Info

Publication number
JPS59215728A
JPS59215728A JP9127683A JP9127683A JPS59215728A JP S59215728 A JPS59215728 A JP S59215728A JP 9127683 A JP9127683 A JP 9127683A JP 9127683 A JP9127683 A JP 9127683A JP S59215728 A JPS59215728 A JP S59215728A
Authority
JP
Japan
Prior art keywords
gas
substrate
semiconductor
semiconductor surface
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9127683A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
山崎 「しゆん」平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP9127683A priority Critical patent/JPS59215728A/en
Publication of JPS59215728A publication Critical patent/JPS59215728A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To provide an insulator, a semiconductor or a conductor on the ideally clean surface of a III-V group semiconductor substrate by a method wherein the substrate is held in a decompressed vacuum vessel containing H2, inactive gas or mixed gas thereof as residual gas, and an oxide on the surface is removed according to irradiation of ultraviolet beams. CONSTITUTION:A substrate 2 is accommodated in a reaction vessel 1 of quartz, and the substrate 2 is heated 16 at 200-400 deg.C. H2 gas, He gas, etc. or mixed gas thereof is led in 6 through a valve 11, and the gas current 8 is exhausted from a pump 14 through a pressure regulating valve 12, a stop valve 13 from an outlet 7. A low pressure mercury lamp is arranged at the upper part of the substrate, ultraviolet beams 10 of wavelength of 300nm or less containing 185nm, 254nm wavelength are supplied, a reflector 5 is provided, and low vapor pressure oil 9 is applied thin on the inside surface of a quartz tube 3 to check adhesion of a reaction product according to optical CVD. According to this method, O2 and H2O adsorbed to the surface can be removed completely without damaging the surface of the substrate, O2 reacted with Ga and As is removed as H2O according to introduction of H2 and a photochemical reaction, and an ideal interface can be formed.

Description

【発明の詳細な説明】 この発明はm−v化合物半導体の表面の洗浄方法および
洗浄された表面上に絶縁体、半導体または導体を形成せ
しめることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The object of the present invention is to provide a method for cleaning the surface of an m-v compound semiconductor and forming an insulator, semiconductor, or conductor on the cleaned surface.

この発明はm−v化合物半導体(以下単に半導体という
)特にGaAs、 InPを用い、その半導体表面に酸
素を残存させないようにし、かつ酸素の除去により表面
またはその近傍の半導体が損傷(夕゛メージ)を受けな
いように処理する表面の洗浄方法である。
This invention uses m-v compound semiconductors (hereinafter simply referred to as semiconductors), particularly GaAs and InP, to prevent oxygen from remaining on the semiconductor surface, and to prevent damage to the semiconductor on or near the surface by removing oxygen (image). This is a method of cleaning surfaces that are treated to prevent them from being exposed to water.

この発明は半導体基板を残留物が水素、不活性気体また
はその混合物を残留ガスとする減圧下の真空容器内に保
持し、この表面に紫外光を照射することにより、この半
導体表面の酸化物を除去する光洗浄(以下このPhot
o Washingを単に部という)ことを目的として
いる。
In this invention, a semiconductor substrate is held in a vacuum container under reduced pressure in which the residual gas is hydrogen, an inert gas, or a mixture thereof, and oxides on the semiconductor surface are removed by irradiating the surface with ultraviolet light. Photo cleaning to remove (hereinafter this photo)
o Washing is simply referred to as a section).

この発明は光照射による半導体表面の酸素を除去してし
まった後、このPMがなされた半導体表面を大気(酸素
または窒素)に曝すことなく、同一真空反応容器内にて
光化学反応を用いた気相反応(以下単に光CVD法とい
う)を行うことを目的としている。
In this invention, after oxygen is removed from the semiconductor surface by light irradiation, the PM-treated semiconductor surface is not exposed to the atmosphere (oxygen or nitrogen), and then a photochemical reaction is performed in the same vacuum reaction vessel. The purpose is to perform a phase reaction (hereinafter simply referred to as photo-CVD method).

