JPS59214540A - Numerically controlled machine tool - Google Patents

Numerically controlled machine tool

Info

Publication number
JPS59214540A
JPS59214540A JP58086576A JP8657683A JPS59214540A JP S59214540 A JPS59214540 A JP S59214540A JP 58086576 A JP58086576 A JP 58086576A JP 8657683 A JP8657683 A JP 8657683A JP S59214540 A JPS59214540 A JP S59214540A
Authority
JP
Japan
Prior art keywords
data
machining
condition data
machine tool
machining condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58086576A
Other languages
Japanese (ja)
Inventor
Teruo Miyata
宮田 輝男
Fumito Okino
文人 興野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58086576A priority Critical patent/JPS59214540A/en
Publication of JPS59214540A publication Critical patent/JPS59214540A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40937Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45161Grinding machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

PURPOSE:To reduce input steps of the data as to machining conditions by providing such a function as automatically producing condition data required for machining, means of only by a few key input data. CONSTITUTION:In a machine tool, such as a cylindrical grinder and its control unit, the grinding cycle number Ncyc and key data are entered according to the processing flow. The grinding cycle number Ncyc thus entered is assigned to the brain number K in the standard data table Ds. The machining condition data Do(n) is initialized by the standard data D3(k,n), and the brain number j in the compensation coefficient table ki(j,n) is determined. Then, the machining condition data Do(n) is read out and multiplied by the compensation coefficient ki(j, n), and the obtained result is stored in the area of the machining condition data Do(n). Each of these base data is multiplied by the compensation coefficient read out in correspondence to the key data to obtain machining condition data, whereby, the movement of the cylindrical grinder is controlled.

Description

【発明の詳細な説明】 本発明は数11f制’Il’f11工作機械の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a number 11f system 'Il'f11 machine tool.

数1直制仰工作機械に2いては、ワークの材質。For a direct control machine tool, the number 1 is the material of the workpiece.

形状及び仕上形状を考慮して加工用工具、ワークの移動
話、速度等の加工条件データを加工)Ft序に従って作
成し、制御装置に入力しているOそして、この制御装置
はこれらの加工条件データをもとに工作機械の運転動作
ケ制御する・この批工作機械の例として第1図に円筒研
削盤を、第2図にその制御装置を夫々示す。更に加エフ
0セスの一例として7ランジ研削サイクル、トラバース
研St+サイクルの各一段分の運転動作線図を夫々第3
図、第4図に示す。
Taking into consideration the shape and finished shape, machining condition data such as machining tools, workpiece movement information, speed, etc. are created according to the order of machining) and input into the control device. Controlling the operation of a machine tool based on data - As an example of this machine tool, Fig. 1 shows a cylindrical grinder, and Fig. 2 shows its control device. Furthermore, as an example of the machining process, the operation diagrams for each stage of the 7 lunge grinding cycle and the traverse grinding St+ cycle are shown in the third table.
It is shown in Fig. 4.

第1図に示す円筒研削盤lはヘッドストック7と7ツト
・ストック8により支持されたワーク9を速度Vwで回
転させるとともに、モータ5と送ジ磯構6によりワーク
9の長手方向にスライドさせることができる@又迷度V
Gで回転する砥石2にモータ3と送り機構4でワーク9
の径方向への研削を行なわしめる0即ち、該円筒研削盤
lはこれら2方向の動作を制御することにより、ワーク
9”!i:所期の形状2寸法に加工することができる・
尚第1図中X、Zは加工座標系(X:ワーク径方向、Z
:ワーク長手方向)を示す◎ ここで、ワークのH削−リ゛イクルには第3図にyes
 −f フランジ研削、第4図に示すトラバース研削性
があり、例えば絹1図に示す如きワーク9において加工
段a、C全トラバーヌ研削、bをプランシイII)削で
仕上けるとする・円筒研+JIJ盤Jのオペレータは、
第2図にボす操作盤11を介して割@装置12に加工段
a。
The cylindrical grinder l shown in FIG. 1 rotates a workpiece 9 supported by a headstock 7 and a stock 8 at a speed Vw, and also slides the workpiece 9 in the longitudinal direction by a motor 5 and a feed mechanism 6. You can do it @Mataru V
A workpiece 9 is placed on the grindstone 2 rotating by G using the motor 3 and the feed mechanism 4.
By controlling the operations in these two directions, the cylindrical grinder l can grind the workpiece 9'' into the desired shape and two dimensions.
In Fig. 1, X and Z are the machining coordinate system (X: workpiece radial direction, Z
: Indicates the longitudinal direction of the workpiece.
-f Flange grinding, traverse grinding as shown in Figure 4, for example, workpiece 9 as shown in Figure 1 is finished with machining steps a and C all traverne grinding, and b by Plancy II) - Cylindrical grinding + JIJ The operator of board J is
The processing stage a is transferred to the cutting device 12 via the operation panel 11 shown in FIG.

