JPS59205434A - Pd base amorphous alloy for hydrogen separating and refining membrane material - Google Patents

Pd base amorphous alloy for hydrogen separating and refining membrane material

Info

Publication number
JPS59205434A
JPS59205434A JP7742583A JP7742583A JPS59205434A JP S59205434 A JPS59205434 A JP S59205434A JP 7742583 A JP7742583 A JP 7742583A JP 7742583 A JP7742583 A JP 7742583A JP S59205434 A JPS59205434 A JP S59205434A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
amorphous
phase
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7742583A
Other languages
Japanese (ja)
Inventor
Yoshiichi Sakamoto
坂本 芳一
Shinji Takayama
高山 新司
Hideo Shinguu
新宮 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7742583A priority Critical patent/JPS59205434A/en
Publication of JPS59205434A publication Critical patent/JPS59205434A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled alloy having excellent properties wherein hydrogen permeability is high and the generation of a beta hydride phase is not recognized, by containing Si in a Pd base alloy such as Pd-Ag to make the same amorphous. CONSTITUTION:An alloy consisting of, on an atomic % basis, 9-30% of Si, 20% or less of X (one or more of Ag, Au, Cu, Ni and/or Fe) and the remainder of Pd is processed by an ultra-quenching method to obtain an amorphous Pd-Si-X alloy foil. This alloy foil is high in hydrogen permeability and generates no deterioration in material quality with the formation and disappearance of an alpha-phase/beta-phase hydride phase as absorved in a crystalline Pd-alloy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は水素と水素以外の気体を含んだ混合ガス中の水
素の分離および水素精製薄膜用材料に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a material for separating hydrogen in a mixed gas containing hydrogen and a gas other than hydrogen and for a hydrogen purification thin film.

〔発明の背景〕[Background of the invention]

従来、この種の材料は結晶質のPdあるいはp d 7
7 A g 23合金などのPd基合金が使用されてい
る。しかしながら、これらの合金は室温附近の低温度に
おいては、特に繰返えし水素の吸蔵、放出によるα相/
β水素化物相の生成、消失に伴なって材質の靭性な著し
く害する欠点があシ、水素混合ガス中の水素の分離、精
製装置の設計上障害となっている。
Traditionally, this type of material has been made of crystalline Pd or p d 7
Pd-based alloys such as 7Ag23 alloy have been used. However, at low temperatures near room temperature, these alloys undergo α phase/phase formation due to repeated hydrogen absorption and desorption.
With the formation and disappearance of the β hydride phase, there are drawbacks that seriously impair the toughness of the material, which is an obstacle in the separation of hydrogen in the hydrogen gas mixture and in the design of purification equipment.

〔発明の目的〕[Purpose of the invention]

本発明の目的は水素の透過能が大きく、がっβ水素化物
相の析出に伴なう材質の変形および破損に対して優れた
性質を有するpd−st−x<x=hg、All、cu
、 Niおよび/もしくはpe)系非晶質合金箔を提供
することにある。
The object of the present invention is to have a pd-st-x
, Ni and/or PE) based amorphous alloy foil.

〔発明の概要〕[Summary of the invention]

本発明は原子チでSiが9〜30パーセント、X(X=
Ag、Au、Cu、Ni、Feからなる群よシ選択され
た少なくとも1元素)が2(l以下、残部実質的にPd
からなる合金組成で、超急冷法によって得た非晶質合金
であシ、結晶質Pd合金に見られるよりなβ水素化物相
を析出しない安定な構造の非晶質Pd−8i−X系合金
箔である。
In the present invention, Si is 9 to 30% of atoms, and X (X=
At least one element selected from the group consisting of Ag, Au, Cu, Ni, and Fe) is 2 (l or less, the remainder being substantially Pd)
It is an amorphous alloy obtained by an ultra-quenching method, and has an alloy composition of It's foil.

次に上記成分の限定理由について説明する。siは非晶
質組織の形成に最も有効な元素であり、通常9〜30チ
が最適であるので上記の優に限定する。x <x=hg
、AH,CLl、 Nzおよび/もしくはFe)の添加
は合金の融点を低下させ、非晶化を促進し、熱安定性を
高める効果がある。しかし20%を越えると非晶質形成
能が逆に悪くなる傾向にあυ、水素の透過能も減少する
傾向がおるのでXの含有量は20%以下に限定する。
Next, the reasons for limiting the above components will be explained. Si is the most effective element for forming an amorphous structure, and usually 9 to 30 Si is optimal, so it is limited to the above-mentioned range. x <x=hg
, AH, CLl, Nz and/or Fe) has the effect of lowering the melting point of the alloy, promoting amorphization, and increasing thermal stability. However, if it exceeds 20%, the amorphous formation ability tends to deteriorate and the hydrogen permeability also tends to decrease, so the content of X is limited to 20% or less.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を示す。本発明の効果を実証するた
めに実験した本発明合金試料6種類の合金組成を以下に
示す。
Next, examples of the present invention will be shown. The alloy compositions of six types of alloy samples of the present invention tested to demonstrate the effects of the present invention are shown below.

