JP4756450B2 - Double phase alloy for hydrogen separation and purification - Google Patents

Double phase alloy for hydrogen separation and purification Download PDF

Info

Publication number
JP4756450B2
JP4756450B2 JP2005101900A JP2005101900A JP4756450B2 JP 4756450 B2 JP4756450 B2 JP 4756450B2 JP 2005101900 A JP2005101900 A JP 2005101900A JP 2005101900 A JP2005101900 A JP 2005101900A JP 4756450 B2 JP4756450 B2 JP 4756450B2
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen separation
purification
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005101900A
Other languages
Japanese (ja)
Other versions
JP2006283075A (en
Inventor
飛世  正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005101900A priority Critical patent/JP4756450B2/en
Publication of JP2006283075A publication Critical patent/JP2006283075A/en
Application granted granted Critical
Publication of JP4756450B2 publication Critical patent/JP4756450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、高純度水素を製造するために用いられる、水素分離・精製用複相合金に関し、新規な合金組成からなる水素分離・精製用複相合金に関する。   The present invention relates to a hydrogen separation / purification double phase alloy used for producing high-purity hydrogen, and to a hydrogen separation / purification dual phase alloy having a novel alloy composition.

燃料電池等で用いる水素を製造するために天然ガスから改質して水素を得る方法があるが、CO等の不純物ガスを含むため白金触媒を被毒させてしまう問題がある。そのために混合ガスよりCO等の不純物ガスを除くためにPdAg等の合金が水素だけを通す分離膜として用いられている。しかしながらPdは貴金属に属し非常に高価であるため、工業用として普及するためには貴金属を含まない安価な水素分離膜材料が求められている。また繰り返し水素を透過させることによって水素脆化が起こり、水素分離膜が破壊し長時間の使用に耐えられないという問題があった。さらに従来広く用いられているPdAg水素分離膜は低温になるほど水素透過能が低下し、実用的な透過量を得るためには約300℃以上で用いなければならず高温に加熱する必要があった。 In order to produce hydrogen used in a fuel cell or the like, there is a method of obtaining hydrogen by reforming from natural gas, but there is a problem that a platinum catalyst is poisoned because it contains impurity gas such as CO. For this reason, an alloy such as PdAg is used as a separation membrane through which only hydrogen passes in order to remove an impurity gas such as CO from the mixed gas. However, since Pd belongs to a noble metal and is very expensive, an inexpensive hydrogen separation membrane material that does not contain a noble metal is required in order to spread it for industrial use. Further, hydrogen embrittlement occurs due to repeated permeation of hydrogen, resulting in a problem that the hydrogen separation membrane is broken and cannot be used for a long time. Further conventional widely used PdAg hydrogen separation membrane is decreased as the hydrogen permeability becomes low, need you heated to a high temperature must be used in order to obtain a practical permeation amount is about 300 ° C. or higher there were.

このため、Pd系以外で水素透過性能が高いものが求められている。例えば特許文献1に記載されるようなNb−Ni系、特許文献2に記載されるようなNb−(Ni,Co,Mo)-(V,Ti,Zr,Ta,Hf)系の水素透過合金が検討されている。また、特許文献3には、NbにV、Ta、Ni、Ti、MoおよびZrからなる群から選ばれる1種以上の金属元素を添加した合金の開示がある。
特開2001−170460号公報(0026) 特開2004−42017号公報(0007〜0011、表1) 特開2000−159503号公報(0007〜0010)
For this reason, what has a high hydrogen permeation performance other than Pd type | system | group is calculated | required. For example, Nb-Ni system as described in Patent Document 1 and Nb- (Ni, Co, Mo)-(V, Ti, Zr, Ta, Hf) system hydrogen permeable alloy as described in Patent Document 2 Is being considered. Patent Document 3 discloses an alloy in which one or more metal elements selected from the group consisting of V, Ta, Ni, Ti, Mo, and Zr are added to Nb.
JP 2001-170460 A (0026) JP 2004-42017 A (0007 to 0011, Table 1) JP 2000-159503 A (0007 to 0010)

