JPS59207233A - Coating method - Google Patents

Coating method

Info

Publication number
JPS59207233A
JPS59207233A JP8328983A JP8328983A JPS59207233A JP S59207233 A JPS59207233 A JP S59207233A JP 8328983 A JP8328983 A JP 8328983A JP 8328983 A JP8328983 A JP 8328983A JP S59207233 A JPS59207233 A JP S59207233A
Authority
JP
Japan
Prior art keywords
polyetherketone
coating
base material
film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8328983A
Other languages
Japanese (ja)
Other versions
JPH0466691B2 (en
Inventor
照夫 妻藤
林田 晴雄
比延田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP8328983A priority Critical patent/JPS59207233A/en
Publication of JPS59207233A publication Critical patent/JPS59207233A/en
Publication of JPH0466691B2 publication Critical patent/JPH0466691B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は熱可塑性芳香族ポリエーテルケトン樹脂を用い
た被覆方法に関する。さらに詳しくは特定温度で溶融さ
せた熱可塑性芳香族ポリエーテルケトン樹脂を、金属も
しくはセラミック溶射された基材表面に融着させた後、
冷却することにより強固な破膜を形成させることを特徴
とする被覆方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coating method using thermoplastic aromatic polyetherketone resins. More specifically, after fusing a thermoplastic aromatic polyetherketone resin melted at a specific temperature to the surface of a metal or ceramic sprayed base material,
The present invention relates to a coating method characterized by forming a strong broken membrane by cooling.

熱可塑性芳香族ポリエーテルケトン樹脂は特開昭54−
90296 などの記載にみられるごとく高い耐熱性、
耐燃性、機械的、電気的性質、耐薬品性を有することが
知られている。これらのすぐれた諸性質を生かして特に
電線やケーブルの絶縁被覆としての利用が示唆されてい
るが、電線やケーブルの被覆に留らず、各種導電体の絶
縁被覆や耐食性の付与等により、その利用範囲が拡大す
ることで、電気、機械等各種産業の一層の発展が期待さ
れる。
Thermoplastic aromatic polyetherketone resin is disclosed in Japanese Unexamined Patent Application Publication No. 1986-
High heat resistance as seen in the descriptions such as 90296,
It is known to have flame resistance, mechanical, electrical properties, and chemical resistance. Taking advantage of these excellent properties, it has been suggested that they can be used as insulating coatings for electric wires and cables. As the scope of use expands, further development of various industries such as electrical and mechanical industries is expected.

本発明者らは絶縁性の付与、耐食性の付与等該ポリエー
テルケトンのすぐれた特性を付与させるべく金属基材、
特に鋼、アルミニウム、銅等へのポリエーテルケトンに
よる被覆を目的に検討を行い、良好な被膜を形成させる
方法を見い出し本発明に至った。
The present inventors aimed to impart excellent properties of the polyetherketone, such as imparting insulation properties and corrosion resistance, to a metal base material,
In particular, we conducted studies aimed at coating steel, aluminum, copper, etc. with polyetherketone, and found a method for forming a good coating, resulting in the present invention.

本発明者等は、まず該ポリエーテルケトンの溶液塗装方
法について検討を行なったが、該ポリエーテルケトンは
そのすぐれた耐薬品性故に溶剤としては濃硫酸が存在す
るのみであり、濃硫酸を使用した溶液では基材金属の腐
食の問題があり、汎用性に乏しいという難点があった。
The present inventors first investigated a solution coating method for the polyetherketone, but since the polyetherketone has excellent chemical resistance, only concentrated sulfuric acid exists as a solvent, so concentrated sulfuric acid was used. This solution has the problem of corrosion of the base metal and is not very versatile.

そこで本発明者等は粉体塗装方法に着目し、検討した結
果、作業性が良好で外観のすぐれた該ポリエーテルケト
ン樹脂の被膜を形成させる方法を見い出し、先に特許を
出願した。本方法は1回の吹付操作で最大300μ程度
の膜厚を有する被膜の形成が可能であるが、電気絶縁性
、断熱性等を要求される用途への適用はさらに厚膜が必
要とされ、その場合には多数回の吹付けと加熱焼成のく
り返しが必要となり、生産性が低いという欠点がある。
Therefore, the present inventors focused their attention on powder coating methods, and as a result of their studies, they discovered a method for forming a film of the polyetherketone resin that is easy to work with and has an excellent appearance.The inventors have previously applied for a patent for this method. This method can form a film with a maximum thickness of about 300μ in one spraying operation, but a thicker film is required for applications that require electrical insulation, heat insulation, etc. In that case, it is necessary to repeat spraying and heating and baking many times, which has the disadvantage of low productivity.