b、cに第3図及び第4図に例示するTI[J@加工’
jF4件葡加工手順に従って入力していく・上記制御装
置12は1tOM(読出し彎、用メモリ)16に予めヤ
ト込まれたプログラムのtfilJ 碑のもとに加工条
件データをインターフェース15を介してJlyり込み
It A M (i光平1きpJ能なメモリ)17 K
 5qH込むとともに、人力データをス1穎当な表示」
かIC〔(図示しない)に表示する0そして、操作盤1
1からの実行指令によりRAM 17 K9に込葦1L
fC加]]朱件データを6元出し、研削盤lの状態Si
ng)インターフェース19を介して監視しながら、研
1]1]盤lの制御信号5ootをインターフェース1
8ケ弁して出力する。尚第2図中13はCPU(中央演
算処理装置)、14はシステム・バスであり、該システ
ム・バス14はアドレス・バス、データーバヌ及びコン
トロールeパスから成る。
TI[J@processing' illustrated in Figs. 3 and 4 in b and c.
The above control device 12 inputs the machining condition data via the interface 15 under the program TfilJ, which is preloaded in the 1tOM (readout memory) 16. Including It A M (i-Kohei 1 pJ-capable memory) 17K
In addition to incorporating 5qH, human data can be displayed accurately.
0 displayed on the IC (not shown) and the operation panel 1
1L is loaded into RAM 17 K9 by the execution command from 1.
fC addition]] Extract 6 elements of condition data and calculate the state Si of the grinding machine l
ng) While monitoring via the interface 19, the control signal 5oot of the board 1] is sent to the interface 1.
8 valves and output. In FIG. 2, 13 is a CPU (central processing unit), 14 is a system bus, and the system bus 14 is composed of an address bus, a data bus, and a control e-path.

次にプランジ研削による加工手順を第3図に基づいてi
i明する。尚谷ステップにおいて必侠な条件データは相
互間係を考l・威して決定芒れる@(1)  砥石起動
位置Xoから砥石2がワーク9に接触する寸前xG葦で
該砥石2全速度Foで早送りする。
Next, the machining procedure by plunge grinding is shown in Figure 3.
I will explain. The necessary condition data for the Shoya step can be determined by considering the mutual relationship @ (1) From the grinding wheel starting position Fast forward.

(2)  座標xR葦で砥石2を送り速度FG(<FO
)にてワーク9に切込む。
(2) Feed speed FG (<FO
) to cut into workpiece 9.

(3)  座標XFまで送り速度FRVcて粗研1ju
する。
(3) Coarse grinding 1ju at feed rate FRVc to coordinate XF
do.

(4)砥石2の送りを停止したまま該砥石2を回転させ
る・このときのドエル量は図中5HVcて示さtLる。
(4) Rotate the grindstone 2 while stopping the feed of the grindstone 2 - The dwell amount at this time is 5HVc and tL in the figure.

(5)  座標Xs筐で送ジ速度FFにて精研tilJ
される6(6)砥石2の送りを停止したまま該砥石2を
回転させる0このときのドエル量は図中Spにて示芒ハ
る。
(5) Seiken tilJ at coordinate Xs case and feeding speed FF
6 (6) Rotate the grindstone 2 while stopping the feed of the grindstone 2. The dwell amount at this time is indicated by Sp in the figure.

