JPS59193782A - Laser working machine - Google Patents

Laser working machine

Info

Publication number
JPS59193782A
JPS59193782A JP58067972A JP6797283A JPS59193782A JP S59193782 A JPS59193782 A JP S59193782A JP 58067972 A JP58067972 A JP 58067972A JP 6797283 A JP6797283 A JP 6797283A JP S59193782 A JPS59193782 A JP S59193782A
Authority
JP
Japan
Prior art keywords
groove
mirror
laser
beams
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58067972A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP58067972A priority Critical patent/JPS59193782A/en
Priority to PCT/JP1984/000198 priority patent/WO1984004205A1/en
Publication of JPS59193782A publication Critical patent/JPS59193782A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Photovoltaic Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To subject simultaneously the X-Y coordinates of a surface to be worked to plural laser working processes by dividing a beam of laser light to plural beams of laser light, scanning the same to the X direction and further moving the beams to the Y direction. CONSTITUTION:Laser light arrives through a colliometer 22 at a mirror 42 and is further divided to plural beams 40, 40', 40''... through 3-4 stages of half mirrors. The light is further projected downward by a mirror 23 and is reflected 90 deg. to the left direction by a mirror 41 to manufacture a groove on the surface 5 to be worked on a base plate 1. The position of the 2nd groove 19 is programmed in a computer 27 and the position and pattern of the 2nd groove superposed with the position of the groove 18 in the 1st worked part are inputted to an oscillator 21. The output from the computer is at the same time inputted to two control systems 29, 49 so that the mirror is moved by the control systems for moving the mirror to the Y direction. The position in the X direction is determined by the control system 49 of a frequency divider 43 with the 1st groove 18 as a reference. The coordinates of the plural laser light in the X direction are thus determined and thereafter the 2nd groove 19 shifted from the 1st groove 18 is formed.

Description

【発明の詳細な説明】 この発明は1本のレーザ光を複数のレーザ光に分割し、
レーザスクライブ(以下1、Sという)の実効的な走査
速度(スキャンスピード、以下SSとい・う)を速くせ
しめることを特徴としている。
[Detailed Description of the Invention] This invention divides one laser beam into multiple laser beams,
It is characterized by increasing the effective scanning speed (scan speed, hereinafter referred to as SS) of the laser scribe (hereinafter referred to as 1, S).

本発明は語根の被加工面をXまたはY方向に移動さゼる
のではなく、力IL■するレーザ光をXおよびY方向に
移動させることにより被加工面に所定の開溝を形成させ
るレーザ加工機に関する。
The present invention does not move the surface to be machined in the X or Y direction, but instead moves the laser beam that applies force IL in the X and Y directions, thereby forming a predetermined groove on the surface to be machined. Regarding processing machines.

この発明は、絶縁基板上に第1の導電性被1殴よりなる
第1の電極、非単結晶半導体被膜さらにこの上面に第2
の導電性被膜よりなる第2の電極を積層して形成する光
電変換装置に関−3るものである。
This invention includes a first electrode made of a first conductive coating on an insulating substrate, a non-single crystal semiconductor coating, and a second electrode on the upper surface of the non-single crystal semiconductor coating.
The present invention relates to a photoelectric conversion device formed by laminating a second electrode made of a conductive film.

(2) 第1の導電性被膜を第1のレーデスクライブ(以下LS
という)加工によりノリ「定の形状に第1の開溝を形成
してパターニングをし、さらにこの土面に半導体被膜を
形成して、この第」の開溝を基準としてそれと従属の形
状の第2の開溝を半導体に設けたものである。
(2) The first conductive film is coated with a first laser knife (hereinafter referred to as LS
A first groove is formed in a predetermined shape by patterning, a semiconductor film is formed on this soil surface, and a first groove in a subordinate shape is formed using this first groove as a reference. 2 open grooves are provided in the semiconductor.

