JPS59199725A - Production of composite molded article - Google Patents

Production of composite molded article

Info

Publication number
JPS59199725A
JPS59199725A JP7401583A JP7401583A JPS59199725A JP S59199725 A JPS59199725 A JP S59199725A JP 7401583 A JP7401583 A JP 7401583A JP 7401583 A JP7401583 A JP 7401583A JP S59199725 A JPS59199725 A JP S59199725A
Authority
JP
Japan
Prior art keywords
molded article
powder
frp
spraying
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7401583A
Other languages
Japanese (ja)
Other versions
JPH0311265B2 (en
Inventor
Shuya Tsuji
修也 辻
Kazuhiko Kunishima
和彦 国島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP7401583A priority Critical patent/JPS59199725A/en
Publication of JPS59199725A publication Critical patent/JPS59199725A/en
Publication of JPH0311265B2 publication Critical patent/JPH0311265B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled molded article having excellent physical properties such as corrosion resistance, interlayer adhesivity, etc., easily and efficiently, by spraying molten metal powder to the surface of a fiber-reinforced thermosetting resin (FRP) molded article, and applying resin powder to the metallic surface using flame spray-coating process. CONSTITUTION:Metallic powder is sprayed under molten state to the roughened surface of an FRP molded article preheated preferably at 80-160 deg.C from a distance of preferably 20-30cm to obtain a metallized layer having a thickness of preferably 0.03-0.6mm.. The objective article can be manufactured by spraying resin powder (preferably powder of nylon 11, etc. having an average particle diameter of preferably 80-200mu and an angle of repose of preferably 30-43 deg.) to the metalized surface of the FRP molded article, preferably from a distance of 20-30cm preferably using a flame of oxygen (170-5,000 l/hr) and propane (60-1,000 l/hr) until the thickness of the flame-sprayed coating film reaches preferably 0.2-2mm.. USE:Container of various chemicals, heat-resistant tank for water of >=80 deg.C, scrubber, duct, etc.

Description

【発明の詳細な説明】 本発明は耐食性の特に優れた複合化成形物の効軍的な成
形法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an effective method for molding a composite molded article having particularly excellent corrosion resistance.