(7)1川r・9位1jCXo寸で砥石2を退好芒せて
加工を一尼r+る。
(7) Set the grindstone 2 at 1st river r, 9th place 1jCXo size and process it 12r+.

尚第3図中xwは加工前ワーク外径、ZLはワーク加Z
[都′E、端位置を夫々ボす。
In Fig. 3, xw is the outer diameter of the workpiece before machining, and ZL is the workpiece machining Z.
[To'E, mark the end positions respectively.

又トラパーヌ研i!l!J Kよる力1l工手順を第4
図に基ついて説明すると以1のようになる。
Trapane Lab i! l! J K's force 1l construction procedure is the 4th
The explanation based on the figure is as follows.

(1)砥石起動位置X。から砥石2がワーク9に接触す
る寸r3i4XG壕で該(11(石2分速度F0で早送
りする。− (2)  座標XR丑で砥石2を送り速度F’0(<、
Fo)にてワーク9に切込む・ (3)  座椋泡・寸で送り速度FRKて粗研削する。
(1) Grinding wheel starting position X. From the point at which the grinding wheel 2 contacts the workpiece 9, the grinding wheel 2 is moved at a speed F'0 (<,
Cut into the workpiece 9 at Fo) (3) Roughly grind at the feed speed FRK at Zaku Awa.

(4)  砥石2の送りを怜11二した捷1該砥石2を
回転させる・このとさのドエル量は図中SRに工示さノ
]2る。
(4) Adjust the feed of the grindstone 2 and rotate the grindstone 1. The dwell amount of this grindstone is indicated by SR in the figure.

(5)  イ1j(石2を座標X□まで尻重砥石幅sV
だ4けワーク9奢これの長手方向に動かす□ (6)以上の(2)乃至(5)までの工程を加工部の長
ざ、即ち座標ZL−ZHの区間で繰返す。
(5) I1j (stone 2 to coordinate X□
Move the workpiece 9 by 4 in the longitudinal direction (6) Repeat the steps (2) to (5) above in the length of the machining section, that is, in the area of coordinates ZL-ZH.

(7)砥石2を半径方向に僅か(力1」工部右端ではp
R,、左端で/I′iPL+)切込み、砥石2の送りを
停止したまま該砥石2を回転させる。このときのドエル
貴は図ボの如< I)R(石!1^+)、1.)L、(
圧端)Kで示される。
(7) Move the grinding wheel 2 slightly in the radial direction (force 1”) at the right end of the work section.
R,, /I'iPL+) is made at the left end, and the grindstone 2 is rotated while the feed of the grindstone 2 is stopped. The dwell value at this time is as follows: < I) R (Stone! 1^+), 1. ) L, (
pressure end) is indicated by K.

(8)砥石をワーク9に対して相対的に長平方向に速度
TR(右向き移動時)、Tt、(左向き移動時)でトラ
バースさせる。
(8) Traverse the grindstone in the longitudinal direction relative to the workpiece 9 at speeds TR (when moving rightward) and Tt (when moving leftward).

(9) 上記(7L (8ンの工程を第1トラバース位
1i1tXF。
(9) The above (7L (8n) process is carried out at the first traverse position 1i1tXF.

から第2トラバース位置XF2筐で繰り返す、。Repeat from 2nd traverse position XF2 housing.

これt第1トラバースと呼ぶ。This is called the t-first traverse.

C1l  上記第1トラバースと同一の条件(pR2゜
PL2/ 1)R,DL/TH,TL) Vc−c仕上
径X3t’t’)ラパースを繰り返す・ aυ 砥石2の送りを停止したまま該磁石を回転させ、
ND回だけスパーク・アウトさせる。
C1l Same conditions as the first traverse above (pR2゜PL2/1) R, DL/TH, TL) Vc-c finished diameter rotate it,
Spark out only ND times.

(6)砥石2を後退させて加工を完fする。(6) Retract the grindstone 2 to complete the machining.