従来m−v化合物半導体例えばGaAs (砒化ガリュ
ーム)単結晶においては、この半導体が600C以上で
熱劣化がおきるため、低温での表面処理および被膜形成
方法が採用されている。この被膜形成方法としての代表
例としてはプラズマ洗浄方法およびプラズマ気相反応方
法(以下単にPCVDという)がある。
Conventional m-v compound semiconductors, such as GaAs (gallium arsenide) single crystals, undergo thermal deterioration at temperatures above 600 C, so surface treatment and film formation methods at low temperatures have been adopted. Typical examples of this film forming method include a plasma cleaning method and a plasma vapor phase reaction method (hereinafter simply referred to as PCVD).

このプラズマを用いた洗浄方法は、減圧下の反応容器(
真空容器)内を13.56MHz等の周波数の高周波エ
ネルギーにより水素等をプラズマ化する。
This plasma cleaning method uses a reaction vessel under reduced pressure (
Hydrogen or the like is turned into plasma inside the vacuum container by high frequency energy at a frequency of 13.56 MHz or the like.

このプラズマ雰囲気内に基板を配設することにより、こ
の表面の酸化物、例えば水、酸素、酸化ガリューム、酸
化砒素等を除去するものである。
By placing the substrate in this plasma atmosphere, oxides such as water, oxygen, gallium oxide, arsenic oxide, etc. on the surface are removed.

しかしこのプラズマ・エネルギーにより基板に損傷を与
えるため、半導体としての特性を表面に有せしめること
ができない。
However, this plasma energy damages the substrate, making it impossible to impart semiconductor properties to the surface.

このため実際にはプラズマ洗浄方法を半導体または半導
体デバイスの製造工程として採用することが不可能であ
った。
For this reason, it has actually been impossible to employ the plasma cleaning method as a manufacturing process for semiconductors or semiconductor devices.

そのためこれらGaAs等はその表面をそのままの状態
で、この上面にプラズマ洗浄法により窒化珪素絶縁体を
積層して、保護物、ゲイト絶縁物等を作製していた。
For this reason, protective materials, gate insulators, and the like have been fabricated by laminating silicon nitride insulators on the top surfaces of GaAs and the like by plasma cleaning, while leaving the surfaces as they are.

第1図はSIMSにて測定したその結果の一例を示した
ものである。第1図において破線より右側の半導体上に
窒化珪素膜を0.防の厚さに積層したものである。この
窒化珪素膜を表面よりルビジュームイオンを照射して除
去していき、表面の原子成分をイオン強度にて測定した
ものである。すると図面において珪素(20) 、窒素
(21)が界面(半導体−絶縁物界面)  (23)の
aloooにの範囲で分布して存在し、また界面には、
酸素(22)が同時に土1000Aの範囲がガウス分布
をして残存していた。
FIG. 1 shows an example of the results measured by SIMS. In FIG. 1, a silicon nitride film is deposited on the semiconductor on the right side of the broken line. It is laminated to the same thickness as protection. This silicon nitride film was removed by irradiating rubidium ions from the surface, and the atomic components on the surface were measured in terms of ion intensity. Then, in the drawing, silicon (20) and nitrogen (21) are distributed in the range aooo at the interface (semiconductor-insulator interface) (23), and at the interface,
At the same time, oxygen (22) remained in a Gaussian distribution in a range of 1000A of soil.

即ちGaAsの界面で劣化理由となる酸素が残存し、ま
た界面を面ではなく領域(,11000Aの範囲で)を
構成してしまい、理想的な半導体−絶縁体界面を得るこ
とができなかった。
That is, oxygen, which causes deterioration, remains at the GaAs interface, and the interface forms a region (within a range of 11,000 A) rather than a plane, making it impossible to obtain an ideal semiconductor-insulator interface.

本発明はかかる欠点を除去し、界面特性を理想構造とし
たものである。
The present invention eliminates these drawbacks and makes the interface characteristics an ideal structure.

このために本発明においては、PMと光CVD法とを採
用したものである。
For this purpose, the present invention employs PM and a photo-CVD method.

第2図に従って本発明方法を示す。The method of the invention is illustrated according to FIG.

第2図は本発明のPMおよび四に連続して光CVD法に
より絶縁膜等を形成せしめる方法を実施するための装置
の概要を示す。
FIG. 2 shows an outline of an apparatus for carrying out the method of forming an insulating film etc. by the PM and the photo-CVD method of the present invention.