水素透過合金には大きい水素透過係数と高い耐水素脆化性が求められる。ここで、水素を多く固溶すると水素透過係数が向上するが、同時に水素脆化が顕著になる。つまり、水素透過係数の増大と耐水素脆化性は相反しており、単相(固溶体)合金で両立させることは、一般に極めて困難であり、組成の組合せについては未だ検討の余地が残る。   Hydrogen permeable alloys are required to have a large hydrogen permeability coefficient and high hydrogen embrittlement resistance. Here, when a large amount of hydrogen is dissolved, the hydrogen permeability coefficient is improved, but at the same time, hydrogen embrittlement becomes remarkable. That is, the increase in the hydrogen permeability coefficient and the hydrogen embrittlement resistance are contradictory, and it is generally very difficult to achieve both with a single-phase (solid solution) alloy, and there is still room for studying the combination of the compositions.

また、水素透過合金は薄板(膜)で使用すると、より多くの水素を効率よく製造でき、低コスト化が図れる。薄板を作製する方法としては(1)合金を薄くスライスする。(2)液体急冷によるアモルファス膜の作製。(3)圧延、などが考えられる。このうちスライスは時間やコストがかかり、さらに広面積の膜を作製すことは容易ではない。液体急冷は薄膜を一気に短時間で作ることができるものの、幅の広い膜、および厚さを変えた薄板を作製することが技術的に難しい。一方、圧延は単純、簡単、低コストで広面積の膜を作ることができ、工業的にも広く用いられ、技術的にも発達している。もし圧延という簡易な方法で薄板を作製できれば安価で優れた水素透過特性を有する合金膜を大量生産することができると期待される。よって水素透過合金の圧延加工性は重要な項目と言える。   Further, when the hydrogen permeable alloy is used as a thin plate (membrane), more hydrogen can be produced efficiently, and the cost can be reduced. As a method for producing a thin plate, (1) an alloy is sliced thinly. (2) Preparation of an amorphous film by liquid quenching. (3) Rolling can be considered. Of these, slicing takes time and costs, and it is not easy to produce a film with a larger area. Although liquid quenching can form a thin film in a short time, it is technically difficult to produce a wide film and a thin plate having a different thickness. On the other hand, rolling is simple, easy, low cost, can produce a film with a large area, is widely used industrially, and has developed technically. If a thin plate can be produced by a simple method of rolling, it is expected that an alloy film having excellent hydrogen permeation characteristics can be mass-produced at a low cost. Therefore, it can be said that the rolling workability of the hydrogen permeable alloy is an important item.

したがって、本発明の課題は、高価な貴金属であるPdを使うことなく、水素分離能に優れ、かつ耐水素脆性に優れた水素分離膜を提供することである。   Accordingly, an object of the present invention is to provide a hydrogen separation membrane having excellent hydrogen separation performance and excellent hydrogen embrittlement resistance without using Pd, which is an expensive noble metal.

上記課題を解決した本発明の水素分離・精製用複相合金は、塑性加工により厚さを0.05〜3mmにした水素分離・精製用複相合金であって、該水素分離・精製用複相合金は100−(α+β)αβ(ただし式中、TはTi,ZrまたはHfからなる群の1種以上、MはV、Nb、Taからなる群の1種以上、XはAg、Al、Cr、Cu、Ga、Zn、Feからなる群の1種以上であり、式中α、βは、15≦α≦55、5≦β≦45であり、Tは10〜70原子%)と不可避不純物からなる組成、もしくは、この組成に希土類元素を含有させた、T100−(α+β+γ)αβγ(ただし式中、TはTi,ZrまたはHfからなる群の1種以上、MはV、Nb、Taからなる群の1種以上、XはAg、Al、Cr、Cu、Ga、Zn、Feからなる群の1種以上、RはY、Laを含む希土類元素の1種以上であり、式中α、β、γは、15≦α≦55、5≦β≦45、0<γ≦15であり、Tは5〜65原子%)と不可避不純物からなる組成を有する合金で構成したことを特徴とするものである。この合金組成は大気中室温で延性を有することを特徴とし、圧延などの塑性加工により厚さを上記の0.05〜3mmとして、水素を効率よく製造するのに好適である。 The hydrogen separation / purification double-phase alloy of the present invention that has solved the above-mentioned problems is a hydrogen separation / purification double-phase alloy having a thickness of 0.05 to 3 mm by plastic working. The phase alloy is T 100- (α + β) M α X β (wherein T is one or more members of the group consisting of Ti, Zr or Hf, M is one or more members of the group consisting of V, Nb and Ta, X is One or more members selected from the group consisting of Ag, Al, Cr, Cu, Ga, Zn, and Fe, where α and β are 15 ≦ α ≦ 55, 5 ≦ β ≦ 45, and T is 10 to 70 atoms. %) And inevitable impurities, or T 100− (α + β + γ) M α X β R γ (where T is Ti, Zr, or Hf). More than species, M is one or more members of the group consisting of V, Nb, Ta, X is Ag, Al, Cr, Cu, one or more members selected from the group consisting of a, Zn and Fe, R is one or more rare earth elements including Y and La, wherein α, β and γ are 15 ≦ α ≦ 55, 5 ≦ β ≦ 45, 0 <γ ≦ 15, and T is 5 to 65 atomic%) and is composed of an alloy having a composition composed of inevitable impurities. This alloy composition is characterized by having ductility at room temperature in the atmosphere, and is suitable for efficiently producing hydrogen with a thickness of 0.05 to 3 mm as described above by plastic working such as rolling.