不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキ
シ樹脂等から製造さjた繊維強化熱硬化性樹Ill¥(
以下、FRPと称す)成形物は金属製品に比べて軽く、
耐食性に優れており、成形物の製造および加工を迅速に
行うことができ、形状の選択が容易であること等の種々
の利点を有しているため、各種の薬品用容器、水タンク
等の工業関連製品および住宅関連製品に幅広く利用され
ている。しかし、かかる成形物は十分な機械的強度を有
するものの、80C以上の熱水、アルカリ、極性浴剤等
の比較的侵食性の高いものに対する耐食性能が十分に満
足し得ないという欠点がある。さらにこれらFRPは、
スクラバー、ダクト、ポンプ治具等化学装置関係の部材
にも利用されているが、これら装置で使わハる薬液はス
ラリー物質と混在する酸、アルカリ、溶剤等であり、耐
食性と共に耐摩耗性、耐擦傷性が必要であるが、FRP
では十分に性能を満足させることが出来ない。従来熱水
、アルカリ、極性溶剤等の薬液に対する耐食性を向上さ
せる手法として次の様な方法が提案されている。例えば
、英国特許第1052949号ではポリオレフィン板状
物に補強繊維布を加熱加圧により該繊維布の半分を埋め
込ませ、その未含浸繊維布にFRPを被覆して複合化す
る方法、また特公昭56−3178ではインシアネート
変性した特殊不飽和ポリエステル樹脂を接着剤として予
め塗布した各種熱可塑性シートを真空成形等で予備成形
しておき、該成形品の裏面をFRPで積層補強する方法
、更に特公昭43−27502では予め成形したポリ塩
化ビニル成形品をポリ塩化ビニルとの接着性に優れた特
殊な不飽和ポリエステルイミドで積層補強する方法等が
ある。上記複合化成形方法はFRPに使用する各熱硬化
性樹脂が保有しない優れた性質をもつ各種プラスチック
を有効に利用する点では各々特徴のある手法である。し
かし予め表面被接させる各種プラスチックを予備成形す
る必要があり、予備成形するだめの金型や成形機が必要
となるという問題がある。従って大量生産するものはよ
いが、小蓋生産品の場合、コストが高くつき、成形品の
形状も限定されてくる。また前記した様なFRPの用途
は大型構造物が多く、現場成形を実施するものが多いか
、従来の複合化方法では非常に難しいという問題もある
Fiber-reinforced thermosetting resins manufactured from unsaturated polyester resins, vinyl ester resins, epoxy resins, etc.
Molded products (hereinafter referred to as FRP) are lighter than metal products,
It has various advantages such as excellent corrosion resistance, rapid manufacturing and processing of molded products, and easy selection of shapes, so it can be used for various chemical containers, water tanks, etc. Widely used in industrial and housing related products. However, although such a molded product has sufficient mechanical strength, it has the disadvantage that its corrosion resistance against relatively highly corrosive materials such as hot water of 80 C or higher, alkali, and polar bath additives cannot be fully satisfied. Furthermore, these FRPs are
It is also used in parts related to chemical equipment such as scrubbers, ducts, and pump jigs.The chemical solutions used in these equipment are acids, alkalis, solvents, etc. mixed with slurry substances, and have corrosion resistance as well as wear resistance and resistance. Scratch resistance is required, but FRP
However, the performance cannot be fully satisfied. Conventionally, the following methods have been proposed as methods for improving corrosion resistance against chemical solutions such as hot water, alkalis, and polar solvents. For example, British Patent No. 1052949 discloses a method of embedding half of a reinforcing fiber cloth in a polyolefin plate by heating and pressing, and then coating the unimpregnated fiber cloth with FRP to form a composite. -3178 is a method in which various thermoplastic sheets coated with incyanate-modified special unsaturated polyester resin as an adhesive are preformed by vacuum forming, etc., and the back side of the molded product is laminated and reinforced with FRP. No. 43-27502 discloses a method of laminating and reinforcing a preformed polyvinyl chloride molded article with a special unsaturated polyesterimide that has excellent adhesiveness to polyvinyl chloride. The above composite molding methods are each unique in that they effectively utilize various plastics that have excellent properties that are not possessed by the thermosetting resins used in FRP. However, there is a problem in that it is necessary to preform the various plastics to be brought into contact with the surface, and a mold and a molding machine are required for the preforming. Therefore, although mass-produced products are good, in the case of small lid products, the cost is high and the shape of the molded product is also limited. In addition, many of the uses of FRP as mentioned above are large structures, and there is also the problem that many of them require on-site molding, or that it is extremely difficult to use conventional composite methods.

本発明者等は形状や大きさに限定され丁、しかも現場で
FRP成形品とその11!!の樹脂とを容易に複合化出
来る成形法を鋭意研究した結果、FRP表面に金属と樹
脂粉末を順に溶射することで耐食性、層間接着強度等の
物性に優れる複合化成形物が容易に効率的に得られるこ
とを見出し、本発明を完成するに至った。
The present inventors were limited to the shape and size, and moreover, they were able to produce FRP molded products on site. ! As a result of intensive research on a molding method that can easily composite resins, we have found that by sequentially spraying metal and resin powder onto the FRP surface, composite molded products with excellent physical properties such as corrosion resistance and interlayer adhesive strength can be easily and efficiently produced. The present inventors have discovered that the present invention can be obtained, and have completed the present invention.