図面において、反応容器(真空容器)(1)は石英より
なっている。基板(2)はヒーター(16)上に配設さ
れ、室温〜50(1”c好ましくは200〜4o6c例
えば3006Cの加熱がなされる。水素、ヘリューム、
アルゴン等の不活性気体または混合気体はバルブ(11
)を経て入り口側(6)より導入させ、ガス流(8)の
ように流れ、排気口(7)より圧力調整バルブ(12)
 、ストップバルブ(13)を経て真空ポンプ(14)
より排気される。基板は上方に光エネルギー供給装置が
発光源ここでは紫外光を低圧水銀灯により作っている。
In the drawing, a reaction vessel (vacuum vessel) (1) is made of quartz. The substrate (2) is placed on a heater (16) and heated to a temperature of room temperature to 50°C, preferably 200°C to 4°C, e.g. 3006C. Hydrogen, helium,
Inert gas such as argon or mixed gas is supplied through the valve (11
) is introduced from the inlet side (6), flows like a gas flow (8), and is introduced from the exhaust port (7) to the pressure adjustment valve (12).
, vacuum pump (14) via stop valve (13)
More exhaust. Above the substrate is a light energy supply device, which is a light emitting source.Here, ultraviolet light is generated by a low-pressure mercury lamp.

反射鏡(5)を有し、石英管(3)の内面には光CVD
による反応生成物の付着を防ぐため、低蒸気圧オイル(
9)を薄く塗付している。水銀灯による発光は、185
nm+ 254nmを含む300nm以下の波長の発光
(lO)をさせている。
It has a reflecting mirror (5), and the inner surface of the quartz tube (3) is equipped with optical CVD.
Low vapor pressure oil (
9) is applied thinly. The light emitted by a mercury lamp is 185
It emits light (lO) at a wavelength of 300 nm or less, including nm+254 nm.

実施例1 第2図に示した四、光CVD装置において、反応容器内
に■−■化合物であるGaAs基板(2)を配設した。
Example 1 In the photo-CVD apparatus shown in FIG. 2, a GaAs substrate (2), which is a compound of ■-■, was placed in a reaction vessel.

さらに10torr以下の真空引きをし、基板温度を3
0♂Cとし、紫外光を0.1〜5W/c♂例えば1−/
C♂の強さにて照射した。さらにバルブ(11)を開と
し、水素、アルゴンまたは水素が1〜50%例えば10
%混合したPW用気体を導入した。容器内は0.01〜
10torr例えばl torrに保持した。
Further, vacuum the temperature to below 10 torr and lower the substrate temperature to 3.
0♂C, and the ultraviolet light is 0.1~5W/c♂For example, 1-/
Irradiation was performed at the intensity of C♂. Furthermore, the valve (11) is opened and hydrogen, argon or hydrogen is
% mixed PW gas was introduced. Inside the container is 0.01~
It was maintained at 10 torr, for example l torr.

すると真空中で紫外光を10分以上例えば30分照射す
ることにより、吸着していた酸素、水はほぼ完全に除去
することができることが判明した。さらにガリュームお
よび砒素と反応している酸素については、水素を導入し
、10分以上例えば30分、l torrで保持するこ
とにより、光化学反応をさせる。その結果、水として酸
素を除去することができた。
It was found that the adsorbed oxygen and water can be almost completely removed by irradiating the film with ultraviolet light for 10 minutes or more, for example 30 minutes, in a vacuum. Further, regarding oxygen reacting with gallium and arsenic, hydrogen is introduced and maintained at 1 torr for 10 minutes or more, for example, 30 minutes, to cause a photochemical reaction. As a result, oxygen could be removed as water.

この時、不活性気体を同時に導入することになり、この
気体が光エネルギーにより活性化し、時間を3〜10分
に約1/3の時間短縮することができ、GaAsから反
応している酸素を同様に除去することを助長することが
できた。
At this time, an inert gas is introduced at the same time, and this gas is activated by light energy, reducing the time by about 1/3 to 3 to 10 minutes, and removing the reacting oxygen from GaAs. It was possible to facilitate removal as well.

かかる化合物半導体は珪素のごとく高温で処理したり、
また金属の化学処理を行えないため、本発明のごとき物
理的な洗浄方法がきわめて有効であった。
Such compound semiconductors can be treated at high temperatures like silicon, or
Furthermore, since chemical treatment of metals cannot be performed, physical cleaning methods such as the one of the present invention have been extremely effective.