M元素はV、Nb、Taの1種以上から選択される。M元素の含有量は15〜55原子%が好ましい。M元素が15原子%未満では水素透過能が大きく低下する。一方、M元素の含有量が55%超では水素透過能は高いものの水素脆化が激しく、水素透過後すぐに膜が破壊してしまう。さらに好ましい範囲は20〜50原子%である。XはAg、Al、Cr、Cu、Ga、Zn、Feの1種以上から選択される。X元素の含有量は5〜45原子%が好ましい。X元素が5原子%未満では水素透過能は高いものの機械的加工性に劣り、板状に加工することが困難である。一方、X元素の含有量が45原子%超では非常に脆くなりこの場合も機械的加工が困難である。さらに好ましい範囲は10〜40原子%である。T元素はTi,ZrまたはHfからなる群の1種以上から選択される。T元素が5原子%未満では水素透過能は高いものの水素脆化が激しく、水素透過後すぐに膜が破壊してしまう。一方、X元素の含有量が70原子%を超えると、水素透過能が低下する。さらに好ましい範囲は10〜65原子%である。   The M element is selected from one or more of V, Nb, and Ta. The content of M element is preferably 15 to 55 atomic%. If the element M is less than 15 atomic%, the hydrogen permeability is greatly reduced. On the other hand, when the content of M element exceeds 55%, hydrogen permeability is high, but hydrogen embrittlement is severe, and the membrane is destroyed immediately after hydrogen permeation. A more preferable range is 20 to 50 atomic%. X is selected from one or more of Ag, Al, Cr, Cu, Ga, Zn, and Fe. The content of the X element is preferably 5 to 45 atomic%. If the element X is less than 5 atomic%, the hydrogen permeability is high, but the mechanical processability is inferior, and it is difficult to process into a plate shape. On the other hand, if the content of the X element exceeds 45 atomic%, it becomes very brittle, and in this case, mechanical processing is difficult. A more preferable range is 10 to 40 atomic%. The T element is selected from one or more of the group consisting of Ti, Zr, and Hf. If the element T is less than 5 atomic%, the hydrogen permeability is high, but hydrogen embrittlement is severe, and the membrane breaks immediately after hydrogen permeation. On the other hand, when the content of the X element exceeds 70 atomic%, the hydrogen permeability decreases. A more preferable range is 10 to 65 atomic%.

水素透過能を向上させるためにR元素を含有させることが好ましい。R元素はY、Laを含む希土類元素の1種以上から選択される。R元素の含有量は15原子%以下とする。含有量が少ないと水素透過能の向上効果が薄れるが、R元素の含有量が15原子%超では水素透過能は高いものの水素脆化が激しく、水素透過後すぐに膜が破壊してしまう。好ましい含有量は5〜13原子%である。   In order to improve hydrogen permeability, it is preferable to contain R element. The R element is selected from one or more rare earth elements including Y and La. Content of R element shall be 15 atomic% or less. If the content is small, the effect of improving the hydrogen permeability is diminished, but if the content of R element is more than 15 atomic%, the hydrogen permeability is high but hydrogen embrittlement is severe and the membrane breaks immediately after hydrogen permeation. A preferable content is 5 to 13 atomic%.