即ち本発明は、FRP成形品の表面に金属をメタライジ
ング溶射し、次いで該金属表面に樹脂粉末ケ彪射するこ
とを特徴とする複合化成形物の製造法を提供するもので
ある3、本発明でメタライジング溶射に用いる金属拐料
としては溶射可能であれは特にその形態は問わないが、
一般に線材もしくは粉末が適する。金属材料のね類とし
ては溶射可能な金員であればよく、例えは亜鉛、アルミ
ニウム、黄銅、銅、鉛、ニッケル、ステンレス鋼、wm
、マンガン青銅、モリブデン、モネルメタル、鋼、スズ
、等があり、単独あるいは併用で用いられる。
That is, the present invention provides a method for producing a composite molded product, which is characterized in that metal is thermally sprayed onto the surface of an FRP molded product, and then resin powder is sprayed onto the metal surface.3. The metal particles used for metallizing thermal spraying in the invention are not particularly limited in their form as long as they can be thermally sprayed.
Wire or powder are generally suitable. Metal materials that can be thermally sprayed may be used, such as zinc, aluminum, brass, copper, lead, nickel, stainless steel, etc.
, manganese bronze, molybdenum, monel metal, steel, tin, etc., and are used alone or in combination.

本発明で用いる樹脂粉末とは粉末化が可能で醐射可能な
樹脂であれはよく、その種類としてはエポキシ樹脂、ア
クリル樹I旨、フェノール樹脂、ポリエチレン、ポリエ
ステル、ポリフロピレン、ポリ塩化ビニル、ナイロン、
フッ素樹脂、ポリヒダントイン、ポリエステルイミド、
ポリアリルアミド、ポリアミドイミド、ポリマレイミド
、ポリイミド、ポリアリルエステル、ポリサル7オン、
ポリアリルエルフオン、ポリフェニレンオキサイド、ポ
リフェニレンサルファイド、ポリオキシベンゾイル等の
ほとんどあらゆる熱硬化性もしくは熱可塑性樹脂が挙げ
られる。なかでもナイロン、ポリエチレン、ポリプロピ
レン、エポキシ樹脂が好ましく、特にナイロン11、M
I=5〜20g/IDm1nの中密度ボ5− リエチレンおよび/又は低密度ポリエチレン、マレイン
酸、アクリル酸等で変性したポリプロピレン、エチレン
−プロピレンゴムをブレンドしたポリプロピレンが接着
性、耐食性、溶射適性に優れるので好ましい。また、樹
脂粉末には必要に応じて従来公知の添加剤、充填剤、金
属粉末、セラミック粉末を混合してもよい。
The resin powder used in the present invention may be any resin that can be powdered and irradiated, and its types include epoxy resin, acrylic resin, phenol resin, polyethylene, polyester, polypropylene, polyvinyl chloride, nylon,
Fluororesin, polyhydantoin, polyesterimide,
polyallylamide, polyamideimide, polymaleimide, polyimide, polyallyl ester, polysal 7one,
Almost all thermosetting or thermoplastic resins such as polyaryl elfon, polyphenylene oxide, polyphenylene sulfide, and polyoxybenzoyl can be used. Among them, nylon, polyethylene, polypropylene, and epoxy resin are preferred, especially nylon 11, M
Medium-density polyethylene and/or low-density polyethylene with I = 5 to 20 g/ID m1n, polypropylene modified with maleic acid, acrylic acid, etc., and polypropylene blended with ethylene-propylene rubber have excellent adhesiveness, corrosion resistance, and thermal spraying suitability. Therefore, it is preferable. Furthermore, conventionally known additives, fillers, metal powders, and ceramic powders may be mixed with the resin powder as necessary.

使用する樹脂粉末は粉末粒子径と安息角に関して特定す
ることが望ましい。すなわち粒子径としては少くともタ
イラー標準篩(3,5メツシユ以下)を通過し得る粒子
径で、平均粒子径が好筐しくに40〜400μ扉、特に
好ましくは80〜200μmの範囲であり、また安息角
としては少くとも45度以下、好ましくは30〜43度
であるものが適している。6.5メツシユを通過しない
ような粒子径が太きすぎるものでは吹付は塗着時に樹脂
を均一に醐融させにくく、また安息角が45度より大き
くなると粉末の流動性6一 が極端に悪くなって供給タンクから溶射ガンへ定量の樹
脂粉末ケ供給しにくくなるなどm射作業に支障をきたし
、結果として均一な吹付は塗着が困難となるので好まし
くない。
It is desirable that the resin powder used be specified in terms of powder particle size and angle of repose. That is, the particle size is at least a particle size that can pass through a Tyler standard sieve (3.5 mesh or less), and the average particle size is preferably in the range of 40 to 400 μm, particularly preferably 80 to 200 μm, and A suitable angle of repose is at least 45 degrees or less, preferably 30 to 43 degrees. 6.5 If the particle size is too large to pass through the mesh, it will be difficult to uniformly melt the resin during spraying, and if the angle of repose is greater than 45 degrees, the fluidity of the powder will be extremely poor. As a result, it becomes difficult to supply a fixed amount of resin powder from the supply tank to the thermal spray gun, which hinders the spraying operation, and as a result, uniform spraying becomes difficult, which is undesirable.