さらにこの第2の開溝を形成した後、第2の導電性被1
模を半導体上に形成し、第1または第2の開溝を基(1
へとしてこの第2の導電性被膜に従属関係のバタ−−ン
を有して第3の開溝を形成−Uんとするものである。
Furthermore, after forming this second open groove, a second conductive coating 1 is formed.
A pattern is formed on the semiconductor, and the first or second groove is formed as a base (1
Then, a third open groove is formed with a pattern in a subordinate relationship to the second conductive coating.

即ち、本発明はレーザ加2]二においC少な(とも2つ
の工程で実施されるレーザ加工をまったく独立(無関係
)にパターニングを施すのではなく、第1の開溝と従属
関係を有して第2、第3の開溝を人間による制御を行う
のではなく、コンピュータにプログラムされたパターン
により実行することにより、自動的に位置合わせ(コン
ピュータ・コンドロールド・セルフ・レジストレイジョ
ン)をして作製することを目的とU7ている。
That is, the present invention does not perform patterning completely independently (unrelated) of laser machining, which is performed in two steps, but has a subordinate relationship with the first open groove. Manufactured by automatically aligning the second and third grooves using computer-programmed patterns (computer-controlled self-registration) rather than using human control. The purpose of the U7 is to

(3) 従来、レーザ加−1−力式においては、1つの開溝また
はパターンを被加工面に施−4ごkかf+イ′月tでい
た。しかし複数のパターンを巾合わ一部て積;Cツ形成
するというごとはまっノこく行われていなか−、ノこ。
(3) Conventionally, in the laser application method, one open groove or pattern was applied to the workpiece surface in 4 steps or 4 steps. However, the process of stacking multiple patterns together to form a C-shaped pattern is not always practiced.

さらに従来において、LSのSSは]Ol、、m/分〜
10IIl/分である。しかしこのLSかされる14料
の最通スピードが0.5〜1m/分である時、1つのレ
−ザヒーー〜ム発振機より1/2の分周機により2光路
とする方式を3〜4段行うことにより8〜16本のレー
ザ光に分割し、実質的にそのSSを(0,5〜l +l
+ /分)X’(8〜1G)であり、4m  〜IGm
 /分周することがてき、実効性においてきわめて優れ
たものである。
Furthermore, conventionally, the SS of the LS is ]Ol,, m/min ~
10 II/min. However, when the maximum passing speed of the 14-wavelength beam generated by the LS is 0.5 to 1 m/min, the method of creating two optical paths using a 1/2 frequency divider from one laser beam oscillator is 3 to 1 m/min. The laser beam is divided into 8 to 16 laser beams by performing the process in 4 stages, and the SS is essentially (0,5 to l + l
+/min)X'(8~1G), and 4m~IGm
/ frequency division, and is extremely effective.

本発明はこの一定の複数の開講を作る処理を二Jンピュ
ータに予めプ[:2グラムするごとにより、複数の開講
の位置、形状が無秩序にはらつい−(、ずれが起きるこ
とな(高m度で作製することを目的としている。
The present invention is designed to prevent the positions and shapes of the plurality of lectures from randomly varying by pre-printing the process of creating a certain number of lectures on a 2J computer. It is intended to be manufactured at a

4−発明はこのため、第2または第3の開溝を形成する
工程中に、第1の開への少なくとも1つを光学的に検知
しつつ行うごとにより、さらQこ複数(4) のレーザ光のそれぞれの開溝の位置(座標)の精度を所
定の位置に対して12(p以内好ましくは±V以内に向
上さゼることを目的とする。
4-For this reason, the invention further improves the number of Q (4) by optically detecting at least one opening to the first opening during the process of forming the second or third opening groove. The purpose is to improve the accuracy of the position (coordinates) of each groove of the laser beam to a predetermined position by 12 (p or less, preferably ±V or less).

以下に図面に従って本発明の詳細な説明J−る。A detailed description of the invention follows below with reference to the drawings.

第1図は本発明のレーザ加」二処理力式によるブロック
図である。
FIG. 1 is a block diagram of a laser processing system according to the present invention.