この組成を持つ合金を用いるため、薄膜化する塑性加工手段として圧延加工を採用できる。圧延率は10%以上、さらには70%以上とすることも可能である。これにより、水素分離・精製用複相合金の厚さを0.02〜3mmとして、高い水素透過性能を得ることができる。 Since an alloy having this composition is used, rolling can be adopted as a plastic working means for thinning. The rolling rate can be 10% or more, and further 70% or more. Thus, as 0.02~3mm the thickness of the multi-phase alloy for hydrogen separation and purification, it is possible to obtain a high hydrogen permeability.

この合金は、例えば、不活性ガス雰囲気中のアーク溶解法、不活性ガス雰囲気中若しくは真空中の高周波誘導加熱溶解法、真空中の電子ビーム溶解法、又はレーザ加熱溶解法などにより溶解して作製することができる。水素分離・精製用複相合金の表面の被処理原料を流す側と精製水素を取り出す側との両側にPd膜またはPd合金膜を形成して、最終形態とすることも可能である。Pd基合金に比べて遙かに安価なことも魅力である。   This alloy is prepared by melting by, for example, arc melting in an inert gas atmosphere, high-frequency induction heating melting in an inert gas atmosphere or in vacuum, electron beam melting in vacuum, or laser heating melting. can do. It is also possible to form a Pd film or a Pd alloy film on both sides of the surface of the multiphase alloy for hydrogen separation / purification on the side where the raw material to be treated is flowed and on the side where the purified hydrogen is taken out to obtain a final form. It is also attractive that it is much cheaper than Pd-based alloys.

本発明の合金組成を水素分離・精製用複相合金として用いたため、優れた塑性加工性能と水素透過能を有し、かつPd基合金に比べて遙かに安価な水素分離・精製用複相合金を提供できた。また、延性に優れるため、薄板状への加工も容易であり、圧延などの塑性加工により厚さ20μm以下の薄板を作製することも可能である。   Because the alloy composition of the present invention is used as a hydrogen separation / purification dual phase alloy, it has excellent plastic working performance and hydrogen permeability and is much cheaper than a Pd-based alloy. Alloy could be provided. Further, since it is excellent in ductility, it can be easily processed into a thin plate shape, and a thin plate having a thickness of 20 μm or less can be produced by plastic processing such as rolling.

次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

(実施例1)
水素分離膜合金は表1に示す成分組成の実施例1−1〜7の合金と比較例3−1〜7の合金をAr雰囲気中でアーク溶解した後、約100μm厚さまで圧延し、水素分離膜用試験片を作製した。試験片は酸化を防ぐため両面にPd膜を約100nmスパッタした。この水素分離膜を、所定の反応管にセットしHeを流し、膜からの漏れがないことを確認後、反応管を所定の温度まで加熱し、所定の温度に達した段階で一方の1次側に水素を流し圧力を印加し、反応側の2次側に流れた水素流量を測定した。温度は400℃で行った。水素透過能をあらわす水素透過係数は次式を用いて求めた。
Example 1
The hydrogen separation membrane alloy was prepared by arc melting the alloys of Examples 1-1 to 7 and Comparative Examples 3-1 to 7 having the composition shown in Table 1 in an Ar atmosphere, and then rolling the alloy to a thickness of about 100 μm for hydrogen separation. A film test piece was prepared. The test piece was sputtered with a Pd film of about 100 nm on both sides to prevent oxidation. This hydrogen separation membrane is set in a predetermined reaction tube, He is allowed to flow, and after confirming that there is no leakage from the membrane, the reaction tube is heated to a predetermined temperature. Hydrogen was flowed to the side, pressure was applied, and the flow rate of hydrogen flowing to the secondary side on the reaction side was measured. The temperature was 400 ° C. The hydrogen permeation coefficient representing the hydrogen permeation capacity was determined using the following equation.