樹脂粉末を製造するには、例えは樹脂塊状物を衝撃式粉
砕機、振動ミル、回転ミル、攪拌摩砕ミルなどを使用す
る方法、あるいは冷凍粉砕法等を採用して粉砕すればよ
い。また安息角の測定はパウダーテスター(紙用粉体工
学研究所製)により行う。尚、安息角は、ステアリン酸
マグネシウムや微粉ケイ酸などの滑剤を混合するなどの
公知の方法によって調整できる。
In order to produce a resin powder, for example, a resin lump may be pulverized using a method using an impact pulverizer, a vibration mill, a rotary mill, an agitation pulverization mill, or a freezing pulverization method. The angle of repose is measured using a powder tester (manufactured by Paper Powder Engineering Research Institute). Incidentally, the angle of repose can be adjusted by a known method such as mixing a lubricant such as magnesium stearate or finely powdered silicic acid.

本発明で用いられる繊維強化熱硬化性樹脂成形材料は、
例えはガラス繊維、炭素m雄、合成繊維、合間繊維等の
強化繊維と例えば不飽和ポリエステル樹脂、ビニルエス
テル樹脂、エポキシ樹脂等の熱硬化性樹脂とからなるも
のであり、特にガラス繊維と不飽和ポリエステル樹脂と
からなるものが好ましい。かかる成形材料は使用に際し
て強化繊維と熱硬化性tm脂となその場で混合されても
よいし、SMC(シート・モールディング・コンパウン
ド)あるいはBMC(バルク・モールティング量コンパ
ウンド)のように強化繊維と熱硬化性樹脂とを予め混合
されたものであってもよい。尚、熱硬化性樹脂には光横
剤、低収縮化剤、顔料、離型剤、硬化剤およびその他の
添加剤を混合してもよ0゜ 上記成形材料は一般公知のFRP成形方法で成形されて
成形品となる。溶射されるFRP成形品は、金属との密
着性を向上させる目的で、表面を予め粗面にしておくこ
とが好ましい。FRP成形品の表面を粗面化する方法と
しては従来公知の面粗し法を用いnばよく、例えはブラ
スト材としてケイ砂を用いるサンドプラスチングやブラ
スト材としてスチールブリードを用いるショットプラス
チング等があり、粗面化はFRP成形品の表面光沢が全
く失なわれる程度まで行うとよい。
The fiber-reinforced thermosetting resin molding material used in the present invention is
Examples include reinforcing fibers such as glass fibers, carbon fibers, synthetic fibers, and intermediate fibers, and thermosetting resins such as unsaturated polyester resins, vinyl ester resins, and epoxy resins. In particular, glass fibers and unsaturated Those made of polyester resin are preferred. Such molding materials may be mixed with reinforcing fibers and thermosetting TM resin on the spot during use, or may be mixed with reinforcing fibers such as SMC (sheet molding compound) or BMC (bulk molding compound). It may be mixed in advance with a thermosetting resin. In addition, a light agent, a low shrinkage agent, a pigment, a mold release agent, a curing agent, and other additives may be mixed with the thermosetting resin.The above molding material is molded by a generally known FRP molding method. It becomes a molded product. The surface of the FRP molded product to be thermally sprayed is preferably roughened in advance for the purpose of improving adhesion to metal. As a method for roughening the surface of an FRP molded product, conventionally known surface roughening methods may be used, such as sand plasting using silica sand as a blasting material, shot plasting using steel bleed as a blasting material, etc. Therefore, the surface roughening should be carried out to such an extent that the surface gloss of the FRP molded product is completely lost.