図面において、レーザ加工機(50)はレーザ発振機(
21)コリオメーク (22) 、ミラー(42)、分
周機(43) 、ミラー(41) 、ミラー制御系(2
9)等よりなっている。レーザ発振機(21)は1.0
6の波長を発光するYAGレーデ(周6!i数1〜30
1釦2゜ビーム系10〜89)例えば5ヅφ、出力0.
1〜81,1例えば被加工面圧力0.5W)を用いた。
In the drawing, the laser processing machine (50) is a laser oscillator (
21) Coriomake (22), mirror (42), frequency divider (43), mirror (41), mirror control system (2)
9) etc. Laser oscillator (21) is 1.0
YAG radar that emits 6 wavelengths (period 6! i number 1 to 30
1 button 2° beam system 10-89) For example, 5゜φ, output 0.
1 to 81.1 (for example, a workpiece surface pressure of 0.5 W) was used.

レーザ光はコリオメーク(22)を経て、ミラー(42
)に至る。
The laser beam passes through the Coriomake (22) and then passes through the mirror (42).
).

さらにハーフミラ−を3〜/1段経てレーザ光を分割す
る手段を有し、その結果レーザ光はく40)(4d)(
4d′)・・・・と複数本ごこては8または16本例え
ば8本に分割せしめた。さらにこのレーザ光(以下(4
0)によって代表させる)はミラー(選択反射金属)(
23)より下方に投光させた。
Furthermore, it has a means for splitting the laser beam through 3 to 1 stages of half mirrors, and as a result, the laser beam is divided 40) (4d) (
4d')... The plural irons were divided into 8 or 16 irons, for example, 8 irons. Furthermore, this laser light (hereinafter (4)
0) is a mirror (selective reflection metal) (
23) Light was projected further downward.

(5) 基板は相ス・1面を一定の間隙例えは5・〜8 c n
+を(−+して平行に配設さ−μだ。
(5) The substrate has a constant gap between one side and the other, for example, 5 to 8 c n
+ is (-+ and is placed parallel to -μ.

この間隙内にレーザ光(40)が導入さ4しる。さらに
このI/−ザ光はミラ−(例えばプリスム型ミラー) 
 (41)により左方向に9σ反射さゼ、基板(1)上
の被加工面(5)に至り開溝を171製した。
A laser beam (40) is introduced into this gap. Furthermore, this I/-the light is a mirror (for example, a prism type mirror)
(41), 9σ reflection was carried out to the left, and 171 open grooves were formed reaching the processed surface (5) on the substrate (1).

他方、光学的位置検出糸(51)はシンブ(24)より
ハーフミラ−(23)  (25)をへて被加工面ン (5)に至り、反射光かミラー−(25)を通過して検
知器(26)に至る。この検知器(21)では破卵」−
面での開溝(18)の位置情)・lを検出し、二lンピ
人−り(27)に人力される。
On the other hand, the optical position detection thread (51) passes through the half mirrors (23) and (25) from the thin plate (24) to the workpiece surface (5), and the reflected light passes through the mirror (25) and is detected. This leads to the vessel (26). This detector (21) shows that the egg is broken.''
The position information of the open groove (18) on the surface is detected, and the position information of the groove (18) on the surface is detected, and the position information is manually applied to the two positions (27).

このコンピュータ(27)にはメモリ (21) ’こ
゛C第2の開溝(19)の相幻的な位置がゾロクシ広さ
れているため、これと第1の加工部の開溝(l il 
)の位置とを11合わせて第2の開溝の位置、パターン
をレーザ加工Ia(50)の発振機(21)に入力さゼ
る。同時にこのコンピュータの出力を2−ノの;制御系
(29)  (49)に入力さ−lる。ごのミラーを゛
〆力方向移動させる制御系にJり図面ではY力量へ(6
) の移動をセしめる。分周機(43)の制御系(49)に
よりX方向の位置を第1の開溝(18)を基準として決
定する。
In this computer (27), the memory (21) 'C is widened in the relative position of the second opening groove (19).
) and input the position and pattern of the second open groove into the oscillator (21) of the laser processing Ia (50). At the same time, the output of this computer is input to the control system (29) (49) of 2-. In the drawing, the control system moves the mirror in the direction of force (6).
) is set for movement. The control system (49) of the frequency divider (43) determines the position in the X direction with the first open groove (18) as a reference.