耐水素脆性の評価は、水素化物が生成する温度によって評価した。水素吸蔵合金の評価に用いるPCT曲線(P:圧力、C:水素濃度、T:温度)を測定し、全水素圧域で水素化物が生成しない温度(Tc)を求めた。具体的にはPCT曲線上でプラトー域がなくなる温度となる。この温度が高いほど、水素化物は生成しにくくなり耐水素脆性が優れている。水素透過係数と耐水素脆性の評価結果を表1に示す。   The hydrogen embrittlement resistance was evaluated based on the temperature at which the hydride was generated. A PCT curve (P: pressure, C: hydrogen concentration, T: temperature) used for evaluating the hydrogen storage alloy was measured, and a temperature (Tc) at which no hydride was generated in the total hydrogen pressure range was determined. Specifically, it is a temperature at which the plateau region disappears on the PCT curve. The higher this temperature is, the less hydride is produced and the better the hydrogen embrittlement resistance. Table 1 shows the evaluation results of hydrogen permeability coefficient and hydrogen embrittlement resistance.

表1の結果から明らかなように、実施例1〜7の試験片は従来用いられている比較例1のPdAg合金よりも優れた水素透過能を示し、かつ水素化物生成温度も高く、耐水素脆性に優れていることがわかる。また比較例2〜7に示した例では水素透過能がPdAg合金よりも高い場合もあるが、水素化物生成温度が低く耐水素脆性でPdAgより劣ることがわかる。図1,2にこれらの3元組成図を示したが、これから水素透過率が高く、耐水素脆性に優れる組成範囲は、原子%で、T100−(α+β)αβ(ただし式中、TはTi,ZrまたはHfからなる群の1種以上、MはV、Nb、Taからなる群の1種以上、XはAg、Al、Cr、Cu、Ga、Zn、Feからなる群の1種以上であり、式中α、βは、15≦α≦55、5≦β≦45であり、Tは10〜70原子%)の組成範囲であることがわかる。 As is apparent from the results in Table 1, the test pieces of Examples 1 to 7 showed a hydrogen permeability superior to that of the conventionally used PdAg alloy of Comparative Example 1, and also had a high hydride generation temperature, and were resistant to hydrogen. It turns out that it is excellent in brittleness. In the examples shown in Comparative Examples 2 to 7, the hydrogen permeability may be higher than that of the PdAg alloy, but it can be seen that the hydride generation temperature is low and the hydrogen embrittlement resistance is inferior to PdAg. FIGS. 1 and 2 show these ternary composition diagrams. From now on, the composition range having high hydrogen permeability and excellent resistance to hydrogen embrittlement is atomic%, and T 100− (α + β) M α X β (wherein , T is one or more of the group consisting of Ti, Zr or Hf, M is one or more of the group consisting of V, Nb, Ta, X is a group consisting of Ag, Al, Cr, Cu, Ga, Zn, Fe It is understood that α and β are 15 ≦ α ≦ 55, 5 ≦ β ≦ 45, and T is in the composition range of 10 to 70 atomic%.

(実施例2)
実施例1のTi-V-Ag系以外の系の合金を用い、実施例1と同様に評価を行った。表2の結果から明らかなように、実施例2-1〜8の試験片は従来用いられている比較例2−1のPdAg合金よりも優れた水素透過能を示し、かつ水素化物生成温度も高く、耐水素脆性に優れていることがわかる。
(Example 2)
Evaluation was performed in the same manner as in Example 1 using an alloy of a system other than the Ti-V-Ag system of Example 1. As is clear from the results in Table 2, the test pieces of Examples 2-1 to 8 show superior hydrogen permeability than the conventionally used PdAg alloy of Comparative Example 2-1, and the hydride generation temperature is also high. It is high and shows that it is excellent in hydrogen embrittlement resistance.