本発明で実施するメタライジイング溶射は、一般公知の
溶射法を用いることが出来る。例えは、電気アークを用
いるアーク溶射法、燃焼源として酸素・プロパン炎ある
いは酸素−アセチレン炎を用いるガス溶射法等があり、
いずれの方法でも(1)金属を浴融させ、(11)これ
を微粒子化して、tiii+  高速度で飛走させると
いう3つの操作を溶射工程では行う必要があり、これら
を別々に行なうものもあれば、同時に行なうものもある
。溶射に使用する設備としては、溶射機一式、コンプレ
ッサー、エアークリーナー、酸素、燃料ガス等が必要で
ある。溶射時の溶射ガンとFRP表面との距離は通常5
〜50cm、好ましくは20〜30cILの範囲であり
、溶射金属被膜の厚さは、特に限定されるものではない
が、通常0.01〜2關、好ましくは0.06〜0.6
JI11の9− 範囲である。
For the metallizing thermal spraying carried out in the present invention, a generally known thermal spraying method can be used. For example, there are arc spraying methods that use an electric arc, gas spraying methods that use oxygen/propane flames or oxygen-acetylene flames as the combustion source, etc.
In either method, it is necessary to perform three operations in the thermal spraying process: (1) melting the metal in a bath, and (11) turning it into fine particles and making them fly at a high speed. There are some things that are done at the same time. The equipment used for thermal spraying requires a complete thermal spraying machine, compressor, air cleaner, oxygen, fuel gas, etc. The distance between the thermal spray gun and the FRP surface during thermal spraying is usually 5
-50cm, preferably 20-30cIL, and the thickness of the sprayed metal coating is not particularly limited, but is usually 0.01-2cm, preferably 0.06-0.6cm.
It is in the 9- range of JI11.

このメタライジング浴射に際して予め被溶射elJを加
熱することが一般的に採用されているが、本発明におい
てもFRP成形品の予熱は実施した方が好ましい。この
予熱温度は通常50〜260C,好ましくは80〜16
0Cにすると、溶射被膜の密着性ないしは接着性、表面
外−が良好で、均一な溶射金属被膜を得ることが出来る
。尚、この予熱は特別な加熱手段で行っても差し支えな
いが、通常は溶射ガンから噴射される混合ガスによる火
炎を利用して行うのが有利である。
Although it is generally adopted to heat the sprayed elJ in advance during this metallizing bath spraying, it is preferable to preheat the FRP molded product in the present invention as well. This preheating temperature is usually 50 to 260C, preferably 80 to 16C.
When the temperature is set to 0C, the adhesion or adhesion of the thermal sprayed coating and the outer surface of the thermal sprayed coating are good, and a uniform thermal sprayed metal coating can be obtained. Although this preheating may be performed using a special heating means, it is usually advantageous to perform the preheating using a flame of a mixed gas injected from a thermal spray gun.