また、粉体塗装に適した粒径範囲とするため、機械的粉
砕などの手段により粒径調整をする必要もある。
Furthermore, in order to obtain a particle size range suitable for powder coating, it is necessary to adjust the particle size by means such as mechanical crushing.

上記状況に鑑みて本発明者等はポリエーテルケトンを特
定の温度で溶融させて、基材に融着させた後、冷却する
方法に着目し、鋭意検討した結果、作業性が良好で外観
がすぐれ、基材との密着強度が高く、該ポリエーテルケ
トン樹脂の厚い被膜の形成をも可能とする被覆方法を見
い出すに至った。
In view of the above circumstances, the present inventors focused on a method of melting polyetherketone at a specific temperature, fusing it to a base material, and then cooling it, and as a result of intensive study, they found that it has good workability and a good appearance. The present inventors have discovered a coating method that has excellent adhesion strength to the substrate and enables the formation of a thick film of the polyetherketone resin.

即ち、350〜450℃で溶融させたポリエーテルケト
ン樹脂を、金属もしくはセラミック溶射された基材表面
に融着させた後、冷却することにより強固な被膜を形成
させ得ることを見い出′し本発明を完成させた。本発明
に従えば基材表面に密着性、耐薬品性、耐熱性、電気絶
縁性等のすぐれた芳香族ポリエーテルケトン樹脂被膜を
形成させることが可能である。
That is, it has been discovered that a strong coating can be formed by melting a polyetherketone resin at 350 to 450°C to the surface of a metal or ceramic sprayed base material and then cooling the resin. The present invention has been completed. According to the present invention, it is possible to form an aromatic polyetherketone resin film with excellent adhesion, chemical resistance, heat resistance, electrical insulation, etc. on the surface of a substrate.

しかも本発明方法においては1回の被膜形成操作で敷部
の厚膜の形成も可能であるほか、ポリエーテルケトンに
ガラス繊維状強化材や粉末状フィラーなどを配合した組
成物を適用することにより、より高い強度、硬度、耐熱
性を有する被膜を形成させることも可能であるという 
 ゛利点を有する。
Moreover, in the method of the present invention, it is possible to form a thick film on the bottom part with a single film forming operation, and by applying a composition containing polyetherketone with glass fiber reinforcing material, powder filler, etc. It is also possible to form coatings with higher strength, hardness, and heat resistance.
``It has advantages.

本発明に使用される熱可塑性芳香族ポリエーテルケトン
は反復単位 0−o−<Σ〇− を単独で、または他の反復単位と一緒に含み、かつ固有
粘度が0.3ないし2.6、好ましくは0.5ないし1
.8である。他の反復単位としては(Σco0o− などを25重量%未満含み得るが25重景チ以上含有し
た重合体は該ポリエーテルケトンの前記特性が失なわれ
好ましくない。また、固有粘度は溶液100c−当り重
合体0.11を含む、密度1.8497cm”  の濃
硫酸中の重合体溶液について25℃で測定した固有粘度
のことである。
The thermoplastic aromatic polyetherketone used in the present invention contains the repeating unit 0-o-<Σ〇- alone or together with other repeating units, and has an intrinsic viscosity of 0.3 to 2.6, Preferably 0.5 to 1
.. It is 8. Other repeating units may include less than 25% by weight of Σco0o-, etc., but polymers containing 25 or more repeating units are not preferred because the above-mentioned properties of the polyetherketone will be lost. Intrinsic viscosity measured at 25° C. for a solution of the polymer in concentrated sulfuric acid having a density of 1.8497 cm” containing 0.11 cm of polymer per polymer.

固有粘度の測定には溶媒流出時間が約2分である粘度計
を用いて行った。この固有粘度は重合体の分子量と一義
的に対応する値である。
The intrinsic viscosity was measured using a viscometer with a solvent flow time of about 2 minutes. This intrinsic viscosity is a value that uniquely corresponds to the molecular weight of the polymer.

本発明にかかる熱可塑性芳香族ポリエーテルケトンの固
有粘度は0.3ないし2.6、好ましくは0.5ないし
1.8であるが、固有粘度が0.3未満では分子量の低
さ故に、耐熱性が低く脆い被膜しか得られない。また固
有粘度が2.6を超えると溶融粘度が高いために溶融流
動性が不十分であり、被膜の膜厚が均一になりにくく良
好な被膜が得られない。固有粘度が0.3から2.6の
範囲のものが良好な流動性と強靭な被膜性能を与えるが
、より良好な表面外観と密着強度、強靭な被膜を得るに
は0.5から1.8が好ましい。
The thermoplastic aromatic polyetherketone according to the present invention has an intrinsic viscosity of 0.3 to 2.6, preferably 0.5 to 1.8, but if the intrinsic viscosity is less than 0.3, it will have a low molecular weight. Only a brittle film with low heat resistance can be obtained. Moreover, when the intrinsic viscosity exceeds 2.6, the melt fluidity is insufficient due to the high melt viscosity, and it is difficult to obtain a uniform film thickness, making it difficult to obtain a good film. An intrinsic viscosity in the range of 0.3 to 2.6 gives good fluidity and tough coating performance, but a viscosity in the range of 0.5 to 1.0. 8 is preferred.