かくしてごの分周器により複数のレーーザ光のX方向の
座標を決定した後、レーザ加工機(21)は第1の開溝
(18)より所定の距離ノン1〜し他の位置(座標)に
第2の開溝(19)を形成−μしめた。
After determining the X-direction coordinates of the plurality of laser beams using the frequency divider, the laser processing machine (21) moves from the first groove (18) to a predetermined distance from No. 1 to another position (coordinates). A second open groove (19) was formed at -μ.

この時この第2の開溝はレ−ヂ光の(40)、 (40
)・・・の数だけ同時に形成さ−Uだ。
At this time, this second open groove is (40), (40
)... are formed at the same time -U.

その結果1つのLSのSSは1m/分であっても、実質
的に8本分割においては8m/分のスピードを7.Hる
ことかでき、生産性を8倍にまで向上さ−υることが可
能となった。
As a result, even if the SS of one LS is 1 m/min, the speed of 8 m/min in 8 lines is essentially 7.5 m/min. It has become possible to improve productivity by up to 8 times.

さらにこの開溝(19)が形成されてしま−2た後、ミ
ラー(41)を(41ゝ)と逆向きに90°回4リニさ
一部ることにより、レーデ光は相対した他の基板(1)
の被加工面(5)に対してレーザ加J二を施すことかで
きた。
Furthermore, after this opening groove (19) is formed, the mirror (41) is rotated 90 degrees four times in the opposite direction to (41), so that the radar light is transmitted to the opposite substrate. (1)
It was possible to perform laser machining on the processed surface (5).

図面において、左側の基板に対し、」ニガより下方向に
開溝を作製している面倒の基板に対しては、(7) 下部より上方向に開溝を作ゲごいくことにより、レーデ
光の移動に関する喪失時間を最小にすることができた。
In the drawing, for the board on the left, it is difficult to create grooves downward from the bottom. It was possible to minimize the lost time related to the movement of

このレーザ加工機において、第1の開、j)−の位i6
゜(1:!−標)をたえづ′検知−3−ることかできる
ため、この第1の開溝(18)の位置を検知し“つ−、
ノ第2の開溝(19)の作製を高1’?j度の形状に実
施」°るこ上か「IJ能となった。
In this laser processing machine, the first opening, j)-position i6
゜(1:!-mark) can be continuously detected, so the position of this first open groove (18) can be detected and
The second open groove (19) is made with a height of 1'? It was implemented in the shape of the J degree.

さらにこの基準となるモニター−は分割したレーーーザ
光のいずれか1つをマスク−として決定すればよく、そ
の場合は分周器(43)において、レー男5<4o)<
46>  ・・・のそれぞれのその位置の11゛1度】 が設は位置にグーLL91以内好ましくはVツ、内の4
111度にて規定することはきわめ゛(ilj要である
Furthermore, the monitor that serves as this reference only needs to be determined using one of the divided laser beams as a mask. In that case, in the frequency divider (43),
46> 11゛1 degree] of each of its positions is set at the position within LL91, preferably within 4 of V
It is extremely important to specify at 111 degrees.

第2の図は本発明方式を用いた光電変脱装置の縦断面図
を示す。
The second figure shows a longitudinal sectional view of a photoelectric conversion device using the method of the present invention.

図面に従ってさらに本発明の内容を示す。The content of the present invention will be further illustrated according to the drawings.

第2図において、(Δ)は例えば20cmX巨Jamの
大きさを有する絶縁基板(1)である。ここでユ、1ガ
ラス基板を用いた。
In FIG. 2, (Δ) is an insulating substrate (1) having a size of, for example, 20 cm x Giant Jam. Here, a glass substrate was used.

(8) さらにごの上面に被加工面(5)が形成されている。(8) Furthermore, a processed surface (5) is formed on the upper surface of the cage.

この加工面(5)(こばレーザ加工により開溝(12)
が設りられている。
This machined surface (5) (groove (12) opened by Koba laser processing)
is set up.