ところで、第1図及び第2図に例示する数111制御工
作機械たる円筒殻5Ilfflにおいて第3図或/fi
第4図に示す加工サイクルを実行はせるためKは、訣多
くの加工条件データ、例えは砥石の送り速度、迭り速度
の切換点の座伴、ワーク回転敵、テーブル送り速度等を
入力しなけれはならなかった。そして、これらの加工条
件データは、オペレータによりワークの羽負、形状。
By the way, in the cylindrical shell 5Ilffl, which is the number 111 control machine tool illustrated in FIGS. 1 and 2, as shown in FIG.
In order to execute the machining cycle shown in Fig. 4, K inputs a lot of machining condition data, such as the feed rate of the grinding wheel, the position of the switching point of the sliding speed, the rotation speed of the workpiece, and the table feed rate. I had to do it. These machining condition data are then used by the operator to determine the blade load and shape of the workpiece.

仕上S度等を念頭において過去の経験と勘等から相互の
関係葡考慮して決定され、1つ1つ入力されなければな
らないため、入力作業に多大な時間を擬していたへ又未
熟練者がデータを入力した場合、加工条件が過圧でない
ために仕上がったワークの加工1rIt度が下がる口J
能性もあつfr、O 本発明は斯〃・る問題を有効にm決すべ(成されたもの
で、その目的とする処は、キーとなる少ない入力データ
で加工に必袂な条件データを自動生成する機能を持たせ
ることにより%加工条件データを人力するための工数を
削減することができる数置制御工作機械を提供するにめ
る・Jすrかる目的を達成すべく本発明は、加工上のキ
ーデータ欠取り込む手段と、加工条件の標準データ及び
補正係数のテーブルと、補正係数値テーブルのブレーン
を決定するための曲数全記憶する手段と、前記キー・デ
ータの内の加工サイクル番号によシ前記標準データを読
み出し、加工条件のベース・データとして設定する処理
手段と、前Hピベース・データの各々に対して前記キー
・データに対応する補正係数値′4t、読み出し工乗じ
、加工条件データを求める処理手段とを設けたことをそ
の特徴とする。
This is determined by taking into consideration the mutual relationship between past experience and intuition, keeping in mind the degree of finish, etc., and inputting each item one by one requires a large amount of time for inputting work, which also requires unskilled work. If a person inputs data, the machining degree of the finished workpiece will decrease because the machining conditions are not overpressure.
The present invention has been made to effectively solve this problem, and its purpose is to obtain necessary condition data for processing with a small amount of key input data. The present invention aims to provide a numerically controlled machine tool that can reduce the number of man-hours required to manually generate machining condition data by having a function of automatically generating it. means for importing missing key data for machining, a table of standard data of machining conditions and correction coefficients, means for storing all the numbers of songs for determining the brain of the correction coefficient value table, and machining cycles in the key data. processing means for reading out the standard data by number and setting it as base data for machining conditions; and for each of the previous H-pibase data, a correction coefficient value '4t corresponding to the key data, a readout process multiplier, Its feature is that it is provided with a processing means for obtaining processing condition data.

以下に本発明の好適一実施例を添付図面に、4ついて説
明する0 第5図は本発明の要点を模式的に示す図、第6図はデー
タ処理フローチャートである。
A preferred embodiment of the present invention will be described below with reference to the accompanying drawings. Fig. 5 is a diagram schematically showing the main points of the invention, and Fig. 6 is a data processing flowchart.