固有粘度が0.3から2.6の範囲のものは差動熱量計
により融点330〜335℃を示し、良好な熱安定性と
熱可塑性を有する。
Those having an intrinsic viscosity in the range of 0.3 to 2.6 show a melting point of 330 to 335°C by differential calorimeter, and have good thermal stability and thermoplasticity.

本発明における該ポリエーテルケトンは樹脂単体で使用
されてもよいが、ガラス繊維、炭素繊維、チタン酸カリ
ウム繊維など繊維状め強化材、ウオラストナイト、マイ
カ、タルク、炭酸カルシウムなど針状、薄片状、粉状の
無機充填剤等を配合することは、成形加工時の溶融同化
に伴う収縮、実使用時の加熱による結晶化度増大に伴う
収縮、温度上昇に伴う基材と被膜の膨張率の相違などを
減少させ、かつ高強度、高硬度、高耐熱性の厚い被膜を
形成させることが可能となるので好ましい。該強化材、
充填剤の配含量はポリエーテルケトンと強化材、充填剤
の合計量に対して10〜70重量%の時、前記効果が有
効に発揮され好ましい。
The polyetherketone in the present invention may be used as a single resin, but it can also be used as a fibrous reinforcing material such as glass fiber, carbon fiber, potassium titanate fiber, or in needle-like or thin pieces such as wollastonite, mica, talc, calcium carbonate, etc. The addition of inorganic fillers, etc., in the form of solid or powdered materials may cause shrinkage due to melt assimilation during molding, shrinkage due to increased crystallinity due to heating during actual use, and expansion rate of the base material and coating due to temperature rise. This is preferable because it is possible to reduce the difference in the temperature and form a thick film with high strength, high hardness, and high heat resistance. the reinforcing material,
The content of the filler is preferably 10 to 70% by weight based on the total amount of polyetherketone, reinforcing material, and filler because the above effects are effectively exhibited.

また、その用途、目的に応じて酸化防止剤および熱安定
剤、紫外線吸収剤、滑剤、染料、顔料などの着色剤、帯
電防止剤などの通常の添加剤を1種以上添加することが
できる。
Furthermore, depending on the use and purpose, one or more conventional additives such as antioxidants, heat stabilizers, ultraviolet absorbers, lubricants, colorants such as dyes and pigments, and antistatic agents may be added.

本発明方法において使用される基材はポリエーテルケト
ンの被覆に先立って被覆される表面を清浄にすることが
重要であるが、基材の錆、油脂、汚物などの除去方法と
しては、ブラスト、化学的処理等いずれの方法をも用い
ることができる。ブラストはブラスト機により、ケイ砂
、り゛ スチールヤ゛リット、カットワイヤー、粉砕したスラッ
ゾなどの研磨剤を圧縮空気とともに吹きつけて、錆、油
脂、汚物を取り除く方法である。
It is important to clean the surface of the substrate used in the method of the present invention before coating it with polyetherketone, and methods for removing rust, oil, dirt, etc. from the substrate include blasting, Any method such as chemical treatment can be used. Blasting is a method of removing rust, oil, fat, and dirt by using a blasting machine to blow abrasives such as silica sand, steel yarn, cut wire, and crushed slazo together with compressed air.

化学的方法はアルカリ、トリクロルエチレン、アセトン
、酢酸エチルなどの薬品を使用し、基材表面を清浄にす
る方法である。
The chemical method uses chemicals such as alkali, trichlorethylene, acetone, and ethyl acetate to clean the surface of the substrate.

ブラストも化学的処理も、錆、油脂、汚物をとり除くだ
けではなく、基材表面を粗面にし、基材と被膜の接着面
積を大きくし接着力を高める効果があり、粗面の粗さは
、被覆する樹脂の種類、被膜の厚さなどに応じてきめら
れる。
Both blasting and chemical treatments not only remove rust, oil, and dirt, but also roughen the surface of the base material, increase the bonding area between the base material and the coating, and increase adhesive strength. , is determined depending on the type of resin to be coated, the thickness of the coating, etc.

本発明方法における基材の前処理としてはブラストまた
は化学的処理による錆、油脂、汚物の除去後、ポリエー
テルケトン被膜と基材との密着性を高めるためにさらに
金属もしくはセラミック溶射が行なわれる。
In the method of the present invention, the substrate is pretreated by blasting or chemical treatment to remove rust, oil, and dirt, followed by metal or ceramic spraying to improve the adhesion between the polyetherketone coating and the substrate.