(1)Pdsz S I ts 、 (2)Pd7s 
S jxsAL14+(3)Pd?3JI Sj8Ag
11.2  (4)Pd73.ll Si8 Cu11
.2(5)Pd73.115ins Njll、2 (
6)Pd73.85j18 Fea、2試料はいずれも
アルゴン雰囲気中で上記組成の母合金を作製後、その母
合金20grを用いて高周波加熱で溶融し、大気中片ロ
ール法(ロール径300震の銅ロールで回転数120O
rpm)による超急冷で作製した厚さ25〜35μm、
幅約11調のリボン状非晶質試片でおる。なお、結晶化
温度は組成によってやや異なるが390〜435Cで弗
る。
(1) Pdsz S I ts, (2) Pd7s
S jxsAL14+(3)Pd? 3JI Sj8Ag
11.2 (4) Pd73. ll Si8 Cu11
.. 2 (5) Pd73.115ins Njll, 2 (
6) Pd73.85j18 Fea, for both samples, a master alloy with the above composition was prepared in an argon atmosphere, and then 20 gr of the master alloy was melted by high-frequency heating, and a piece of copper with a roll diameter of 300 Roll rotation speed 120O
25 to 35 μm thick, produced by ultra-quenching using
It is a ribbon-shaped amorphous specimen with a width of about 11 tones. Note that the crystallization temperature varies slightly depending on the composition, but is 390 to 435C.

水素の透過能の評価は電気化学的透過法で測定した水素
透過曲線を解析して得た水素の拡散係数(D)および試
片の陰極表面直下の水素濃度(C)を用いて定常状態の
透過電流密度(JL =FDCL−’ )を算出して行
なった。ここでF=ファラデ一定数、L=試片の厚さで
、L=30μmに規格化した。
The hydrogen permeability was evaluated using the hydrogen diffusion coefficient (D) obtained by analyzing the hydrogen permeation curve measured by electrochemical permeation method and the hydrogen concentration (C) just below the cathode surface of the specimen. This was done by calculating the transmission current density (JL = FDCL-'). Here, F=Faraday constant, L=thickness of the specimen, and L=30 μm.

測定条件は陰極液: 0.32 NHz S 04 +
 2.5mg/AH2’S e Oa溶液、陽極液:0
.lNNaOH溶液、陽極設定電位iOmVv8.8C
B、測定温度;6へ6401である。
The measurement conditions are catholyte: 0.32 NHZ S 04 +
2.5mg/AH2'S e Oa solution, anolyte: 0
.. lNNaOH solution, anode setting potential iOmVv8.8C
B. Measured temperature: 6 to 6401.

第1図に温度28±ICにおける定常状態の透過電流密
度(JL)に及ぼす水素導入時の陰極電流密度(Ig)
の影替を示す。いずれの非晶質合金も定常状態の透過電
流密度は陰極電流密度の増加とともに、はぼJ−c<i
、の関係で増大する。
Figure 1 shows the effect of cathode current density (Ig) upon hydrogen introduction on steady state transmission current density (JL) at a temperature of 28±IC.
Shows the shadow change. For all amorphous alloys, the steady-state transmission current density increases as the cathode current density increases, and J-c<i
, increases due to the relationship.

またPd73.8 S j ts kgs、z合金は同
一陰極電流密度では他の合金に比較してJ−値が大きく
、水素透過能が大きいことがわかる。水素の透過効率を
J−/i。値で評価するとPd73.s 8 is A
gs、z合金はJ−/1゜=0.85〜0.96の範囲
にあシ、Pd5zSjtsおよびPd711Sj18A
IJ4合金など他の非晶質合金ではJ−/1t=0.5
5〜0.74の範囲であった。
Furthermore, it can be seen that the Pd73.8 S j ts kgs,z alloy has a larger J-value than other alloys at the same cathode current density, and has a larger hydrogen permeability. Hydrogen permeation efficiency is J-/i. When evaluated by value, Pd73. s 8 is A
gs, z alloys are in the range of J-/1° = 0.85 to 0.96, Pd5zSjts and Pd711Sj18A
For other amorphous alloys such as IJ4 alloy, J-/1t=0.5
It was in the range of 5 to 0.74.