メクライジングm射後、溶射金域被膜面に樹脂粉末を溶
射する。この際、該被膜表面はブラスト処理等の面粗し
処理を予め行う必要(まなく、一般的には密着性を阻害
するごみ、はこり、水分等を除去する程度でよい。樹脂
粉末を金属被膜表面にd射する方法としては、一般公知
の樹脂粉末10− 溶射法を用いれはよいが、一般的には酸素とプロパンを
燃料ガスとして使用するガス溶射法が好ましい。鹸射時
の溶射ガンと金属被膜表面との距rImは通常5〜50
cIL、好ましくは20〜30cmの範囲であり、溶射
樹脂被膜の厚さは、特に限定されるものではないが、通
常0.1〜5sui、好ましくは0.2〜2IIilI
の範囲である。また燃料ガスは通常酸素ガスが170〜
5000わへr、プロパンガスが60〜10001/b
yの範囲で使用する。ここで用いる樹脂粉末のガス溶射
機としては、例えば英国5CHOR社製C5−5、仏画
SNM社(SOCIETE N0UVELLE DEM
ETALLISATION社)製70P−JET等があ
る。
After meclizing, resin powder is thermally sprayed onto the coating surface of the thermally sprayed metal area. At this time, the surface of the coating needs to be roughened in advance, such as blasting (in general, it is enough to remove dust, scum, moisture, etc. that inhibit adhesion. As a method for spraying onto the coating surface, a generally known resin powder spraying method may be used, but generally a gas spraying method using oxygen and propane as fuel gas is preferred. The distance rIm between and the metal coating surface is usually 5 to 50
cIL, preferably in the range of 20 to 30 cm, and the thickness of the sprayed resin coating is not particularly limited, but is usually 0.1 to 5 sui, preferably 0.2 to 2 IIilI
is within the range of Also, fuel gas usually has oxygen gas at 170~
5000 wahe r, propane gas 60~10001/b
Use within the y range. Examples of gas spraying machines for resin powder used here include C5-5 manufactured by 5CHOR in the UK, and SOCIETE NOUVELLE DEM manufactured by French Paint Company SNM.
There are 70P-JET manufactured by ETALLISATION.

本発明の複合化成形物の製造法は、形や大きさに限定さ
れずにFRPに対して大部分の熱可塑性または熱硬化性
樹脂を現場で容易に密着性よく被覆することが出来、し
かも得られた成形物は従来FRP単体では使用不可能で
あった80C以上の熱水、アルカリ、極性浴剤等に使用
することが可能であり、各種薬器容器や80C以上の耐
熱水タンク、スクラバーやダクトなどに応用することが
出来る。
The method for manufacturing composite molded products of the present invention allows FRP to be coated with most thermoplastic or thermosetting resins easily and with good adhesion on site, regardless of shape or size. The obtained molded product can be used for hot water of 80C or higher, alkali, polar bath salts, etc., which conventionally could not be used with FRP alone, and can be used for various medicine containers, hot water tanks of 80C or higher, and scrubbers. It can be applied to pipes, ducts, etc.

以下に実施例を示して本発明をより詳細に説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例 1 ブラスト材としてムッヤ鋼粒社裂スチールグリッドFG
−70を用い、厚地鉄工製BA−1型プラスト機を用い
て、DICMAT  2440−T [大日本インキ化
学工業■製5MClを加熱加圧成形して得られた300
1mX300jLllX5UのFRP平板の片面を光沢
が完全になくなる程度までプラスト処理した後、溶射ガ
ンから火炎を噴射させて約100Cに予熱した。予熱さ
れたFRP平板のブラスト面上に、2 m 321の亜
鉛線材を仏画SNM社製メタライジング酊射機TOP−
JET n を用いて、約30cmの距離から酸素ガス
70007/hr、アセチレンガス1.5Kl/ h 
rの混合ガス噴射条件で溶射して、0.1闘の溶射亜鉛
被膜を有するFRP平板を得た。次いで、得られたFR
P平板の亜鉛被膜上に、グレー49(日本リルサン社製
ナイロン11粉宋、粒子径=タイラー標皐篩60〜15
0メツシュ、平均粒子径=130μ虞、安息角=40度
)を仏画SNM社製プラスチックパウダー溶射機71]
P−JETを用いて、約30c1nの距離から酸素ガス
17 U OJ/hr 、プロパンガス400 //h
rのガス噴射条件で溶射して、i、[lamの溶射ナイ
ロン被膜とo、 i iuの溶射亜鉛被膜で複合化され
たFRP平板を得た。
Example 1 Mutya Steel Grid FG as a blasting material
300 obtained by heating and press-molding DICMAT 2440-T [5MCI manufactured by Dainippon Ink and Chemicals ■] using Atsuji Tekko's BA-1 type plast machine.
One side of a 1 m x 300 x 5 U FRP flat plate was subjected to a blast treatment to the extent that the gloss was completely lost, and then a flame was sprayed from a thermal spray gun to preheat it to about 100C. On the blasted surface of the preheated FRP flat plate, a 2 m 321 zinc wire was placed using a metallizing machine TOP- manufactured by Buddhist SNM Co., Ltd.
Using JET n, oxygen gas 70007/hr, acetylene gas 1.5 Kl/hr from a distance of about 30 cm
An FRP flat plate having a sprayed zinc coating of 0.1% was obtained by thermal spraying under mixed gas injection conditions of r. Then, the obtained FR
On the zinc coating of the P flat plate, Gray 49 (Nylon 11 powder made by Nippon Rilsan Co., Ltd., particle size = Tyler standard sieve 60-15)
0 mesh, average particle size = 130 μm, angle of repose = 40 degrees) using a plastic powder spraying machine manufactured by SNM Co., Ltd. 71]
Using P-JET, oxygen gas 17 U OJ/hr, propane gas 400 //h from a distance of about 30c1n
Thermal spraying was carried out under gas injection conditions of r to obtain a composite FRP flat plate with a thermally sprayed nylon coating of i, [lam and a thermally sprayed zinc coating of o, iiu.