(実施例3)
希土類元素を添加による効果を調べるため、表3に示す成分組成の実施例3−1〜7の合金と比較例3−1〜7の合金をAr雰囲気中でアーク溶解した後、約100μm厚さまで圧延し、水素分離膜用試験片を作製した。試験片は酸化を防ぐため両面にPd膜を約100nmスパッタした。この水素分離膜を、所定の反応管にセットしHeを流し、膜からの漏れがないことを確認後、反応管を所定の温度まで加熱し、所定の温度に達した段階で一方の1次側に水素を流し圧力を印加し、反応側の2次側に流れた水素流量を測定した。温度は400℃で行った。表3の結果から明らかなように、実施例3−1〜7の試験片は従来用いられている比較例1のPdAg合金よりも優れた水素透過能を示し、かつ水素化物生成温度も高く、耐水素脆性に優れていることがわかる。また比較例3−2〜7に示した例では水素透過能がPdAg合金よりも高い場合もあるが、水素化物生成温度が低く耐水素脆性でPdAgより劣ることがわかる。図3,4にこれらの組成図を示したが、これから水素透過率が高く、耐水素脆性に優れる組成範囲は、原子%で、T100−(α+β+γ)αβγ(ただし式中、TはTi,ZrまたはHfからなる群の1種以上、MはV、Nb、Taからなる群の1種以上、XはAg、Al、Cr、Cu、Ga、Zn、Feからなる群の1種以上、RはY、Laを含む希土類元素の1種以上であり、式中α、β、γは、15≦α≦55、5≦β≦45、0≦γ≦15であり、Tは5〜65原子%)の組成範囲であることがわかる。
(Example 3)
In order to investigate the effect of adding rare earth elements, the alloys of Examples 3-1 to 7 and the alloys of Comparative Examples 3-1 to 7 having the composition shown in Table 3 were arc-melted in an Ar atmosphere, and then the thickness was about 100 μm. It rolled and produced the test piece for hydrogen separation membranes. The test piece was sputtered with a Pd film of about 100 nm on both sides to prevent oxidation. This hydrogen separation membrane is set in a predetermined reaction tube, He is allowed to flow, and after confirming that there is no leakage from the membrane, the reaction tube is heated to a predetermined temperature. Hydrogen was flowed to the side, pressure was applied, and the flow rate of hydrogen flowing to the secondary side on the reaction side was measured. The temperature was 400 ° C. As is apparent from the results in Table 3, the test pieces of Examples 3-1 to 7 showed a hydrogen permeability superior to that of the conventionally used PdAg alloy of Comparative Example 1, and the hydride generation temperature was high, It turns out that it is excellent in hydrogen embrittlement resistance. Further, in the examples shown in Comparative Examples 3 to 7, the hydrogen permeability may be higher than that of the PdAg alloy, but it can be seen that the hydride generation temperature is low and the hydrogen embrittlement resistance is inferior to PdAg. These composition diagrams are shown in FIGS. 3 and 4. From now on, the composition range having high hydrogen permeability and excellent resistance to hydrogen embrittlement is atomic%, T 100− (α + β + γ) M α X β R γ (where , T is one or more of the group consisting of Ti, Zr or Hf, M is one or more of the group consisting of V, Nb, Ta, X is a group consisting of Ag, Al, Cr, Cu, Ga, Zn, Fe 1 or more, R is one or more of rare earth elements including Y and La, wherein α, β, and γ are 15 ≦ α ≦ 55, 5 ≦ β ≦ 45, and 0 ≦ γ ≦ 15, and T It can be seen that the composition range is 5 to 65 atomic%.

(実施例4)
実施例1のLa-Ti-V-Ag系以外の系の合金を用い、実施例3と同様に評価を行った。表4の結果から明らかなように、実施例4-1〜8の試験片は従来用いられている比較例1のPdAg合金よりも優れた水素透過能を示し、かつ水素化物生成温度も高く、耐水素脆性に優れていることがわかる。
Example 4
Evaluations were made in the same manner as in Example 3 using alloys other than the La—Ti—V—Ag system in Example 1. As is apparent from the results in Table 4, the test pieces of Examples 4-1 to 8 show a hydrogen permeability superior to that of the conventionally used PdAg alloy of Comparative Example 1, and the hydride generation temperature is also high. It turns out that it is excellent in hydrogen embrittlement resistance.

組成と水素透過係数Φとの関係を示す図である。It is a figure which shows the relationship between a composition and hydrogen permeability coefficient (PHI). 組成と水素物生成温度Tcとの関係を示す図である。It is a figure which shows the relationship between a composition and hydride production | generation temperature Tc. 組成と水素透過係数Φとの関係を示す図である。It is a figure which shows the relationship between a composition and hydrogen permeability coefficient (PHI). 組成と水素物生成温度Tcとの関係を示す図である。It is a figure which shows the relationship between a composition and hydride production | generation temperature Tc.