第2図には水素吸蔵によυ、β水素化物相など異相の生
成あるいは結晶化などが生ずるか否かを調べるためにP
d82 S j tsおよびPd78Sj8Au4合金
について水素吸蔵前後のXa回折線図を調べた結果を示
す。ここで使用した対陰極はCuKa線、フィルターは
Niである。水素吸蔵によって2θさ40π/180r
aclにおける非晶質合金に特有のハロービーク位置は
わずかに低回折角側に移動するが結晶質のPd合金で観
察されているよりなβ水素化物相の主成は認められず、
さらに結晶化も生じていないことがわかった。上述のハ
ロー・ピーク位置の低回折角側への移動からもわかるよ
うに、特に高陰極電流密度で、長時間、水素吸蔵すると
その吸蔵面は水素の侵入、吸蔵によって弾性的に弓状に
彎曲することが観察された。しかし吸蔵後、室温に数時
間放置すると水素の放出とともに再び速かに元に戻る。
Figure 2 shows P-P to investigate whether hydrogen absorption causes the formation or crystallization of different phases such as υ and β hydride phases.
The results of examining the Xa diffraction diagrams of d82 S j ts and Pd78Sj8Au4 alloys before and after hydrogen absorption are shown. The anticathode used here was CuKa wire, and the filter was Ni. Due to hydrogen absorption, 2θ is 40π/180r
Although the halobeak position characteristic of amorphous alloys in acl shifts slightly to the lower diffraction angle side, the main formation of the β-hydride phase, which is observed in crystalline Pd alloys, is not observed.
Furthermore, it was found that no crystallization occurred. As can be seen from the shift of the halo peak position to the lower diffraction angle side mentioned above, when hydrogen is absorbed for a long time, especially at high cathode current densities, the absorption surface is elastically curved into an arcuate shape due to the penetration and absorption of hydrogen. It was observed that However, after occlusion, if left at room temperature for several hours, it quickly returns to its original state as hydrogen is released.

したがって非晶質pd−Si−X系合金は水素吸蔵に対
して高い靭性を保持しておシ、また水素の吸蔵放出過程
は結晶質pd金合金比較して、よシ可逆的であることが
わかった。
Therefore, amorphous PD-Si-X alloys maintain high toughness against hydrogen absorption, and the hydrogen absorption and release process is more reversible than that of crystalline PD gold alloys. Understood.

〔発明の効果〕〔Effect of the invention〕

以上に説明するように本発明によれば水素の透過能が大
きく、かつ従来の結晶質pd金合金見られるようにα相
/β水素化物相の生成、消失に伴なう材質の劣化を生ず
ることのない非晶質Pd−5t−X系合金箔を水素以外
の気体を含有する水素混合ガス中の水素の分離、精製薄
膜材料として使用することはその分離、精製効果を増大
させ、かつ経済的にも有益である。さらに本発明のpd
=St−X系非晶質合金箔は安価なSiを多量に含むた
め従来の結晶質Pd合金と比べて原料費を大巾に下げる
ことが出来る利点がある。
As explained above, according to the present invention, the hydrogen permeability is large, and the material quality deteriorates due to the formation and disappearance of α phase/β hydride phase, as seen in conventional crystalline PD gold alloys. Using the unique amorphous Pd-5t-X alloy foil as a thin film material for hydrogen separation and purification in hydrogen mixed gas containing gases other than hydrogen increases the separation and purification effects and is economical. It is also beneficial. Furthermore, the pd of the present invention
=St-X type amorphous alloy foil contains a large amount of inexpensive Si, so it has the advantage of being able to significantly lower raw material costs compared to conventional crystalline Pd alloys.

なお本発明によれば非晶質pd−si−x系合金におけ
る添加元素XはAg、Au、cu、 Ni。
According to the present invention, the additive elements X in the amorphous pd-si-x alloy are Ag, Au, Cu, and Ni.

peに限るものでなく、例えばPt、Rh、 Ru。Not limited to pe, for example, Pt, Rh, Ru.

Cr、 Mn、Ge、Co等容易に、かつ安定な非晶質
組織が得られる元素およびその添加量をも包合して添加
元素Xと考えることもできる。
The additive element X may also include elements such as Cr, Mn, Ge, Co, etc., which can easily form a stable amorphous structure, and their added amounts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非晶質pd−si−x系合金中の水素の定常状
態の透過電流密度と陰極電流密度との関係を示すグラフ
、第2図は水素吸蔵前後のX線回第  1  図 賎収t!/l  Ic//Am−”
Figure 1 is a graph showing the relationship between the steady state transmission current density and cathode current density of hydrogen in an amorphous pd-si-x alloy, and Figure 2 is a graph showing the relationship between the X-ray cycle before and after hydrogen absorption. Collection! /l Ic//Am-”

Claims (1)