この第2図(A)の一部を拡大し、その縦断面図を第2
図(B)に示す。
A part of this Figure 2 (A) is enlarged and its longitudinal cross-sectional view is shown in the second figure.
Shown in Figure (B).

図面において、基板(1)は2nun lツのガラスを
用いた場合である。さらにこの上面に第1の2#、電性
被11Q(2)をITO(酸化インジノ、−ムスス)を
500〜1sooRとSnO,(200〜400A)の
21# IIrAとして透光性を有して設けている。
In the drawing, the substrate (1) is made of 2 nanometers of glass. Further, on this upper surface, a first 2#, conductive coating 11Q (2) is made of ITO (indino oxide, -mussus) with 500 to 1 sooR and SnO, 21# IIrA of (200 to 400 A) to have translucency. It is set up.

これに対し、第1の開溝(18)をLSにより形成し、
第1の導電膜を複数のパターン(ここでは第2図(A)
に示すことき短冊状)に電気的に分割している。このL
Sによりガラス基4反の一部が7容去して凹部(60)
を作ってしまった。
On the other hand, the first open groove (18) is formed by LS,
The first conductive film is formed into a plurality of patterns (here, as shown in FIG. 2(A)).
It is electrically divided into strips (as shown in Figure 1). This L
Due to S, 7 parts of the 4 glass bases are removed to create a recess (60).
I made it.

さらにこの第1の開溝を形成した後、この」二面に非単
結晶半導体を門N接合を少なくとも1つ自して積層した
Furthermore, after forming this first groove, at least one gate-N junction was laminated with a non-single crystal semiconductor on these two surfaces.

図面でばI)型Six叩、(x −0,8)  (2)
  (約100λ)(9) −■型Siへ (約0.57A)  (3) −N型微
結晶化Si(約20〇八)  (14)よりなる1一つ
の門N接合を¥jする半導体(3)をプラズマCVD法
、フメトCV D 跋またはフォトプラズマCvD法に
より形成して、被加工面(5)が形成された。
In the drawing, I) Type Six, (x -0,8) (2)
(approximately 100λ) (9) - To ■ type Si (approximately 0.57A) (3) -N type microcrystalline Si (approximately 2008) (14) Semiconductor with 11 gate N junctions consisting of (14) (3) was formed by a plasma CVD method, a fumet CVD method, or a photoplasma CVD method to form a processed surface (5).

この後、この半導体(3)を第1の開溝(18)を基準
としてわたり深さを10〜20v例えば7(ソ、(図面
において左側)シフ1さ−Uて第2の開講(19)を形
成した。このシフI・Vは予め第1図Qにおいてメモリ
 (28)にプログラムさ−Uておいた。
After this, cross this semiconductor (3) with respect to the first groove (18) to a depth of 10 to 20V, for example, 7 (left side in the drawing) and open the second groove (19). This Schiff IV was previously programmed into the memory (28) in FIG. 1Q.

このため、第1の開溝の座標を光学系によりモニタしつ
つ、それと平行に第2の開溝(19)を形成することが
できた。図面ではこの第2の開溝ム五半導体(3)およ
びその下の第1の導電性(2ンをもレーザスクライブを
し−C除去さ−IL)ご。
For this reason, it was possible to form the second open groove (19) parallel to the coordinates of the first open groove while monitoring them using the optical system. In the drawing, this second open groove semiconductor (3) and the first conductive layer (2) below it are also laser scribed and removed.

さらに図面においては、この」−面全面乙こ第2 +2
)導電膜(4)を形成さセた。ここではlTo  (1
5)を50〜1500Δ例えば1050/lの厚さに、
さ鴫こその上面に反射性金属(16)を300〜500
0λ例えば1000Aの厚さに真空蒸着法、CVI)法
により形成さく10) せた。
Furthermore, in the drawing, this "- side entire Otsuko No. 2 +2
) A conductive film (4) was formed. Here lTo (1
5) to a thickness of 50 to 1500Δ, for example 1050/l,
300-500 pieces of reflective metal (16) on the top of Sahizuka
It is formed by a vacuum evaporation method (CVI) method to a thickness of 0λ, for example, 1000A10).