本発明方法において、半導体の表面に同様に吸着してい
る炭化水素等も紫外光照射により除去できることはいう
までもない。
It goes without saying that in the method of the present invention, hydrocarbons and the like adsorbed on the surface of the semiconductor can also be removed by irradiation with ultraviolet light.

実施例2 実施例1に示したPHの後、同一反応炉GこてJ[酸化
物絶縁物の窒化珪素を作製した。即ち第2図においてバ
ルブ(11)を開として珪化物気体であるポリシラン例
えばジシランとアンモニアとを導入し、水銀の増感を行
うことなしにこの表面番こJト酸化物絶縁体を作製した
Example 2 After the PH shown in Example 1, silicon nitride, an oxide insulator, was prepared in the same reactor G trowel J. That is, in FIG. 2, the valve (11) was opened, and a silicide gas such as polysilane, such as disilane and ammonia, was introduced, and the surface oxide insulator was produced without mercury sensitization.

即ちジシラン(S4tl、)とアンモニア(NH,)と
を7=10の割合で導入した。するとこれら21重類の
7秒の成長速度で作ることができた。基板の温度は30
0C1圧力は2torrとした。光強度器よ0.5W/
cmとした。
That is, disilane (S4tl,) and ammonia (NH,) were introduced at a ratio of 7=10. As a result, these 21 heavy compounds could be produced at a growth rate of 7 seconds. The temperature of the board is 30
The 0C1 pressure was 2 torr. Light intensity meter 0.5W/
cm.

55H,の代わりに5iHq、を用いることも可能であ
る。
It is also possible to use 5iHq instead of 55H.

かかる場合は水銀増感法を同時Gこ行うことにより、被
膜成長速度を大きくすること力<a・要であった。
In such cases, it was necessary to increase the film growth rate by simultaneously carrying out mercury sensitization.

しかしこの水銀増感は量産の際廃棄物中の水II処理の
問題が発生し、必ずしも好ましいものではなかった。
However, this mercury sensitization was not necessarily preferable because it caused problems in the treatment of water II in waste during mass production.

かくのごと(、本発明の四を行った後、光CVD法によ
り窒化珪素膜を0.37の厚さに形成し、SIMSの分
布を調べた結果を第3図に示す。
After carrying out step 4 of the present invention, a silicon nitride film was formed to a thickness of 0.37 mm by photo-CVD, and the SIMS distribution was investigated. The results are shown in FIG.

図面より明らかなごとく、窒素(20)珪素(21)が
界面(23)にてきわめて急峻に減少しており、界面の
損傷がないことがわかる。また酸素は(22)に示すご
とく、検出限界に近く、従来より知られる第1図の特性
に比べて格別の進歩があることが判明した。
As is clear from the drawing, nitrogen (20) and silicon (21) are extremely sharply reduced at the interface (23), indicating that there is no damage to the interface. Furthermore, as shown in (22), oxygen is close to the detection limit, and it has been found that this is an exceptional improvement compared to the conventionally known characteristics shown in FIG.

またこの窒化珪素上にアルミニューム電極を形成し、C
−V特性より界面準位密度を調べた結果、1メ1δcm
2j、か有していなかった。また電界強度lXl0’V
/cmを加えても、C−■特性にはヒステリシス曲線が
得られず、きわめて好ましいものであった。
In addition, an aluminum electrode is formed on this silicon nitride, and C
- As a result of investigating the interface state density from the V characteristic, 1 meter 1 δcm
2j, or did not have it. Also, the electric field strength lXl0'V
/cm, no hysteresis curve was obtained in the C-■ characteristic, which was extremely favorable.

実施例3 実施例1に示したP−の後、この反応容器内にTMG 
 ((Cal、)、、Ga)とアルシン(AsTo)と
を導入した。
Example 3 After P- shown in Example 1, TMG was added to the reaction vessel.
((Cal, ), , Ga) and arsine (AsTo) were introduced.

基板温度は500〜806C例えばeoocとして、圧
力’1torr−、光強度IW/cm”とした。すると
この基板上にGaAsを光エピタキシアル成長させるこ
とができた。
The substrate temperature was 500 to 806 C, for example, eooc, the pressure was 1 torr, and the light intensity was IW/cm. GaAs could then be photoepitaxially grown on this substrate.