【特許請求の範囲】[Claims] 原子チでSi 9〜30%、Ag、Aul Cu1Ni
 、 Feの中から選ばれる何れか1種以上を20−以
下、残部実質的にPdからなる水素の分離・精製薄膜材
料用Pd基非晶質合金。
Si 9-30%, Ag, Au Cu1Ni
, a Pd-based amorphous alloy for hydrogen separation and purification thin film material, consisting of at least 20 - or less selected from Fe, and the remainder substantially Pd.
JP7742583A 1983-05-04 1983-05-04 Pd base amorphous alloy for hydrogen separating and refining membrane material Pending JPS59205434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7742583A JPS59205434A (en) 1983-05-04 1983-05-04 Pd base amorphous alloy for hydrogen separating and refining membrane material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7742583A JPS59205434A (en) 1983-05-04 1983-05-04 Pd base amorphous alloy for hydrogen separating and refining membrane material

Publications (1)

Publication Number Publication Date
JPS59205434A true JPS59205434A (en) 1984-11-21

Family

ID=13633618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7742583A Pending JPS59205434A (en) 1983-05-04 1983-05-04 Pd base amorphous alloy for hydrogen separating and refining membrane material

Country Status (1)

Country Link
JP (1) JPS59205434A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503745A (en) * 1988-04-21 1991-08-22 アライド‐シグナル・インコーポレーテッド Nickel-palladium brazing alloy
US6478853B1 (en) * 1999-03-09 2002-11-12 Secretary Of Agency Of Industrial Science And Technology Amorphous Ni alloy membrane for separation/dissociation of hydrogen, preparing method and activating method thereof
US7708809B2 (en) 2002-11-20 2010-05-04 Mitsubishi Materials Corporation Hydrogen permeable membrane
CN107779790A (en) * 2017-09-25 2018-03-09 北京科技大学 A kind of germanic no without phosphorus large scale palladium base non-crystaline amorphous metal of nickel and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03503745A (en) * 1988-04-21 1991-08-22 アライド‐シグナル・インコーポレーテッド Nickel-palladium brazing alloy
EP0440623B1 (en) * 1988-04-21 1994-10-12 AlliedSignal Inc. Nickel-palladium-based brazing alloys
US6478853B1 (en) * 1999-03-09 2002-11-12 Secretary Of Agency Of Industrial Science And Technology Amorphous Ni alloy membrane for separation/dissociation of hydrogen, preparing method and activating method thereof
DE10011104B4 (en) * 1999-03-09 2009-01-22 The Agency Of Industrial Science And Technology Use of an amorphous Ni alloy membrane for the separation / dissociation of hydrogen
US7708809B2 (en) 2002-11-20 2010-05-04 Mitsubishi Materials Corporation Hydrogen permeable membrane
CN107779790A (en) * 2017-09-25 2018-03-09 北京科技大学 A kind of germanic no without phosphorus large scale palladium base non-crystaline amorphous metal of nickel and preparation method thereof

Similar Documents

Publication Publication Date Title
Wise et al. X-ray studies of the α/β miscibility gaps of some palladium solid solution-hydrogen systems
JP4756450B2 (en) Double phase alloy for hydrogen separation and purification
Ozaki et al. Hydrogen permeation characteristics of V–Ni–Al alloys
JP2000159503A (en) Hydrogen separating film of niobium alloy
JP4363633B2 (en) Double phase alloy for hydrogen separation / purification and production method thereof, metal membrane for hydrogen separation / purification and production method thereof
JP2000328158A (en) Copper alloy sheet excellent in press punchability
JP5000115B2 (en) Hydrogen permeable alloy
JPS59205434A (en) Pd base amorphous alloy for hydrogen separating and refining membrane material
JP4860969B2 (en) Hydrogen permeable alloy and method for producing the same
US4462845A (en) Oxygen-free dispersion-strengthened copper and process for making same
JP2008229564A (en) Hydrogen separation membrane and its manufacturing method
JP4577775B2 (en) Method for producing double phase alloy for hydrogen separation and purification
Zimmerman Low-temperature lattice heat conduction in high-resistivity alloys
JP4860961B2 (en) Hydrogen permeable alloy
US7381368B2 (en) Palladium-boron alloys and methods for making and using such alloys
JP2815967B2 (en) Alloy for hydrogen purification / separation membrane
Vahldiek Hafnium I. Microstructure
Chia et al. Auger, photoemission, and thermal desorption studies of the interaction of water vapor with Ni3 (Al, Ti)(100) and (111) surfaces
Yamada et al. Electrical resistivity change during hydrogen charging and subsequent heating in Zr–Ni alloy glasses
JPS6311647A (en) Surface activated amorphous alloy for methanol fuel cell electrode
Zayed et al. Transport properties of SbxSe1-x thin films
Hu et al. Accelerated Materials Design for Hydrogen Separation Membranes
JPH1199323A (en) High performance hydrogen separation membrane
CN106917028A (en) The high-performance V bases hydrogen adulterated using special elementses passes through alloy and preparation method
CN106834854A (en) Alloy and preparation method are passed through using rear-earth-doped high-performance Nb bases hydrogen