次ぎにこの第2の導電膜に対し、第1の開溝を基準とし
てさらにわたり深さ20〜20ノ例えば7ノ左側にシフ
トして第3の開溝を第1図のレーザ加工装置により形成
さ−已だ。この第3の開溝(20)は第2の導電11k
l’ (4)のみからなるその下の半導体(3)をも除
去(10)さ・Uてしまった。
Next, a third groove is formed in the second conductive film by using the laser processing apparatus shown in FIG. 1, further extending from the first groove to a depth of 20 to 20 mm, for example, shifted to the left by 7 mm. That's it. This third open groove (20) is connected to the second conductor 11k.
The underlying semiconductor (3) consisting only of l' (4) was also removed (10).

図面において、かくしてガラス基板(1)状に複数の光
電変換累f−(31)、 (32)が形成され、さらに
それらは開溝(18)、 (J、9)、  (20)よ
りなる連結部(12)において電気的に直列に連結さ−
已ることが可能となった。
In the drawing, a plurality of photoelectric conversion layers f-(31), (32) are thus formed on the glass substrate (1), and these are further connected by open grooves (18), (J, 9), (20). electrically connected in series at the section (12).
It became possible to cross.

このような大面積に設けられた異なる桐材を、それぞれ
の桐材を前の祠料と特定の関係(ここでは直列構造)を
有して形成させようとする場合、本発明のセルフ・レジ
ストレイジョン機のレーザ加工力式はきわめて¥1リノ
であることが判明した。
When it is desired to form different paulownia materials over such a large area with each paulownia material having a specific relationship (in this case, a series structure) with the previous material, the self-resist of the present invention can be used. It turns out that the laser processing power type of the Raysion machine is extremely cheap.

本発明において、第2図の光電変換装置において、20
cm X 60c+nの基板の大きさに対し、1つの素
7− (31)、 (32)が15mm X 20cm
とし、それらを同一(11) 基板状に40段直列接続をさ−Uる場合、酎1  (1
0(11rW/cm”)の条件下にて開放電圧28シ、
ハi絡電流3300m八を有することができ、変換効率
7.5%を自することが可能となった。
In the present invention, in the photoelectric conversion device shown in FIG.
For the substrate size of cm x 60c+n, one element 7- (31), (32) is 15mm x 20cm
If 40 stages are connected in series on the same (11) board, then 1 (1
0 (11 rW/cm"), open circuit voltage 28 sh,
It was possible to have a high-circuit current of 3300m8 and a conversion efficiency of 7.5%.

このため第1、第2、第3の開溝の作製に5)′ノいて
は、そのゼ、要時間は最大30分以内でな【ノれはなら
ない。
Therefore, the time required for producing the first, second, and third grooves should not exceed 30 minutes at most.

しかし第1の導電i1A、半導体、第2の導電膜に対す
るL’SのSSは1m/分が最大であり、Jっのパイル
あたり2 (XCすK4O体)K2O枚(パノ千枚数)
 (延−\160+n)の長さの開溝を30分で作らな
(Jれはならない。
However, the maximum SS of L'S for the first conductive i1A, semiconductor, and second conductive film is 1 m/min, and 2 (XC K4O body) K2O sheets (Pano thousand sheets) per J pile.
Make an open groove with a length of (length -\160+n) in 30 minutes.

かかる場合、本発明装置においては、8本し−作ること
ができる。即I)30分以内に1ハノーノーず−、てに
開iMを作ることがβJ能となった。
In such a case, the apparatus of the present invention can produce eight pieces. Therefore, it became possible to create an open iM within 30 minutes.

以上の説明のことく1枚のパイルが20cmX GOc
mを自し、1ハツチ20枚としてパネル内に40/ト−
の開溝を一定の間隙で作製さ−已んとした11、t、こ
の1回(12) のプロセスで(1ハツチ)での工4!I!時間を30分
とすると、第1の導電膜(2)、半導体(3)、第2の
導電膜(4)をそれぞれ30分で作ることが初めて可能
になった。
As explained above, one pile is 20cmX GOc
m is 20 sheets per hatch, and 40/toad is placed in the panel.
The open grooves were made with a constant gap - 11, t, and this one (12) process was (1 hatch) 4! I! When the time was set to 30 minutes, it became possible for the first time to form the first conductive film (2), the semiconductor (3), and the second conductive film (4) in 30 minutes each.