本発明に係る工作機械、例えば第1図及び第2図に示す
円筒研削盤lとその制御装fF!t l 2に訃いては
、操作盤11から入力された任意のキーデータKl)(
i) (i = 1 、2・・・、 M、 i :補正
係数番号、ivi:補止係数の個数9に対して第6図に
例示する処理フロー(ROM16に登録されたプログラ
ム)K従って加工条件データもDo(n)(n”=1.
2”・N、n:加工条件番号、 N : 7JD工条件
データの個数)を生成し、RAM17に%込む0尚It
 A MI7けバッテリー・バックアップ付であって・
装置の電源を落としても、内科を保持するものとする◇
而してデータ処理フローを第6図に示−f 7 o−チ
ャートに従って説明するに、f −タ処理51により 
HtgU−v゛イクル査号Ncyc及びキー・データK
D (1)、 Kl)(2)、・−・、Kl)(MIを
得る。
Machine tools according to the present invention, such as the cylindrical grinder l shown in FIGS. 1 and 2 and its control system fF! t l 2, any key data Kl) inputted from the operation panel 11
i) (i = 1, 2..., M, i: correction coefficient number, ivi: number of correction coefficients, 9) The processing flow (program registered in the ROM 16) illustrated in FIG. The condition data is also Do(n)(n”=1.
2"・N, n: machining condition number, N: 7JD machining condition data) is generated and stored in the RAM 17.
A MI7 battery backup included.
Even if the power of the device is turned off, the internal medicine will be retained◇
The data processing flow will be explained according to the f7o-chart shown in FIG.
HtgU-cycle code Ncyc and key data K
D (1), Kl) (2), ..., Kl) (obtain MI.

次に処理52では標準データ・テーブルDs (k、 
n )のブレーン番号kを処理51で得た研削ヤイクル
蚤号Ncycとする。そし、て、処理53では加工条件
データDo(rlを標準データDB(k、n)で初30
3化する・又処理54では補正係数番号iをIK上セツ
トる。そして、処理55から581でを補正係数番号i
が補止係数の個数lすを超える丑で反復する。処理55
では関数fiKキー・データKD(i)を入力し、補正
係数値テーブルki(J * ’ )のブレーン番号j
を決定する0尚関数fiはキー・データKl)(りに応
じた補止係数値テーブルのブレーン番号を決定さするた
めのものである◎又標準データ・テーブルDS及び補正
係数11隨テーブルkiは複数個のブレーンから成る2
次元のテーブルでアリ、これらテーブルD3 a k 
1及び関efiはl((7M16&C登録されている◎
処理56ではRAM17に1かれた加工条件データDo
(n)を読出し、補正係数1ikki(j、n)を乗じ
て得ひRAM17の加工条件データDo(n)のエリア
に格納する・又処理57では補正係数番号iを1つ増す
・次に処理58では上記処理57にてlを加算された補
正係数番号iを補正係数の個数Mと比較し、処理55か
ら処理58筐でのループ処理が終rしたか否かを判定す
る@そして、i、>Mと判定されると、全ての加工条件
データDo(n)の自動生成が終わったことKなる。
Next, in process 52, the standard data table Ds (k,
Let the brane number k of n) be the grinding cycle number Ncyc obtained in process 51. Then, in process 53, the machining condition data Do (rl is set to 30
In addition, in step 54, a correction coefficient number i is set on IK. Then, in processes 55 to 581, the correction coefficient number i
is repeated for more than the number of correction coefficients. Processing 55
Now, input the function fiK key data KD(i), and calculate the brane number j of the correction coefficient value table ki(J*').
The function fi that determines the key data Kl) is used to determine the brane number of the correction coefficient value table according to the key data Kl). Also, the standard data table DS and the correction coefficient table ki are Consisting of multiple branes 2
Dimensional tables, these tables D3 a k
1 and Seki efi are l((7M16&C registered◎
In process 56, the machining condition data Do stored in the RAM 17 is
(n) is multiplied by the correction coefficient 1ikki (j, n) and stored in the processing condition data Do(n) area of the RAM 17. Also, in process 57, the correction coefficient number i is incremented by one.Next processing In step 58, the correction coefficient number i to which l has been added in step 57 is compared with the number M of correction coefficients, and it is determined whether the loop processing in steps 55 to 58 has ended. , >M, it means that automatic generation of all machining condition data Do(n) has been completed.