このエピタキシアル成長をしたGaAsを第3図と同様
のSIMSで酸素、窒素を評価した。しかしこれら酸素
、炭素はともに0.01重量%以下であり、LPE (
液相エピタキシアル成長)と同様の安定な被膜であった
This epitaxially grown GaAs was evaluated for oxygen and nitrogen using SIMS similar to that shown in FIG. However, both oxygen and carbon are less than 0.01% by weight, and LPE (
The film was stable, similar to that obtained by liquid phase epitaxial growth.

勿論基板またエビクキシアル成長する被膜はそれと他の
I−V化合物半導体、例えばGaxA]@−、As。
Of course, the substrate and the evixaxially grown coating may be other I-V compound semiconductors, such as GaxA]@-, As.

GaP等であってもよい。また基板をInPとして本発
明の四、またInP上に絶縁体または半導体を成長させ
てもよいことはいうまでもない。
It may also be GaP or the like. It goes without saying that the substrate may be InP and an insulator or semiconductor may be grown on the InP.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法により半導体上に窒化珪素被膜を形
成した場合のSIMS特性である。 第2図は本発明方法を用いて光洗浄および光CVDを行
う装置を示す。 第3図は本発明方法により半導体上に窒化珪素被膜を形
成した場合のSIMS特性を示す。 七l)  9口 7% 卑2(T)
FIG. 1 shows SIMS characteristics when a silicon nitride film is formed on a semiconductor by a conventional method. FIG. 2 shows an apparatus for performing photocleaning and photoCVD using the method of the present invention. FIG. 3 shows SIMS characteristics when a silicon nitride film is formed on a semiconductor by the method of the present invention. 7l) 9 mouths 7% base 2 (T)

Claims (1)

【特許請求の範囲】 i、nr−v化合物半導体基板を、残留物が水素、不活
性気体またはその混合気体の残留ガスとなる減圧下の真
空容器内に保持し、紫外光を照射することにより前記半
導体表面上の酸化物を除去することを特徴とする半導体
表面の光洗浄方法。 2、I−V化合物半導体基板を、残留物が水素、不活性
気体またはその混合気体の残留ガスとなる減圧下の真空
容器内に保持し、紫外光を照射することにより前記半導
体表面上の酸化物を除去した後、前記光洗浄がなされた
半導体表面上に非酸化物の半導体または絶縁体を形成す
ることを特徴とする半導体表面の光洗浄方法。 3、特許請求範囲第2項において、絶縁体は窒化珪素被
膜を酸化物気体と窒化物気体との混合気体に光エネルギ
ーを照射することGこより前記光洗浄がなされた真空容
器と同一真空容器内で形成することを特徴とする半導体
表面の光洗浄方法。 4、特許請求の範囲第2項において、半導体(よ■−■
化合物基板上にII[−V化合物半導体被膜を光化学反
応によりエピタキシアル成長せしめたことを特徴とする
半導体表面の光洗浄方法。
[Claims] By holding the i, nr-v compound semiconductor substrate in a vacuum container under reduced pressure in which the residual gas is hydrogen, an inert gas, or a mixture thereof, and irradiating it with ultraviolet light. A method for optically cleaning a semiconductor surface, the method comprising removing oxides on the semiconductor surface. 2. The I-V compound semiconductor substrate is held in a vacuum container under reduced pressure in which the residual gas is hydrogen, an inert gas, or a mixture thereof, and oxidation on the semiconductor surface is removed by irradiation with ultraviolet light. A method for optically cleaning a semiconductor surface, which comprises forming a non-oxide semiconductor or an insulator on the optically cleaned semiconductor surface after removing the substance. 3. In claim 2, the insulator is formed by irradiating a silicon nitride coating with light energy to a mixed gas of oxide gas and nitride gas in the same vacuum container as the one in which the optical cleaning was performed. A method for optically cleaning a semiconductor surface, characterized in that the surface of a semiconductor is formed by: 4. In claim 2, semiconductors (yo■-■
1. A method for optically cleaning a semiconductor surface, comprising epitaxially growing a II[-V compound semiconductor film on a compound substrate by photochemical reaction.
JP9127683A 1983-05-24 1983-05-24 Optical cleaning method of surface of semiconductor Pending JPS59215728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9127683A JPS59215728A (en) 1983-05-24 1983-05-24 Optical cleaning method of surface of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9127683A JPS59215728A (en) 1983-05-24 1983-05-24 Optical cleaning method of surface of semiconductor

Publications (1)