一般に、プラスチックの金属への塗装もしくはライニン
グ(より厚膜の被覆層を形成)では前記前処理後に塗料
もしくは樹脂粉体を付着させるが、さらに基材と被膜の
接着をより強固なものとするためにエポキシ樹脂、フェ
ノール樹脂、ゴム等のプライマーの施工を行ったり、ま
たリン酸亜鉛、リン酸亜鉛カルシウム、リン酸アルカリ
などの処理により基材表面にリン酸塩被膜を形成した後
、塗料もしくは樹脂粉体を付    ′着させる方法な
どが実施されている。
Generally, when painting or lining plastic on metal (forming a thicker coating layer), paint or resin powder is applied after the above pretreatment, but in order to further strengthen the adhesion between the base material and the coating, After applying a primer such as epoxy resin, phenolic resin, or rubber, or forming a phosphate film on the surface of the base material by treating with zinc phosphate, calcium zinc phosphate, or alkali phosphate, paint or resin Methods such as applying powder are being used.

しかしながら、ポリエーテルケトンは融点が330℃付
近にあり、溶融流動化させるためには融点以上の温度が
必要であるが、そのような高温では前記のいずれの処理
においても処理材もしくは処理面がすべて劣化ないしは
変質し、ポリエーテルケt・ンの被膜と基材との高い密
着性が得られず、金属もしくはセラミックの溶射によっ
てのみ高い密着性が得られる。高速度で飛散している溶
融または半溶融状態の粒子を物体の表面に破着させる方
法を総称して溶射というが、本発明における基材への金
属もしくはセラミックの溶射方法は、電気溶線式、ガス
溶線式、ガス溶棒式、ガス粉末式、ガス爆発式、溶融式
、プラズマ電弧式などいずれの方法をも用いることがで
きる。
However, the melting point of polyetherketone is around 330°C, and a temperature above the melting point is required to melt and fluidize it, but at such high temperatures, all of the treated material or treated surface is destroyed in any of the above treatments. Due to deterioration or alteration, high adhesion between the polyetherketone coating and the base material cannot be obtained, and high adhesion can only be obtained by thermal spraying of metal or ceramic. A method of causing molten or semi-molten particles flying at high speed to break onto the surface of an object is collectively called thermal spraying, and the method of thermal spraying metal or ceramic onto a base material in the present invention is an electric wire method, Any method can be used, such as a gas melt wire method, a gas melt rod method, a gas powder method, a gas explosion method, a melting method, or a plasma electric arc method.

本発明の溶射に使用される金属としては、アルミニウム
、アルミニウムーシリコン合金、亜鉛−アルミニウム合
金、アルミニウムーニッケル合金、亜鉛、鉛、鉛−アン
チモン合金、バビット合金(鉛系)、バビット合金(ス
ズ系)、銅、黄銅、青銅、アルミ青銅、リン青銅、シリ
コン青銅、マンガン青銅、ニッケル、モネル、メタル、
ニクロム、純鉄、M(C0,1〜0.8%)、ステンレ
ス#(各種)、自溶合金、モリブデンなどおよびそれら
の混合物などである。
The metals used in the thermal spraying of the present invention include aluminum, aluminum-silicon alloy, zinc-aluminum alloy, aluminum-nickel alloy, zinc, lead, lead-antimony alloy, Babbitt alloy (lead-based), Babbitt alloy (tin-based ), copper, brass, bronze, aluminum bronze, phosphor bronze, silicon bronze, manganese bronze, nickel, monel, metal,
These include nichrome, pure iron, M (C0.1 to 0.8%), stainless steel (various types), self-fluxing alloys, molybdenum, and mixtures thereof.

また、本発明の溶射に使用されるセラミックとしては、
アルミナ(A1203)、ジルコニア(zr02)、酸
化クロム(Cr203)、酸化セリウム(CeO2)、
酸化コバルト(CQs)、酸化ニッケル(Nio)、酸
化チタン(T t 02 )、フォルステライト(2M
 g Or S tO2)、ムライト(3A12032
 S 1Ova )、スピネル(MgO、A、/203
)などおよびそれらの混合物などである。
In addition, the ceramics used in the thermal spraying of the present invention include:
Alumina (A1203), zirconia (zr02), chromium oxide (Cr203), cerium oxide (CeO2),
Cobalt oxide (CQs), nickel oxide (Nio), titanium oxide (T t 02 ), forsterite (2M
g Or S tO2), Mullite (3A12032
S 1Ova ), spinel (MgO, A, /203
), and mixtures thereof.