斯くして加工条件データDo ’J1)の生成が終われ
ば、制御装置12は操作盤iiからの実行指令によって
RAM17に1込まれた加工条件データDo (n)を
続出し、円筒研削盤1の運転動作を制御する@ 以上第5図及び第6図に示す構成を採ることb7より、
叔多くの加工条件チータケ人力しなくても、いくつかの
キーとなるデータを人力するたけで加工条1!トテータ
を自動生成でさるため、加工化性入力のための工数の大
qp rjlJ=<を図ることがでさる0 尚、p!5図及び第6図は一般的な形式で図示したもの
であるが、実^(K#′i加工条件データとしては、例
えば第3図、成し−1は第4図に記した/?3変数欠定
航4【7、又キー・データとしては、例え(・」:ワー
ク形状、材JJ″4..硬度、粗度、取代、ゲージ等を
採用し、夫々のデータは加工上妥肖な範囲内で設定する
ことが行なわれる◎又加工条件として登録すべき変数、
或は補正係数1「【の柚類eま、加]:上のわ々の条件
に応じて任意に追加又に′1111除がoJ能なことは
明らかである口
When the generation of the machining condition data Do 'J1) is completed in this way, the control device 12 successively outputs the machining condition data Do (n) stored in the RAM 17 according to the execution command from the operation panel ii, and Controlling the driving operation @ From b7, adopting the configuration shown in Figures 5 and 6 above,
Many processing conditions can be processed without manual effort, just by manually inputting some key data! Since the totator is automatically generated, it is possible to achieve a large number of man-hours for inputting processability. Although Figures 5 and 6 are shown in a general format, the actual machining condition data is shown in Figure 3, and -1 is shown in Figure 4, for example. 3-variable missed flight 4 [7. Also, as key data, for example (・": workpiece shape, material JJ"4... hardness, roughness, machining allowance, gauge, etc.), each data is appropriate for machining. ◎ Also, variables that should be registered as processing conditions,
Or correction coefficient 1 "[Yuzuru e, addition]: It is clear that oJ can be arbitrarily added or subtracted by '1111 according to the above conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第itン1は円筒研削盤の模式図、第2図は同研削盛の
制御装置6の構Jy、図、第3図、第4図は夫夫加エフ
ロセヌとしての1ランジ研削サイクル、トラバースωf
 l’llJサイクルの各一段分の運動動作線図、第5
図は本発明の畏点金成す各踵データの構成図、第6図は
データ処理フローチャートでめる0 図  面  中、 1は円筒研削盤、 2Fi砥石、 3.5はモータ、 4.6d送り機構、 7.8はフット#ストック、 9はワーク、 11は操作盤、 12/ri制御装置、 13はCPU。 14はシステム・バ。ス、 15.18.19はインターフェース、15#i)tO
M。 17IIiRAM。 Do(n)は加工条件データ、 Ds(k、n)tj標準データ・テーブル、KD(i)
はキー−データ、 ki(L”)は補正係数テーブルである、特許出願人 三羨虚工業株式会社 復   代   理  人 −jF理士 光 石 士 部(他1名)第1図 Wh5熾 オ巾正イ撃苔髪イ屓−1−7!レガヂ キーテ−7君嘔 第6図
Fig. 1 is a schematic diagram of the cylindrical grinder, Fig. 2 is the structure of the control device 6 of the grinding machine, Fig. 3, and Fig. 4 are the 1-lunge grinding cycle and traverse ωf of the cylindrical grinder.
Motion diagram for each stage of l'llJ cycle, 5th
The figure is a configuration diagram of each heel data that is a feature of the present invention, and Figure 6 is a data processing flowchart.In the figure, 1 is a cylindrical grinder, 2Fi grindstone, 3.5 is a motor, and 4.6d feed Mechanism, 7.8 is foot #stock, 9 is workpiece, 11 is operation panel, 12/ri control device, 13 is CPU. 14 is the system bar. 15.18.19 is the interface, 15#i) tO
M. 17IIiRAM. Do(n) is processing condition data, Ds(k,n)tj standard data table, KD(i)
is the key data, and ki (L") is the correction coefficient table. Igeki moss hair - 1-7! Regadikite - 7 Kimo Figure 6

Claims (1)