以上の如くにして本発明のレーザ加工機により被膜数2
0cm X 60cmのパネルを40枚/時間の多量生
産が可能となった。
As described above, the number of coatings is 2 by the laser processing machine of the present invention.
It has become possible to mass produce 40 panels/hour with a size of 0cm x 60cm.

さらにこの光電変換装置においては、この集積化構造を
6−1しめるに際し、本発明方式で番よコンピュータに
より制御された完全無人化製造ラインを作ることが可1
jヒとなり、きわめて主菜的に価値人なるものであるこ
とが判明した。
Furthermore, in this photoelectric conversion device, when implementing this integrated structure, it is possible to create a completely unmanned production line controlled by a computer using the method of the present invention.
It turned out that he was an extremely valuable person.

本発明において、被加工面は水平面にXYテーブル上に
配設をした。しかしこれは垂直に配設をしても、またこ
の基板の移動ではなくレーザの光源を移動させることに
より開溝を作ってもよいことはいうまでもない。
In the present invention, the surface to be processed is placed on an XY table in a horizontal plane. However, it goes without saying that this may be arranged vertically or the open groove may be created by moving the laser light source rather than by moving the substrate.

また第2図において、光電変換装置は20cmX60C
mを4つ組の合わせて40cmX120cmのNEDO
規格とするのではなく 、40c+n x40cmを3
枚配列し、おなしく13) パネル形成をおこなってもよい。にだ電卓用その他民生
用の光電変換装置を含む下線外装B1j:の製造に本発
明方式を同様に応用するごとも有〃ノである。
In addition, in Figure 2, the photoelectric conversion device is 20cm x 60C.
A set of 4 m with a total size of 40cm x 120cm NEDO
Rather than using it as a standard, 40c+n x 40cm is 3
13) You may arrange the sheets and form a panel. It is also possible to similarly apply the method of the present invention to the production of the underlined exterior B1j: including photoelectric conversion devices for Nida calculators and other consumer use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のレーザ加」二機の11722図を示す
。 第2図は本発明のレーザ加工力式によって作られた光電
変換装置を示す。 44′:’I出j頭人 (14) 羊2(コ 一499
FIG. 1 shows a 11722 diagram of two laser machines of the present invention. FIG. 2 shows a photoelectric conversion device manufactured by the laser processing force method of the present invention. 44': '1 head man (14) sheep 2 (ko 1 499

Claims (2)

【特許請求の範囲】[Claims] 1.1本のレーデ光を複数のレーザ光に分割する手段と
、前記複数のレーザ光をX方向に走査する手段と、被加
工面または前記レーザ光をY方向に移動する手段とを有
するごとにより、被加工面の任意のXY座標に複数のレ
ーザ加工処理を同時に施すことを14徴とするレーデ加
−L機。
1. Having a means for dividing one radar beam into a plurality of laser beams, a means for scanning the plurality of laser beams in the X direction, and a means for moving the processed surface or the laser beam in the Y direction. This is a Raded machining L machine whose 14 characteristics are to perform multiple laser machining processes simultaneously on arbitrary XY coordinates of the surface to be machined.
2.1本のレーザ光を複数のレーデ光に分割する手段と
、前記複数のレーザ光をX方向に走査する手段と、一定
の間隙を杓して配設された2つの被加工面を相対せしめ
、前記間隙に前記複数のレーザ光を導入し、移動可能な
ミラー−によりY方向に走査する手段とを有し、前記ミ
ラー−により一方の被加工面に前記レーザ光を照射して
開溝を設りる手段と、前記ミラーにより他方の被加工面
に+iiJ記シ・−9′光を照(1) 躬し゛ζ開溝を形成・已しめる日没3とをY−+’ す
るごとを特徴とするレーザ加工機。 3、特許請求の範囲第2項において、ミラーを反転せし
めて一方の被加工面と他方の加工1mとに開溝を設りる
ことを特徴とするレ−ヂ加工機。
2. A means for dividing one laser beam into a plurality of LED beams, a means for scanning the plurality of laser beams in the means for introducing the plurality of laser beams into the gap and scanning the laser beams in the Y direction with a movable mirror; the laser beams are irradiated onto one workpiece surface by the mirror to open the groove. and a means for providing +iiJ-9' light on the other workpiece surface by the mirror (1). A laser processing machine featuring: 3. A radial processing machine according to claim 2, characterized in that the mirror is inverted to form an open groove on one surface to be processed and 1 m on the other surface to be processed.
JP58067972A 1983-04-18 1983-04-18 Laser working machine Pending JPS59193782A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58067972A JPS59193782A (en) 1983-04-18 1983-04-18 Laser working machine
PCT/JP1984/000198 WO1984004205A1 (en) 1983-04-18 1984-04-18 Method of manufacturing photoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067972A JPS59193782A (en) 1983-04-18 1983-04-18 Laser working machine

Publications (1)

Publication Number Publication Date
JPS59193782A true JPS59193782A (en) 1984-11-02

Family

ID=13360408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067972A Pending JPS59193782A (en) 1983-04-18 1983-04-18 Laser working machine

Country Status (2)

Country Link
JP (1) JPS59193782A (en)
WO (1) WO1984004205A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964819B2 (en) * 2005-08-26 2011-06-21 Electro Scientific Industries, Inc. Methods and systems for positioning a laser beam spot relative to a semiconductor integrated circuit using a processing target as a metrology target

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014441A (en) * 1983-07-04 1985-01-25 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140698A (en) * 1974-10-04 1976-04-05 Tokyo Shibaura Electric Co

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292092A (en) * 1980-06-02 1981-09-29 Rca Corporation Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery
ATE8514T1 (en) * 1980-09-18 1984-08-15 L'etat Belge, Represente Par Le Secretaire General Des Services De La Programmation De La Politique Scientifique PROCESSES FOR CRYSTALLIZING FILMS AND FILMS OBTAINED THUS.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140698A (en) * 1974-10-04 1976-04-05 Tokyo Shibaura Electric Co

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964819B2 (en) * 2005-08-26 2011-06-21 Electro Scientific Industries, Inc. Methods and systems for positioning a laser beam spot relative to a semiconductor integrated circuit using a processing target as a metrology target

Also Published As

Publication number Publication date
WO1984004205A1 (en) 1984-10-25

Similar Documents

Publication Publication Date Title
JP6216407B2 (en) Wafer manufacturing method and wafer processing system
CN105050764B (en) Apparatus for and method of forming plural groups of laser beams using two rotating diffractive optical elements
CN106077965B (en) Multi-step and asymmetric moulding laser beam scribing line
TWI317176B (en) Process for laser scribing
KR101430277B1 (en) Apparatus for laser beam alignment for solar panel scribing and the solar panel formed by the apparatus
US20070008534A1 (en) Systems and methods for distinguishing reflections of multiple laser beams for calibration for semiconductor structure processing
JP2007048835A (en) Laser machining apparatus and solar cell substrate patterning method using it
KR20170102250A (en) Adaptive part profile creation via independent side measurement with alignment features
WO1985001682A1 (en) Approaching method in area machining
TW201806011A (en) Wafer processing method
JPS59193782A (en) Laser working machine
JPH0582993B2 (en)
JPS6037283A (en) Laser working method
CN107186366A (en) Laser processing device
JPS59193781A (en) Laser working method
JPS6037288A (en) Laser working method
JPS6082286A (en) Laser working method
JPH11320155A (en) Laser beam machining method, machining equipment, and work
RU2747424C9 (en) Method for decoupling a semiconductor wafer including multiple stacks of solar cells
JPH0426957B2 (en)
JP2017050377A (en) Wafer processing method
JPS6283484A (en) Fine processing method
JPH0514432B2 (en)
US20230045341A1 (en) Device for laser-based heat treatment of a coating deposited on a substrate, and corresponding substrate
US20200126856A1 (en) Laser processing method