Claims (3)

塑性加工により厚さを0.05〜3mmにした水素分離・精製用複相合金であって、該水素分離・精製用複相合金は原子%で、T100−(α+β)αβ(ただし式中、TはTi,Zr,Hfからなる群の1種以上、MはV,Nb,Taからなる群の1種以上、XはAg、Al、Cr、Cu、Ga、Zn、Feからなる群の1種以上であり、式中α、βは、15≦α≦55、5≦β≦45であり、Tは10〜70原子%)と不可避不純物からなる組成を有する合金で構成したことを特徴とする水素分離・精製用複相合金。 A hydrogen separation / purification double-phase alloy having a thickness of 0.05 to 3 mm by plastic working, wherein the hydrogen separation / purification double-phase alloy is atomic%, T 100- (α + β) M α X β ( However, in the formula, T is one or more of the group consisting of Ti, Zr and Hf, M is one or more of the group consisting of V, Nb and Ta, and X is Ag, Al, Cr, Cu, Ga, Zn and Fe. 1 or more members of the group, wherein α and β are 15 ≦ α ≦ 55, 5 ≦ β ≦ 45, and T is 10 to 70 atom%) and an alloy having a composition consisting of inevitable impurities. This is a double phase alloy for hydrogen separation and purification. 塑性加工により厚さを0.05〜3mmにした水素分離・精製用複相合金であって、該水素分離・精製用複相合金は原子%で、T100−(α+β+γ)αβγ(ただし式中、TはTi,ZrまたはHfからなる群の1種以上、MはV、Nb、Taからなる群の1種以上、XはAg、Al、Cr、Cu、Ga、Zn、Feからなる群の1種以上、RはY、Laを含む希土類元素の1種以上であり、式中α、β、γは、15≦α≦55、5≦β≦45、0<γ≦15であり、Tは5〜60原子%)と不可避不純物からなる組成を有する合金で構成したことを特徴とする水素分離・精製用複相合金。 A hydrogen separation / purification double-phase alloy having a thickness of 0.05 to 3 mm by plastic working, wherein the hydrogen separation / purification double-phase alloy is atomic%, and T 100− (α + β + γ) M α X β R γ (wherein T is one or more members of the group consisting of Ti, Zr or Hf, M is one or more members of the group consisting of V, Nb and Ta, X is Ag, Al, Cr, Cu, Ga, Zn, One or more members selected from the group consisting of Fe, R is one or more rare earth elements including Y and La, wherein α, β, and γ are 15 ≦ α ≦ 55, 5 ≦ β ≦ 45, and 0 <γ ≦. 15 and T is 5 to 60 atomic%), and is composed of an alloy having an inevitable impurity composition. 前記合金が大気中室温で延性を有することを特徴とする請求項1乃至2の何れかに記載の水素分離・精製用複相合金。 The alloy dual phase alloy for hydrogen separation and purification according to any one of claims 1 to 2 characterized by having a ductility at room temperature in air.
JP2005101900A 2005-03-31 2005-03-31 Double phase alloy for hydrogen separation and purification Expired - Fee Related JP4756450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101900A JP4756450B2 (en) 2005-03-31 2005-03-31 Double phase alloy for hydrogen separation and purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101900A JP4756450B2 (en) 2005-03-31 2005-03-31 Double phase alloy for hydrogen separation and purification

Publications (2)

Publication Number Publication Date
JP2006283075A JP2006283075A (en) 2006-10-19
JP4756450B2 true JP4756450B2 (en) 2011-08-24

Family

ID=37405288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101900A Expired - Fee Related JP4756450B2 (en) 2005-03-31 2005-03-31 Double phase alloy for hydrogen separation and purification

Country Status (1)