Publication Number Publication Date
JPS59215728A true JPS59215728A (en) 1984-12-05

Family

ID=14021930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9127683A Pending JPS59215728A (en) 1983-05-24 1983-05-24 Optical cleaning method of surface of semiconductor

Country Status (1)

Country Link
JP (1) JPS59215728A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198727A (en) * 1984-12-17 1986-09-03 ヒユ−ズ・エアクラフト・カンパニ− Photochemical process for treating substrate surface
WO1990000812A1 (en) * 1988-07-08 1990-01-25 Engelsberg Audrey C Removal of surface contaminants by irradiation from a high-energy source
US5023750A (en) * 1989-02-23 1991-06-11 Mitsubishi Denki Kabushiki Kaisha Electronic component having improved low resistance contact and manufacturing method therefor
US5099557A (en) * 1988-07-08 1992-03-31 Engelsberg Audrey C Removal of surface contaminants by irradiation from a high-energy source
US5531857A (en) * 1988-07-08 1996-07-02 Cauldron Limited Partnership Removal of surface contaminants by irradiation from a high energy source
US5821175A (en) * 1988-07-08 1998-10-13 Cauldron Limited Partnership Removal of surface contaminants by irradiation using various methods to achieve desired inert gas flow over treated surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105480A (en) * 1980-01-25 1981-08-21 Mitsubishi Electric Corp Plasma etching method
JPS56123377A (en) * 1980-03-03 1981-09-28 Shunpei Yamazaki Plasma cleaning and etching method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105480A (en) * 1980-01-25 1981-08-21 Mitsubishi Electric Corp Plasma etching method
JPS56123377A (en) * 1980-03-03 1981-09-28 Shunpei Yamazaki Plasma cleaning and etching method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198727A (en) * 1984-12-17 1986-09-03 ヒユ−ズ・エアクラフト・カンパニ− Photochemical process for treating substrate surface
WO1990000812A1 (en) * 1988-07-08 1990-01-25 Engelsberg Audrey C Removal of surface contaminants by irradiation from a high-energy source
US5024968A (en) * 1988-07-08 1991-06-18 Engelsberg Audrey C Removal of surface contaminants by irradiation from a high-energy source
US5099557A (en) * 1988-07-08 1992-03-31 Engelsberg Audrey C Removal of surface contaminants by irradiation from a high-energy source
US5531857A (en) * 1988-07-08 1996-07-02 Cauldron Limited Partnership Removal of surface contaminants by irradiation from a high energy source
US5821175A (en) * 1988-07-08 1998-10-13 Cauldron Limited Partnership Removal of surface contaminants by irradiation using various methods to achieve desired inert gas flow over treated surface
US5023750A (en) * 1989-02-23 1991-06-11 Mitsubishi Denki Kabushiki Kaisha Electronic component having improved low resistance contact and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPS61127121A (en) Formation of thin film
JPH0496226A (en) Manufacture of semiconductor device
JPS59215728A (en) Optical cleaning method of surface of semiconductor
EP0227839B1 (en) Method of forming a thin film
JPH02260531A (en) Treatment of silicon surface
JPS6246994A (en) Method and apparatus for growing thin film
JPS6380525A (en) Formation of coat
JPH10106958A (en) Plasma cvd system
JPS63317675A (en) Plasma vapor growth device
KR970003502B1 (en) Laser vpe method and apparatus thereof
JPS61230326A (en) Vapor growth apparatus
JPH01278025A (en) Semiconductor dry-etching method
RU2168237C2 (en) Method for producing nitride film on surfaces of semiconductor compounds
JPS6286165A (en) Formation of thin film
JP2004103745A (en) Epitaxial growth method for nitride semiconductor film by hot wire cvd method
JP2616759B2 (en) Thin film formation method
JPS62118521A (en) Formation of semiconductor film
JPH01158721A (en) Method and apparatus for light irradiation type low temperature mocvd
JPH0243720A (en) Molecular beam epitaxial growth method
JPH0622228B2 (en) Thin film formation method
JPS60211847A (en) Forming method of insulating film
JPH0878728A (en) Growth of heteroepitaxial blue light-emitting gallium nitride
JPS61255015A (en) Thin film forming method
JP3063317B2 (en) Vapor growth method of semiconductor thin film
Bruno et al. On the use of the plasma in III‐V semiconductor processing