得られた平板は層間接着力および耐食性に優れるもので
あった。
The obtained flat plate had excellent interlayer adhesive strength and corrosion resistance.

実施例 2〜9 第1弐に示す溶射用金属材料、溶射用樹脂材料および溶
射被膜厚さを採用する以外は実施例1と同様にして複合
化された平板を得た。得られた平板は層間接着力および
耐食16− 性に優れるものであった。
Examples 2 to 9 Composite flat plates were obtained in the same manner as in Example 1, except that the metal material for thermal spraying, the resin material for thermal spraying, and the thickness of the thermal spray coating shown in No. 12 were employed. The obtained flat plate had excellent interlayer adhesion and corrosion resistance.

比較例 1〜3 金属の溶射を省略し、第1表に示す溶射用樹脂材料を用
いる以外は実施例1と同様にして複合化された平板を得
た。
Comparative Examples 1 to 3 Composite flat plates were obtained in the same manner as in Example 1, except that the thermal spraying of metal was omitted and the resin materials for thermal spraying shown in Table 1 were used.

得ら4た平板は層間接着力が極めて弱いものであった。The resulting flat plate had extremely weak interlayer adhesion.

試験例 実施例1〜9および比較例1〜′5で得られた複合化さ
れた平板の引張剪断接着力試験、基盤目試験の結果を第
1表に示す。
Test Examples Table 1 shows the results of the tensile shear adhesion test and the base grain test of the composite flat plates obtained in Examples 1 to 9 and Comparative Examples 1 to '5.

尚、試験法は以下の通りである。The test method is as follows.

(11引張剪断接着力試験 JIS  K−6850に準じて行った。(11 Tensile shear adhesion test It was conducted according to JIS K-6850.

(2)  基盤目試験 JIS  K−5400に準じて行った。但し、基盤目
の大きさは2 III X 2 II”とした。
(2) Base test was conducted according to JIS K-5400. However, the size of the base mesh was 2 III x 2 II''.

=14−=14-

Claims (1)

【特許請求の範囲】[Claims] 綾維強化熱硬化性樹血゛成形品の表面に金属なメタシイ
ジング溶射し、次いで該金属表面に樹脂粉末ヲ溶射する
ことを特徴とする複合化成形物の製造法。
1. A method for producing a composite molded product, which comprises spraying a metal metasizing onto the surface of a twill fiber-reinforced thermosetting resin molded product, and then spraying a resin powder onto the metal surface.
JP7401583A 1983-04-28 1983-04-28 Production of composite molded article Granted JPS59199725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7401583A JPS59199725A (en) 1983-04-28 1983-04-28 Production of composite molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7401583A JPS59199725A (en) 1983-04-28 1983-04-28 Production of composite molded article

Publications (2)