Country Link
JP (1) JP4756450B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020248A (en) * 2019-12-02 2020-04-17 上海航天精密机械研究所 Ag-Zr-Zn intermediate alloy and preparation method and application thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866382B2 (en) * 2007-03-26 2012-02-01 福田金属箔粉工業株式会社 Composite metal glass hydrogen separation membrane and method for producing the same
JP5085385B2 (en) * 2008-03-19 2012-11-28 東京瓦斯株式会社 Hydrogen separation method using Nb-W alloy membrane
JP5167453B2 (en) * 2008-03-19 2013-03-21 東京瓦斯株式会社 Hydrogen separation method using hydrogen separation membrane consisting of Nb membrane
JP2010240637A (en) * 2009-03-14 2010-10-28 Tokyo Gas Co Ltd HYDROGEN SEPARATING SYSTEM USING Nb MEMBRANE AND PERIODIC TABLE 5A GROUP METAL ALLOY MEMBRANE
JP5330171B2 (en) * 2009-09-14 2013-10-30 東京瓦斯株式会社 Hydrogen separation method using V-W type alloy membrane and condition setting method therefor
CN102260807B (en) * 2011-06-15 2013-07-03 燕山大学 Zirconium alloy and preparation method thereof
US9073007B2 (en) 2012-02-15 2015-07-07 Samsung Electronics Co., Ltd. Separation membrane, hydrogen separation membrane including the separation membrane, and hydrogen purifier including the hydrogen separation membrane
JP5987197B2 (en) * 2012-03-12 2016-09-07 東京瓦斯株式会社 Hydrogen separation membrane and hydrogen separation method
US8900345B2 (en) 2012-03-19 2014-12-02 Samsung Electronics Co., Ltd. Separation membrane, hydrogen separation membrane including the separation membrane, and device including the hydrogen separation membrane
CN114164366B (en) * 2022-02-09 2022-04-19 北京华钽生物科技开发有限公司 Tantalum-silver coating dental implant and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180865A (en) * 1997-09-05 1999-03-26 Sumitomo Metal Ind Ltd Hydrogen storage alloy excellent in durability and its production
JP2002105511A (en) * 2000-10-03 2002-04-10 Sumitomo Metal Ind Ltd Hydrogen storage alloy having excellent durability and its production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180865A (en) * 1997-09-05 1999-03-26 Sumitomo Metal Ind Ltd Hydrogen storage alloy excellent in durability and its production
JP2002105511A (en) * 2000-10-03 2002-04-10 Sumitomo Metal Ind Ltd Hydrogen storage alloy having excellent durability and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020248A (en) * 2019-12-02 2020-04-17 上海航天精密机械研究所 Ag-Zr-Zn intermediate alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JP2006283075A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4756450B2 (en) Double phase alloy for hydrogen separation and purification
Ozaki et al. Hydrogen permeation characteristics of V–Ni–Al alloys
JP4363633B2 (en) Double phase alloy for hydrogen separation / purification and production method thereof, metal membrane for hydrogen separation / purification and production method thereof
JP5152433B2 (en) Hydrogen separation alloy and manufacturing method thereof
JP2000159503A (en) Hydrogen separating film of niobium alloy
Li et al. Changes in microstructure, ductility and hydrogen permeability of Nb–(Ti, Hf) Ni alloy membranes by the substitution of Ti by Hf
JP5185035B2 (en) Pd-Cu alloy with excellent hydrogen permeation performance
JP3749952B1 (en) Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane
JP4860969B2 (en) Hydrogen permeable alloy and method for producing the same
JP3749953B1 (en) Double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP2007083198A (en) Hydrogen-permeable alloy and its producing method
US20140140920A1 (en) Vanadium-based hydrogen permeation alloy for membrane, method of manufacturing the same, and method of using the membrane
JP4953337B2 (en) Double phase alloy for hydrogen separation and purification
JP5310541B2 (en) Hydrogen permeable alloy and method for producing the same
JP4577775B2 (en) Method for producing double phase alloy for hydrogen separation and purification
JP5199760B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP2006283076A (en) Dual phase alloy for separating/refining hydrogen
JP2004074070A (en) Hydrogen-permeable membrane
US10105657B2 (en) Separation membrane, hydrogen separation membrane including the separation membrane, and method of manufacturing the separation membrane
JP2006000722A (en) Hydrogen-permeable alloy membrane and its manufacturing method
JP4860961B2 (en) Hydrogen permeable alloy
JP5549205B2 (en) Hydrogen separation alloy, hydrogen separation alloy rolling forming material, method for producing hydrogen separation alloy, and hydrogen separation apparatus
JP7359381B2 (en) Hydrogen separation alloy
JPH0819500B2 (en) Hydrogen storage alloy thin film body and method for producing the same
JP2007254786A (en) Crystalline diplophase hydrogen-permeation alloy and hydrogen-permeation alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees