JPS59197812A - Flatness measuring method of plane - Google Patents

Flatness measuring method of plane

Info

Publication number
JPS59197812A
JPS59197812A JP7355483A JP7355483A JPS59197812A JP S59197812 A JPS59197812 A JP S59197812A JP 7355483 A JP7355483 A JP 7355483A JP 7355483 A JP7355483 A JP 7355483A JP S59197812 A JPS59197812 A JP S59197812A
Authority
JP
Japan
Prior art keywords
projecting
line
measured
film optical
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7355483A
Other languages
Japanese (ja)
Inventor
Yasuto Ozaki
尾崎 康人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7355483A priority Critical patent/JPS59197812A/en
Publication of JPS59197812A publication Critical patent/JPS59197812A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To execute easily a measurement of flatness in a short time by using a linear projecting device for diffusing one laser beam to a semicircular shape and projecting it linearly onto a plane, projecting two projecting lines to a wall surface, etc. from a distance position, and measuring a distance of said two projecting lines. CONSTITUTION:A light of the first linear projecting device 21 is projected vertically to a surface 20, and desirably, it is projected so that a projecting line 23 becomes horizontal. Its straight advancing light advances in parallel to the surface to be measured, irradiates a point 24 of a surface 19 vertical to the surface to be measured, and a semicircular diffused luminous flux extending to the right from said point projects a projecting line 25 onto the surface 19, and projects a projecting line 26 onto the surface 20. In this way, not only the second projecting line 26 can be projects along the first projecting line 23, but also an inclined angle of the projecting line against the surface 20 becomes (90 deg.-theta) and the angle theta can be measured. When the surface 20 is a complete plane, the second projecting line 24 becomes a straight line, but when the surface is undulated or uneven, said projecting line becomes a curve corresponding to it. In this state, the uneven quantity is calculated by measuring a distance of the first projecting line 23 and the second projecting line 26.

Description

【発明の詳細な説明】 く技術分野〉 本発明は平面の平坦度測定方法に関し、更に詳述すると
、レーザ光により建造物の壁面等の平坦度、すなわち不
規則なうねりの凹凸量を求める方法に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for measuring the flatness of a plane, and more specifically, a method for determining the flatness of a wall surface of a building, that is, the amount of unevenness of irregular undulations, using a laser beam. Regarding.

〈従来技術〉 従来は、測定すべき壁面に近接して線材を強く張設して
基準となる直線を形成し、その直線と壁面の距離を人手
により測定していたから、一つの建築物の壁面の検査に
も多大の労力と時間を要していた。
<Prior art> Conventionally, a wire rod was strongly stretched close to the wall surface to be measured to form a reference straight line, and the distance between the straight line and the wall surface was measured manually. Inspections also required a great deal of effort and time.

一方、本発明者は、強力な一本のレーザビームを扇形に
拡散して扇形拡散光束を安定に形成する発明(未公知)
を別途提案している。
On the other hand, the present inventor has developed an invention (unknown) that stably forms a fan-shaped diffused luminous flux by diffusing a single powerful laser beam into a fan shape.
is proposed separately.

〈発明の目的〉 本発明の目的は、上述の扇形拡散光束を形成する発明に
関連して為された発明であって、建造物等の広大な壁面
の平坦度を正確かつ迅速に測定する方法を提供すること
にある。
<Object of the Invention> The object of the present invention is to provide an invention related to the above-mentioned invention for forming a fan-shaped diffused light beam, which is a method for accurately and quickly measuring the flatness of a vast wall surface of a building, etc. Our goal is to provide the following.

〈発明の溝底〉 本発明の平面の平坦度測定方法は、レーザ光発生源が出
力した1本のレーザビームを扇形に拡散して平面上に線
膜光する線膜光装置を2台設け〜第1の線膜光装置を測
定すべき面に対向して配設し、第2の線膜光装置を上記
第1の線膜光装置よりも測定すべき面に十分に近接し且
つ測定すべき面に斜めから投光しうる位置に配設し、上
記第1の線膜光装置により測定すべき面に垂直に投光さ
れた第1の投光線に対する上記第2の線膜光装置により
斜めから投光された第2の投光線の隔りを測定し、その
測定値に基づき面の凹凸量を求めることを特徴としてい
る。
<Groove Bottom of the Invention> The method for measuring the flatness of a plane according to the present invention includes two film optical devices that diffuse one laser beam outputted from a laser beam generation source into a fan shape and emit a linear film onto a flat surface. - A first line film optical device is disposed opposite to the surface to be measured, and a second line film optical device is placed sufficiently closer to the surface to be measured than the first line film optical device, and The second line film optical device is disposed at a position where it can project light obliquely onto the surface to be measured, and the second line film optical device responds to the first light beam projected perpendicularly to the surface to be measured by the first line film optical device. The method is characterized in that the distance between the second light beams projected obliquely is measured, and the amount of unevenness of the surface is determined based on the measured value.

第1の線膜光装置により形成される扇形拡散光束面、通
常は水平面と、第2の線膜光装置により形成される扇形
拡散光束面の挟角をθ、第1の投光線に対する第2の投
光線の隔りをaとすれば、」り定ずべき面の凹凸ibは
、 により算出される。なお、a、bは基準投光線又は基準
面に対し正負両方向の値を含んでいる。
The included angle between the fan-shaped diffused light flux surface formed by the first linear film optical device, usually a horizontal plane, and the fan-shaped diffused light flux surface formed by the second linear film optical device is θ, and the second projected light beam with respect to the first projected light beam is θ. If the distance between the projected light rays is a, then the unevenness ib of the surface to be determined can be calculated as follows. Note that a and b include values in both positive and negative directions with respect to the reference projection line or reference plane.

上記角θは90°よりもやや小さい値、例えば70°〜
80°程度に選ばれるが、特に凹凸が大きい場合はθを
70°以下に選ぶ方が好ましく、全平面についての測定
中、角θが変化しても差支えない。
The above angle θ is a value slightly smaller than 90°, for example 70°~
The angle θ is selected to be about 80°, but if the irregularities are particularly large, it is preferable to select the angle θ to be 70° or less, and there is no problem even if the angle θ changes during measurement on the entire plane.

〈実施例〉 はじめに、本発明の扇形拡散光束を安定に形成する手段
について説明する。
<Example> First, a means for stably forming a fan-shaped diffused light beam according to the present invention will be described.

第1図に示すように、レーザ光発光源1の出力光を拡散
レンズ2で拡散したのち、集束レンズ3で測定すべき遠
方の平面上で合焦するように集束させ、その直後に、ビ
ームの一端から他端に近づくほど反射角を大きく形成し
た曲面4をもつ反射体5を置く。反射面4を照射するレ
ーザビームの直径はおよそ数mmであって、反射点によ
り反射角が相違し、扇形に拡散した光束6が得られる。
As shown in FIG. 1, the output light of a laser light source 1 is diffused by a diffusing lens 2, and then focused by a focusing lens 3 so as to be focused on a distant plane to be measured. A reflector 5 having a curved surface 4 with a reflection angle larger as it approaches the other end from one end is placed. The diameter of the laser beam that irradiates the reflective surface 4 is approximately several mm, the reflection angle differs depending on the reflection point, and a fan-shaped diffused light beam 6 is obtained.

また、第2図に示すように、レーザビームの中心に近づ
くほど反射角を大きく形成した曲面7,8を左右対称に
形成した反射体9を用いて、レーザビームの軸に対し左
右に拡散し投光線が一直線につながる光束を得ることも
できる。
In addition, as shown in Fig. 2, a reflector 9 having symmetrically formed curved surfaces 7 and 8 with a larger reflection angle as they get closer to the center of the laser beam is used to diffuse the laser beam to the left and right of the axis. It is also possible to obtain a luminous flux in which the projection rays are connected in a straight line.

更に、第3図に示すように、レーザ光発生源12の出力
光を凸面鏡13により上下、左右に拡散させ、それと対
向するシリンドリカル凹面鏡14を設けて上下方向に集
束させた右方向に拡散したまま反射させることにより左
右両方向へ伸びた扇形拡散光束を得ることができる。
Furthermore, as shown in FIG. 3, the output light of the laser light source 12 is diffused vertically, horizontally and horizontally by a convex mirror 13, and a cylindrical concave mirror 14 is provided opposite to the convex mirror 13 so that the output light is focused in the vertical direction and then diffused in the right direction. By reflecting the light, a fan-shaped diffused light beam extending in both left and right directions can be obtained.

第4図は本発明方法を説明する斜視図である。FIG. 4 is a perspective view illustrating the method of the present invention.

測定すべき面20と真正面から対向する位置に第1の線
膜光装置21を設け、その面20に十分に近接し且つそ
の面20に斜めから投光しうる位置に第2の線膜光装置
22を設ける。第1の線膜光装置21の光を面20に垂
直に投光し、好ましくは投光線23が水平になるように
投光する。第2の線膜光装置22の光を、その直進光が
測定すべき面20と平行に進んで、測定すべき面と垂直
な而19の点24を照射しそこから右方へ伸びる扇形拡
散光束が面19上に投光線25を映し、面20上に投光
線26を映ずように投光する。このように投光すれば、
第1の投光線23に沿って第2の投光線26が映写でき
るばかりでなく、面20に対する投光線26の(lJi
斜角が(9o°−θ)になることから直ちに角θを実測
することができる。
A first linear film optical device 21 is provided at a position directly facing the surface 20 to be measured, and a second linear film optical device is provided at a position sufficiently close to the surface 20 and capable of projecting light onto the surface 20 obliquely. A device 22 is provided. The light of the first line film light device 21 is projected perpendicularly to the surface 20, preferably so that the projected light line 23 is horizontal. The light from the second linear film optical device 22 is diffused in a fan-shaped manner in which the straight light travels parallel to the surface 20 to be measured, illuminates a point 24 at point 19 perpendicular to the surface to be measured, and extends to the right from there. The light flux projects a light beam 25 onto the surface 19 and projects the light beam 26 onto the surface 20 without reflecting it. If you project light like this,
Not only can the second projection ray 26 be projected along the first projection ray 23, but also the (lJi
Since the oblique angle is (9o°-θ), the angle θ can be immediately measured.

面20が完全な平面のときは第2の投光線24は直線に
なるが、面にうねり又は凹凸があるときはそれに応じた
曲線となる。この状態で第1の投光線23と第2の投光
線26の隔りaを測定すれば、測定すべき面の基準面に
対する凹凸量すはにより算出される。ここでθは第1の
線膜光装置により形成される扇形拡散光束面と、第2の
線膜光装置により形成される扇形拡散光束面の挟角であ
る。
When the surface 20 is a perfect plane, the second light projection ray 24 becomes a straight line, but when the surface has undulations or irregularities, it becomes a corresponding curve. If the distance a between the first light projection line 23 and the second light projection line 26 is measured in this state, it will be calculated based on the amount of unevenness of the surface to be measured with respect to the reference surface. Here, θ is the included angle between the fan-shaped diffused light flux surface formed by the first linear film optical device and the fan-shaped diffused light flux surface formed by the second linear film optical device.

本発明の第2の線膜光装置22の直進光の照射方向は、
面20に平行なものに限定されず、面19に平行であっ
てもよく、そのほか任意の方向に照射して実施すること
ができる。
The irradiation direction of the straight light of the second line film optical device 22 of the present invention is as follows:
The radiation is not limited to being parallel to the surface 20, but may be parallel to the surface 19, or may be irradiated in any other direction.

第5図に示すように第1の線膜光装置21の高さをhl
 、h2.、−、’hnと順次変化させ、それに応じて
第2の線膜光装置22の位置も移動されることにより、
挟角θを一定に維持したまま面20の全面にわたって平
坦度を測定することができる。
As shown in FIG. 5, the height of the first film optical device 21 is hl
, h2. , -, 'hn, and the position of the second line film optical device 22 is also moved accordingly.
The flatness can be measured over the entire surface 20 while keeping the included angle θ constant.

〈発明の91果〉 本発明によれば、1本のレーザビームを扇形に拡散して
平面上に線投光する線膜光装置を用い離れた位置から壁
面等に2本の投光線を映写し、その2本の投光線を隔り
を測定するだけでよいから、短時間に容易に平坦度測定
を行うことができる。
<91 Achievements of the Invention> According to the present invention, two light beams are projected onto a wall surface, etc. from a distant position using a line film optical device that diffuses one laser beam into a fan shape and projects the line onto a plane. However, since it is only necessary to measure the distance between the two projected light beams, the flatness can be easily measured in a short time.

また、投光線を写真撮影し記録することもできる。It is also possible to photograph and record the projected light beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は本発明の線膜光装置の各種
構造を示す図であって、第1図は斜視図。 第2図は平面図、第3図は縦断面図である。第4図は本
発明方法を説明する斜視図である。第5図は本発明方法
を説明する側面図である。 21−第1の線膜光装置 22−第2の線膜光装置 23−第1の投光線 26−第2の投光線 第1図 第31゛4
1, 2, and 3 are diagrams showing various structures of the line film optical device of the present invention, and FIG. 1 is a perspective view. FIG. 2 is a plan view, and FIG. 3 is a longitudinal sectional view. FIG. 4 is a perspective view illustrating the method of the present invention. FIG. 5 is a side view illustrating the method of the present invention. 21-First line film optical device 22-Second line film optical device 23-First light projection line 26-Second light projection line Fig. 1 31-4

Claims (1)

【特許請求の範囲】[Claims] レーザ光発生源が出力した1本のレーザビームを扇形に
拡散して平面上に線膜光する線膜光装置を2台設け、第
1の線膜光装置を測定すべき面に対向して配設し、第2
の線膜光装置を上記第1の線膜光装置よりも測定すべき
面に十分に近接し且つ測定すべき面に斜めから投光しう
る位置に配設し、上記第1の線膜光装置により測定すべ
き面に垂直に投光された第1の投光線に対する上記第2
の線膜光装置により斜めから投光された第2の投光線の
隔りを測定し、その測定値に基づき面の凹凸量を求める
ことを特徴とする平面の平坦度測定方法。
Two line film optical devices are installed to diffuse one laser beam outputted from a laser light generation source into a fan shape and beam it onto a flat surface, with the first line film optical device facing the surface to be measured. Place the second
A line film optical device is disposed at a position that is sufficiently closer to the surface to be measured than the first line film optical device and can project light obliquely onto the surface to be measured, and the first line film optical device The above-mentioned second light beam is projected perpendicularly to the surface to be measured by the device.
A method for measuring the flatness of a plane, characterized in that the distance between the second projected light beams projected obliquely by the film optical device is measured, and the amount of unevenness of the surface is determined based on the measured value.
JP7355483A 1983-04-25 1983-04-25 Flatness measuring method of plane Pending JPS59197812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7355483A JPS59197812A (en) 1983-04-25 1983-04-25 Flatness measuring method of plane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7355483A JPS59197812A (en) 1983-04-25 1983-04-25 Flatness measuring method of plane

Publications (1)

Publication Number Publication Date
JPS59197812A true JPS59197812A (en) 1984-11-09

Family

ID=13521572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7355483A Pending JPS59197812A (en) 1983-04-25 1983-04-25 Flatness measuring method of plane

Country Status (1)

Country Link
JP (1) JPS59197812A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107727014A (en) * 2017-11-01 2018-02-23 中国三冶集团有限公司 A kind of degree of plainness for wall surface, perpendicularity deviation detection means and method
CN108775877A (en) * 2018-05-28 2018-11-09 郑州玖意优创商贸有限公司 A kind of building wall intelligent device for measuring
CN109084702A (en) * 2018-09-03 2018-12-25 中达安股份有限公司 A kind of detection method of building constructions engineering
CN112665535A (en) * 2020-12-04 2021-04-16 中冶天工集团有限公司 Method for measuring wall surface flatness
CN113375638A (en) * 2021-06-10 2021-09-10 青岛黄海学院 Building engineering perpendicularity measuring instrument and using method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826790A (en) * 1971-08-06 1973-04-09
JPS5524679A (en) * 1978-08-11 1980-02-21 Sumitomo Metal Ind Ltd Planar shape detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826790A (en) * 1971-08-06 1973-04-09
JPS5524679A (en) * 1978-08-11 1980-02-21 Sumitomo Metal Ind Ltd Planar shape detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107727014A (en) * 2017-11-01 2018-02-23 中国三冶集团有限公司 A kind of degree of plainness for wall surface, perpendicularity deviation detection means and method
CN108775877A (en) * 2018-05-28 2018-11-09 郑州玖意优创商贸有限公司 A kind of building wall intelligent device for measuring
CN109084702A (en) * 2018-09-03 2018-12-25 中达安股份有限公司 A kind of detection method of building constructions engineering
CN112665535A (en) * 2020-12-04 2021-04-16 中冶天工集团有限公司 Method for measuring wall surface flatness
CN113375638A (en) * 2021-06-10 2021-09-10 青岛黄海学院 Building engineering perpendicularity measuring instrument and using method
CN113375638B (en) * 2021-06-10 2022-07-15 青岛黄海学院 Building engineering perpendicularity measuring instrument and using method

Similar Documents

Publication Publication Date Title
JP2767235B2 (en) Ring beam divergence angle control optical device
US4758729A (en) Apparatus and method for measuring the included angle of a reflective cone
US6539638B1 (en) Line projecting device
JPS59197812A (en) Flatness measuring method of plane
JP3768822B2 (en) 3D measuring device
JPH08285545A (en) Detection of change in diameter of optical fiber and manufacture of optical fiber
JPS60142204A (en) Dimension measuring method of object
JP3041205B2 (en) Reference plate for interferometer
US4595288A (en) Method and apparatus for measuring deep mirrors
JPS644102Y2 (en)
JPH0650243B2 (en) Light wave interferometer
JPS5917248A (en) Inspection system for foreign matter
JP2996063B2 (en) Automatic inspection system for painted surface clarity
JPH01245137A (en) Laser beam projecting system in glass disk surface inspection instrument
JPH0442831Y2 (en)
JP2580369Y2 (en) UV inspection lamp
JPS6296828A (en) Apparatus for measuring amount of reflection
JP3581212B2 (en) Hologram manufacturing method and exposure apparatus
JPH0350407Y2 (en)
JPH03291552A (en) Surface defect inspection device
JPS63168529A (en) Inspection of optical fiber connector
JPS6120809A (en) Level using laser light
JPS61217716A (en) Apparatus for obtaining projection light using laser light
JPH0236923B2 (en)
CA2364810C (en) Line projecting device