Publication Number Publication Date
JPS59199725A true JPS59199725A (en) 1984-11-12
JPH0311265B2 JPH0311265B2 (en) 1991-02-15

Family

ID=13534847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7401583A Granted JPS59199725A (en) 1983-04-28 1983-04-28 Production of composite molded article

Country Status (1)

Country Link
JP (1) JPS59199725A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239612A (en) * 1992-02-27 1993-09-17 J Fuetsuku:Kk Production of three-dimensional molded goods
US6727005B2 (en) * 1999-12-20 2004-04-27 Centro Sviluppo Materiali S.P.A. Process for the manufacture of low-density components, having a polymer or metal matrix substrate and ceramics and/or metal-ceramics coating and low density components of high surface strength thus obtained
KR100856662B1 (en) * 2005-05-04 2008-09-04 우종구 method for forming metallic coating on plastic substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852644A (en) * 1971-11-06 1973-07-24
JPS5084680A (en) * 1973-11-27 1975-07-08
JPS5177560A (en) * 1974-12-28 1976-07-05 Mitsubishi Heavy Ind Ltd SENIKYOKAGATAFUKUGOZAIRYONOSEIZOHOHO
JPS5722017A (en) * 1980-07-15 1982-02-04 Nissan Motor Co Ltd Forming method for stabilizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852644A (en) * 1971-11-06 1973-07-24
JPS5084680A (en) * 1973-11-27 1975-07-08
JPS5177560A (en) * 1974-12-28 1976-07-05 Mitsubishi Heavy Ind Ltd SENIKYOKAGATAFUKUGOZAIRYONOSEIZOHOHO
JPS5722017A (en) * 1980-07-15 1982-02-04 Nissan Motor Co Ltd Forming method for stabilizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239612A (en) * 1992-02-27 1993-09-17 J Fuetsuku:Kk Production of three-dimensional molded goods
US6727005B2 (en) * 1999-12-20 2004-04-27 Centro Sviluppo Materiali S.P.A. Process for the manufacture of low-density components, having a polymer or metal matrix substrate and ceramics and/or metal-ceramics coating and low density components of high surface strength thus obtained
KR100856662B1 (en) * 2005-05-04 2008-09-04 우종구 method for forming metallic coating on plastic substrate

Also Published As

Publication number Publication date
JPH0311265B2 (en) 1991-02-15

Similar Documents

Publication Publication Date Title
US11891700B2 (en) Cold spray metallic coating and methods
Petrovicova et al. Thermal spraying of polymers
US20080254227A1 (en) Method for Coating a Component
US4704328A (en) Composite molded articles having specified undercoat composition
US20230212756A1 (en) Molding composite part with metal layer
JPS59199725A (en) Production of composite molded article
US5126205A (en) Powder of plastic and treated mineral
US3669719A (en) Composite articles having metallic coating with high temperature lubricity
CN107267029A (en) A kind of high temperature resistant thermal boundary powdery paints, preparation method and its spraying method
CN103233194B (en) A kind of flame spraying method for polyether-ether-ketone powder
JPS59199724A (en) Production of composite molded article
JPS59207233A (en) Coating method
JPH0432711B2 (en)
WO1997034709A1 (en) Process for the preparation of electrostatically coated, thermoset articles containing fillers
JPH0788998A (en) Fiber-reinforced thermoplastic resin laminated body
Kawase et al. Sprayed Composite Coating of High Performance Thermoplastics
Goldberg Flame Sprayed Plastic Coatings
JPH03197134A (en) Laminate of metallic body and ultra-molecular weight polyethylene and manufacture thereof
JPH0574455B2 (en)
WALTON Plasma thermal spraying of stable metal and ceramic coatings over fiber reinforced polymer composite surfaces
JPS6082348A (en) Metal-resin composite board and manufacture thereof
MX2008005144A (en) Method for coating a component
JPS6085914A (en) Manufacture of molded resin item with metallic layer
CN101745497A (en) Preheating and plastic spraying method of FRP composite materials
JPS6078734A (en) Multicomponent group composite material