金属もしくはセラミックの溶射が被膜と基材の密着性を
高める理由は明らかではないが、溶射被膜は、飛来して
きた溶融または半溶融状態の溶射粒子が基材に衝突して
へん平化し、冷却固化して、膜厚方向に層状に波形をな
して積層するため、溶融したポリエーテルケトンが基材
に融着した後、冷却固化する際に起る膜厚と直角方向に
作用する収縮を阻止するなど強力な機械的投錨効果を発
揮するという機構が考えられる。
It is not clear why thermal spraying of metals or ceramics improves the adhesion between the coating and the base material, but the thermal spray coating is caused by the incoming molten or semi-molten spray particles colliding with the base material, flattening it, and solidifying it by cooling. The film is laminated in a wave-like manner in the film thickness direction, which prevents shrinkage that occurs in the direction perpendicular to the film thickness when the molten polyetherketone is fused to the base material and then cooled and solidified. A mechanism that exerts a strong mechanical anchoring effect is considered.

溶射による被膜と基材の密着性改良効果は被膜の厚さが
より厚い時に一層その効果が発揮される。
The effect of thermal spraying on improving the adhesion between the coating and the base material is more pronounced when the coating is thicker.

本発明方法における基材表面へ溶融したポリエーテルケ
トン樹脂を融着させる方法としては、特に限定はなく、
射出成形により溶融したポリエーテルケトン樹脂を、金
型に装着された板、管などの基材上に射出するいわゆる
インザート成形といわれる方法、押出成形により溶融し
た樹脂を基材上に連続的に押出していく方法、金型の中
に基材と樹脂を充填し、溶融後圧組成形する方法などが
適用可能である。
There are no particular limitations on the method of fusing the molten polyetherketone resin to the surface of the base material in the method of the present invention.
A method called insert molding in which polyetherketone resin molten by injection molding is injected onto a base material such as a plate or tube attached to a mold, and a method called insert molding in which molten resin is continuously extruded onto the base material by extrusion molding. Possible methods include filling the base material and resin in a mold, melting, and then pressurizing the composition.

ポリエーテルケトン樹脂を溶融させる温度は350〜4
50℃が採用される。即ち、溶融温度が350℃未満で
あれば該ポリエーテルケトンの流動が不十分で均一な溶
融体が得られず、そのため均一な被膜が形成されず、4
50℃を越えれば該ポリエーテルケトンの着色が著しく
良好な外観と強い被膜が得られなl、N。
The temperature for melting polyetherketone resin is 350-4
50°C is adopted. That is, if the melting temperature is less than 350°C, the flow of the polyetherketone is insufficient and a uniform melt cannot be obtained, so a uniform film cannot be formed.
If the temperature exceeds 50°C, the coloring of the polyetherketone will be so great that a good appearance and strong film cannot be obtained.

基材の温度は予め100〜450°CIこ加熱されてい
ることが好ましく、該温度番こ予熱された基材の上に溶
融したポリエーテルケトンカ(接触し、融着した場合に
、より高し)密着強度力(得られる。
It is preferable that the temperature of the substrate is preheated to 100 to 450°C. ) adhesion strength (obtained).

基材の温度が低すぎる場合1と番よ、溶融樹月旨力く基
材と接触した際に急冷され、急激な固イヒを起すため高
い密着強度が得られず、また基材°の温度が高すぎる場
合には、基材の表面酸イヒゃ溶融樹脂が基材と接触した
際に起る樹月旨の焼をすなどのため高い密着強度が得ら
れなし1゜ さらに溶融樹脂が基材と融着した後の冷却条   、件
については特に限定はなl、)力(、該ポリエーテルケ
トンの特性をより発揮させるため番こ番よ水中、油中へ
の急冷よりも空冷、溶融温度より低温の一定温度での保
温後放冷等により結晶イヒ組織を十分発達させた被膜を
形成させること力(望ましい。
If the temperature of the base material is too low, the molten wood will be rapidly cooled when it comes into contact with the base material, causing rapid solidification, making it impossible to obtain high adhesion strength, and the temperature of the base material. If the temperature is too high, high adhesion strength cannot be obtained due to the surface acidity of the base material, which occurs when the molten resin comes into contact with the base material, and high adhesion strength cannot be obtained. There are no particular limitations on the cooling conditions after the polyetherketone is fused with the material. It is desirable to form a film with a sufficiently developed crystalline structure by keeping it warm at a constant temperature lower than the temperature and then allowing it to cool.

以上のようにして、2ンホールのなし)均一平滑な被膜
が基材表面に高い密着強度で形成され得る。被膜の厚み
は、採用基材の用途に応じて種々変えることができ、適
用される好ましl/A範囲としては0.5〜i o I
?L、、であるが、1〜5痛乳が、加工性と被膜特性が
すぐれ実用性が高くより好ましい。
In the manner described above, a uniform and smooth coating without two holes can be formed on the surface of the substrate with high adhesion strength. The thickness of the coating can be varied depending on the use of the base material, and the preferred l/A range is 0.5 to i o I
? However, 1 to 5 Itamitsu are more preferable because they have excellent processability and film properties and are highly practical.

本発明方法の適用可能な基材としては、一般的に鉄、ア
ルミニウム、銅など金属単体はもちろんのことマグネシ
ウム、マンガン、クロムなどを少量含有する種々の金属
合金が例示され、また350ないし450℃まで昇温可
能な物体、例えばセラミックス等も使用可能であり、ま
た基材の形状についCも平板状物、管状物、中空容器、
異形状物、環状物など各種形状のものが適用可能である
。本発明方法により被覆された基材は良好な密着耐久性
、耐熱性、耐薬品性などを利用した各種用途(例えば電
気部品、機械部品、建築部材、調理用具、自動車部品、
化学装置器具など)に使用され得る。例えば、化学装置
測定機器や化学実験器具、ラジェーター排気筒の排ガス
対策用バルブなどの自動車部品、ノ<イブライン、ガス
湯沸器、ボイラー、スチーム配管等がある。
Examples of base materials to which the method of the present invention can be applied include not only single metals such as iron, aluminum, and copper, but also various metal alloys containing small amounts of magnesium, manganese, chromium, etc. It is also possible to use objects that can be heated to a temperature of
Various shapes such as irregularly shaped objects and annular objects can be applied. The substrate coated by the method of the present invention can be used in various applications (e.g. electrical parts, mechanical parts, building materials, cooking utensils, automobile parts,
chemical equipment, etc.). Examples include chemical equipment measuring instruments, chemical experiment instruments, automobile parts such as exhaust gas control valves for radiator exhaust stacks, fuel lines, gas water heaters, boilers, steam piping, etc.

次に本発明を下記実施例で更に具体的に説明するが、こ
れらは本発明の好ましい態様の例示にすぎないのであっ
て、本発明の詳細な説明によって何ら限定されるもので
ない。
Next, the present invention will be explained in more detail with reference to the following examples, but these are merely illustrative of preferred embodiments of the present invention, and the present invention is not limited in any way by the detailed description.

実施例1 外径5(1wm、内径46WL−1長さ50 m、m 
の鋼管の表面を平均凹凸深さ5〜10ミクロン、凹凸周
期10〜20ミクロンにサンドブラストし、その上に下
記条件にて金属の溶射を行った。
Example 1 Outer diameter 5 (1wm, inner diameter 46WL-1 length 50m, m
The surface of the steel pipe was sandblasted to an average unevenness depth of 5 to 10 microns and an uneven pitch of 10 to 20 microns, and then metal was thermally sprayed on the surface under the following conditions.

■溶射装置 METCOPl!asma Gun  3MB型■溶射
材料 Ni−Al!複合体(メトコ404) ■溶射条件 ノズルタイプ ・・・・GH プラズマガス ・・・・ 1次Ar  +  2次H2
ガス流量・・・・1次100〜150(目盛)2次5〜
15(目盛) アーク電流 ・・・・400〜500アンペアスフレ−
距離 ・・・・4〜6インチ スプッー率 、 4〜10ボンド/ h r上記の金属
溶射された鋼管を射出成形用金型に装着し、反復単位 有粘度が0.8であるポリエーテルケトンのペレットを
用いて、下記の条件で射出成形し鋼管の外面の内40S
ya  の長さをポリエーテルケトン樹脂で被覆し、2
 rrym 厚の被膜を形成させた。
■Thermal spraying equipment METCOPl! asma Gun 3MB type ■Thermal spraying material Ni-Al! Composite (Metco 404) ■Thermal spray conditions Nozzle type...GH Plasma gas...Primary Ar + secondary H2
Gas flow rate: 1st 100~150 (scale) 2nd 5~
15 (scale) Arc current...400 to 500 amperes
Distance: 4 to 6 inches Spool rate, 4 to 10 bonds/hr The above metal sprayed steel pipe is installed in an injection mold, and pellets of polyetherketone with a repeating unit viscosity of 0.8 are placed. The inner 40S of the outer surface of the steel pipe was injection molded under the following conditions using
ya length is coated with polyetherketone resin, 2
A film with a thickness of 100 mm was formed.

射出成形機・・・・住友重機械製ネオマツl−150/
75シリンダ一温度・・・・380℃ 射出圧力・・・・1500即102 射出速度・・・・高速 金型温度・・・・160°C 成形ザイクル・・・・60秒 得られた被膜について、表面状態の観察および剥離強度
を測定した。剥離強度は樹脂被覆鋼管の外面を保持し、
島津製オートグラフIs −5000により鋼管の被覆
されていない部分をクランプし、鋼管引き抜きに要する
力で評価した。良好な外観と高い剥離強度が得られてい
る。結果を表1に示す。
Injection molding machine: Neomatsu l-150/made by Sumitomo Heavy Industries
75 Cylinder temperature: 380°C Injection pressure: 1500 i.e. 102 Injection speed: High speed Mold temperature: 160°C Molding cycle: 60 seconds Regarding the obtained coating, The surface condition was observed and the peel strength was measured. Peel strength maintains the outer surface of the resin-coated steel pipe,
The uncovered portion of the steel pipe was clamped using Autograph Is-5000 manufactured by Shimadzu, and the force required to pull out the steel pipe was evaluated. A good appearance and high peel strength were obtained. The results are shown in Table 1.

実施例2 実施例1と同一のポリエーテルケトンにガラス繊維(旭
ファイバーグラス社製、cso3丘 rvA497)%ポリエーテルケトンとガラス繊維の合
計量に対して30重量%配合した組成物を使用し、射出
成形時のシリンダ一温度を400℃とする以外は実施例
1と同様の条件で被膜を形成させた。良好な外観と高い
剥離強度が得られている。結果を表1に示す。
Example 2 A composition was used in which the same polyetherketone as in Example 1 was blended with glass fiber (manufactured by Asahi Fiberglass Co., Ltd., CSO3 Hill RVA497) at 30% by weight based on the total amount of polyetherketone and glass fiber, A film was formed under the same conditions as in Example 1 except that the cylinder temperature during injection molding was 400°C. A good appearance and high peel strength were obtained. The results are shown in Table 1.

実施例3 実施例1と同様のサンドブラストをした鋼管を用いて、
その上置下記条件にてセラミックの溶射を行った。
Example 3 Using the same sandblasted steel pipe as in Example 1,
Ceramic was thermally sprayed on top of it under the following conditions.

■溶射装置 METCOThermo 5pray  Gun  5
P■溶射材料 ジルコニア(メトコ210) ■溶射条件 ガ    ス・・・・酸素、アセチレンガス流量・・・
・酸 素30〜40(目盛)アセチレン 30〜40(
目盛) スプレー距離・・・・3〜4インチ スプレー率・・・・2ボンド/hr セラミツク溶射された基材の上に、実施例1と同様の方
法で鋼管の外面に2 mm厚の被膜を形成させた。良好
な外観と高い剥離強度が得られている。結果を表1に示
す。
■Thermal spray equipment METCOThermo 5play Gun 5
P■Thermal spraying material Zirconia (Metco 210) ■Thermal spraying conditions Gas...Oxygen, acetylene gas flow rate...
・Oxygen 30-40 (scale) Acetylene 30-40 (scale)
Scale) Spray distance: 3 to 4 inches Spray rate: 2 bonds/hr On top of the ceramic sprayed base material, a 2 mm thick coating was applied to the outer surface of the steel pipe in the same manner as in Example 1. formed. A good appearance and high peel strength were obtained. The results are shown in Table 1.

比較例1 実施例1において、ブラストのみで金属の溶射をしない
鋼管を用いる以外は実施例1と同様の条件でポリエーテ
ルケトン樹脂被膜を形成させたが、低い剥離強度しか得
られなかった。結果を表1に示す。
Comparative Example 1 In Example 1, a polyetherketone resin coating was formed under the same conditions as in Example 1 except that a steel pipe was used only by blasting without thermal spraying of metal, but only low peel strength was obtained. The results are shown in Table 1.

比較例2 実施例1において金属溶射をするかわりにリン酸亜鉛系
被膜(パーカー加工社製、フェリコート #7使用、膜
厚3〜7μ)を形成させたこと以外は、実施例1と同様
の条件でポリエーテルケトン樹脂被膜を形成させたが、
低い剥離強度しか得られなかった。結果を表1に示す。
Comparative Example 2 Same as Example 1 except that instead of metal spraying in Example 1, a zinc phosphate coating (manufactured by Parker Kako Co., Ltd., Felicoat #7 was used, film thickness 3 to 7 μm) was formed. A polyetherketone resin film was formed under the following conditions, but
Only low peel strength was obtained. The results are shown in Table 1.

比較例3 実施例1において射出成形時のシリンダ一温度を330
℃にした以外は、実施例1と同様の条件で被膜を形成さ
せたが、外観が不均一で、完全充填ができず、良好な被
膜が得られなかった。結果を表1に示す。
Comparative Example 3 In Example 1, the cylinder temperature during injection molding was set to 330°C.
A film was formed under the same conditions as in Example 1 except that the temperature was lower than 0.degree. C. However, the appearance was non-uniform, complete filling was not possible, and a good film could not be obtained. The results are shown in Table 1.

比較例4Comparative example 4

Claims (1)

【特許請求の範囲】[Claims] 350〜450℃で溶融させた熱可塑性芳香族ポリエー
テルケトン樹脂を、金属もしくはセラミック溶射された
基材表面に融着させた後、冷却することにより強固な被
膜を形成させることを特徴とする被覆方法。
A coating characterized in that a thermoplastic aromatic polyetherketone resin melted at 350 to 450°C is fused to the surface of a metal or ceramic sprayed base material and then cooled to form a strong film. Method.
JP8328983A 1983-05-11 1983-05-11 Coating method Granted JPS59207233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8328983A JPS59207233A (en) 1983-05-11 1983-05-11 Coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8328983A JPS59207233A (en) 1983-05-11 1983-05-11 Coating method

Publications (2)

Publication Number Publication Date
JPS59207233A true JPS59207233A (en) 1984-11-24
JPH0466691B2 JPH0466691B2 (en) 1992-10-26

Family

ID=13798226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8328983A Granted JPS59207233A (en) 1983-05-11 1983-05-11 Coating method

Country Status (1)

Country Link
JP (1) JPS59207233A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370696A (en) * 1991-12-09 1994-12-06 Smith & Nephew Richards, Inc. Prosthetic implants with a highly crystalline coating
JP2013544941A (en) * 2010-12-09 2013-12-19 クイックステップ、テクノロジーズ、プロプライエタリ、リミテッド Fabrication and repair of fiber reinforced composite parts with enhanced surface and adhesive properties
CN103497003A (en) * 2013-10-25 2014-01-08 长沙理工大学 Anti-static ceramic material and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105500823A (en) * 2014-10-15 2016-04-20 深圳富泰宏精密工业有限公司 Preparation method of complex of metal and resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673818A (en) * 1979-09-12 1981-06-18 Beck & Co Ag Dr Method of manufacturing insulating coated winding by extrusion of thermoplastic resin
JPS5864708A (en) * 1981-10-12 1983-04-18 三菱電機株式会社 Electrically insulatingly coated conduit for electrode of electrically heating hydrocarbon underground resources

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673818A (en) * 1979-09-12 1981-06-18 Beck & Co Ag Dr Method of manufacturing insulating coated winding by extrusion of thermoplastic resin
JPS5864708A (en) * 1981-10-12 1983-04-18 三菱電機株式会社 Electrically insulatingly coated conduit for electrode of electrically heating hydrocarbon underground resources

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370696A (en) * 1991-12-09 1994-12-06 Smith & Nephew Richards, Inc. Prosthetic implants with a highly crystalline coating
JP2013544941A (en) * 2010-12-09 2013-12-19 クイックステップ、テクノロジーズ、プロプライエタリ、リミテッド Fabrication and repair of fiber reinforced composite parts with enhanced surface and adhesive properties
CN103497003A (en) * 2013-10-25 2014-01-08 长沙理工大学 Anti-static ceramic material and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0466691B2 (en) 1992-10-26

Similar Documents

Publication Publication Date Title
Petrovicova et al. Thermal spraying of polymers
EP1031384B1 (en) Rotolining process
JPS5925820B2 (en) Composition of 3,3,3-trifluoro-2-trifluoromethylpropene/vinylidene fluoride copolymer and polytetrafluoroethylene
JP2000096203A (en) Method for thermally spraying polymer material
JP2005288440A (en) Coating of permeation-resistant etfe composition
CA1338293C (en) Undercoat composition and a metal substrate coated with a resin composition
JPH01253437A (en) Covering metal body
JP2016074970A (en) Thermal spray for hydrophobic and superhydrophobic/ice-phobic coating having durability and large area
JPS59207233A (en) Coating method
JP3848734B2 (en) Resin-coated metal material
JP2000501983A (en) Coating of unprimed metal with polyamide composition for powder coating
WO1999048952A1 (en) Powder of ethylene/ tetra fluoro ethylene copolymer and method of depositing the same
JPH0432711B2 (en)
JPH0245590B2 (en)
GB2206358A (en) Corrosion-resistant aluminium-bearing iron base alloy coating
JPH0244897B2 (en)
JPH0214191B2 (en)
JPS59199725A (en) Production of composite molded article
JPH031151B2 (en)
JPS63281828A (en) Manufacture of resin-lined metal pipe
JPS58127768A (en) Powder coating with thermoplastic aromatic polyether ketone resin
JPS60197273A (en) Preparation of coated metal body
JPH01297474A (en) Resin composition for powder-coating
JP2690188B2 (en) Polyolefin spray coated steel and method
JPS63151411A (en) Manufacture of simple mold for molding plastic