【特許請求の範囲】[Claims] /ン値ft+II仰工作機械において、加工上のキー・
データ紮取り込む手段と、加工乗件の標準データ及び補
止係数111のテーブルと、補止% 数1i f −プ
ルのル−ンを決定するための関数全記憶する手段と、前
n己キー・データの内の加Jザイクル省号によシ前記枦
準データを読み出し、加工条件のベース・データとして
設定する処理手段と、r4’T NT、:ベース・デー
タの各々に対して8+J ncキーデークに対応する補
正係数値を読み川して末し・加工条件データを求める処
理手段とに備えて成るla IN III作工作機械。
/N value ft+II In the machine tool, the key to machining is
A means for importing data, a table of standard data and correction coefficients 111 for processing multipliers, a means for storing all functions for determining the correction percentage number 1if-pull rune, A processing means reads out the standard data according to the data and sets it as base data of machining conditions; A la IN III machine tool is provided with processing means for reading and finalizing the corresponding correction coefficient value and obtaining machining condition data.
JP58086576A 1983-05-19 1983-05-19 Numerically controlled machine tool Pending JPS59214540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58086576A JPS59214540A (en) 1983-05-19 1983-05-19 Numerically controlled machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086576A JPS59214540A (en) 1983-05-19 1983-05-19 Numerically controlled machine tool

Publications (1)

Publication Number Publication Date
JPS59214540A true JPS59214540A (en) 1984-12-04

Family

ID=13890830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086576A Pending JPS59214540A (en) 1983-05-19 1983-05-19 Numerically controlled machine tool

Country Status (1)

Country Link
JP (1) JPS59214540A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531667A (en) * 1991-07-23 1993-02-09 Okuma Mach Works Ltd Grinding work automating system
DE102008052592A1 (en) * 2008-10-21 2010-04-22 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Apparatus and method for controlling a processing plant
CN105522484A (en) * 2016-02-24 2016-04-27 苏州瑞格思创光电科技有限公司 Machining control method for glass engraving and milling machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133589A (en) * 1974-04-10 1975-10-22
JPS5882646A (en) * 1981-11-05 1983-05-18 Yamazaki Mazak Corp Cutting requirement determining/controlling method in numerically controlled machine tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133589A (en) * 1974-04-10 1975-10-22
JPS5882646A (en) * 1981-11-05 1983-05-18 Yamazaki Mazak Corp Cutting requirement determining/controlling method in numerically controlled machine tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531667A (en) * 1991-07-23 1993-02-09 Okuma Mach Works Ltd Grinding work automating system
DE102008052592A1 (en) * 2008-10-21 2010-04-22 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Apparatus and method for controlling a processing plant
US9317031B2 (en) 2008-10-21 2016-04-19 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Apparatus and methods for controlling machining systems
CN105522484A (en) * 2016-02-24 2016-04-27 苏州瑞格思创光电科技有限公司 Machining control method for glass engraving and milling machine

Similar Documents

Publication Publication Date Title
US5595525A (en) Numerically controlled grinding machine
JPS591164A (en) Numerically controlled grinder
JPS59214540A (en) Numerically controlled machine tool
JP2805119B2 (en) Numerical controller for processing non-circular workpieces
JPS58175010A (en) Graphic display method of numerical controller for 4-axis lathe
WO1987003525A1 (en) Method of preparing nc data
JPS6090652A (en) Nc machine tool
JPS59223808A (en) Numerically controlled machine tool
JPS6051905A (en) Automatic generating system of working condition data
JPS5964272A (en) Method of monitoring cnc-inner-surface grinder process
JP2764012B2 (en) Grinding equipment
JP2941031B2 (en) Numerical control unit for grinding machine
JP2549664Y2 (en) Numerically controlled grinding machine
JPS6086608A (en) Numerically controlled machine tool
JPH074646Y2 (en) Numerical control device
JP3182928B2 (en) Numerical control grinding machine
JP2582954Y2 (en) Optical Copy Grinding Machine
Derecichei et al. Aspects regarding the processing of complex surfaces from wood.
JPH0627322Y2 (en) Numerical control grinder
JP2523368Y2 (en) Shape data input device
JPH04201046A (en) Preparation device for work data
JPH0659608B2 (en) Grinding method of step on grinding machine
JPH0413085Y2 (en)
JP3465395B2 (en) Numerically controlled grinding machine
JP3641285B2 (en) Interactive raw nail molding machine