JPS59191269A - High temperature cell - Google Patents

High temperature cell

Info

Publication number
JPS59191269A
JPS59191269A JP6740683A JP6740683A JPS59191269A JP S59191269 A JPS59191269 A JP S59191269A JP 6740683 A JP6740683 A JP 6740683A JP 6740683 A JP6740683 A JP 6740683A JP S59191269 A JPS59191269 A JP S59191269A
Authority
JP
Japan
Prior art keywords
magnesia
battery
porous
separator
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6740683A
Other languages
Japanese (ja)
Inventor
Yasutoshi Shimizu
清水 康利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP6740683A priority Critical patent/JPS59191269A/en
Publication of JPS59191269A publication Critical patent/JPS59191269A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:In a fused salt cell employing lithium or lithium alloy for negative pole while iron sulfide, iron disulfide, etc. for positive pole electrode, to improve utilization of active substance by employing a magnesia frame filled with porous magnesia particles as a separator. CONSTITUTION:A separator 2 is formed by filling a comb-shaped magnesia frame having open top with porous magnesia particles and inserted between the negative pole 3 having lithium-aluminum alloy as active substance and the positive pole 1 having iron sulfide as active substance. The porousity of particle layer formed by flowing porous magnesia particles to the magnesia frame is as high as 85%, to exhibit the utilization of positive pole active substance as high as 83% under 2.5A charge/discharge of a cell employing this porous magnesia particles.

Description

【発明の詳細な説明】 本発明は、負極にリチウムあるいはリチウム合金を、正
極に硫化鉄、二硫化鉄などを用い、セパレータにマグネ
シアの枠体に充填した多孔質のマグネシア粒子を用いる
溶融塩電池に関りるものである。
Detailed Description of the Invention The present invention provides a molten salt battery using lithium or a lithium alloy for the negative electrode, iron sulfide, iron disulfide, etc. for the positive electrode, and porous magnesia particles filled in a magnesia frame for the separator. It is related to.

従来、溶融塩を用いる高温形の電池においては、セパレ
ータ材質として、電池の作動温度である5oo′c7)
η後での安定性、溶〜;塩中での耐蝕性、活物質に対す
る反応性等の面から窒化ホウ素とマグネシアが検討され
ている。窒化ホウ素を素材としたセパレータは、窒化ホ
ウ素をフェルト化することにJこり多孔質に1ノで用い
ている。このフ、Lルトセパレータは多孔度も90%弱
の大さな値を示し、電気的絶縁性などの電池のセバレー
、夕に要求される特性を充分に満足しCいるものの、セ
パレータを多孔質とする7jめのフェルト化の価格が非
常に高い上、活物質の保持が不充分であるという問題が
あった。また窒化ホウ素はそのJよでは溶融塩に濡れな
いため、窒化ホウ素をフェルト化した後、熱分解により
マグネシアを生成1する硝酸マグネシウムなどを用いて
繊維の表面(こングネシアを析出させて、溶融塩への濡
れ性を改ijXりるといった処理の工程を要した。
Conventionally, in high-temperature batteries using molten salt, the separator material is 5oo'c7), which is the operating temperature of the battery.
Boron nitride and magnesia have been studied from the viewpoints of stability after η, corrosion resistance in salt, reactivity with active materials, etc. A separator made of boron nitride is used in a porous manner in which boron nitride is made into felt. Although this flat separator has a large porosity of just under 90% and fully satisfies the characteristics required for battery separators such as electrical insulation, it is difficult to make the separator porous. There was a problem in that the price of making the 7jth felt was very high, and the retention of the active material was insufficient. In addition, since boron nitride does not get wet with molten salt in its J shape, after felting boron nitride, magnesium nitrate, which produces magnesia by thermal decomposition, is used to deposit the molten salt on the surface of the fiber (to precipitate magnesia). It required a processing step to improve the wettability of the material.

ざらに狐、窒化ホウ素フェル[−を用いたしパレータは
、極板の充放電による変形につれて、厚ざが変化してし
まい、電池の寿命をり勘゛くづるどいっt、:欠点があ
った。
The pallet made of boron nitride fer [-] has a drawback: the thickness changes as the electrode plate deforms due to charging and discharging, making it difficult to consider the life of the battery. .

マグネシアは現1i′J:でのところ、繊組1ヒが行わ
れていないため、マグネシア粉末をセパレータに用いる
試みが行われている。しかし粉末を用いるセパレータは
、多孔度が50%Mrr mと小さく、そのために電池
での活物質利用率も低い値にとど4ってしまう。それに
電池組立て時においても、粉末のため取扱いが不便で、
電解質粉末と共に加圧成形して板状にするなどの処理を
必要とするといった欠点があった。
At present, magnesia has not been subjected to fiber assembly, so attempts are being made to use magnesia powder in separators. However, a separator using powder has a small porosity of 50% Mrrm, and therefore the utilization rate of active material in a battery remains at a low value. Also, when assembling the battery, it is inconvenient to handle because it is a powder.
It has the disadvantage that it requires processing such as pressure molding together with electrolyte powder to form a plate shape.

本発明は、これらの欠点を改良し、安価で取扱いが容易
な上、溶融塩への濡れも良く、充分な多孔度を有し、電
池作動中、常に均一な厚みを有するセパレータを使用し
た電池を提供するものでjうる。
The present invention improves these drawbacks and provides a battery using a separator that is inexpensive, easy to handle, has good wettability to molten salt, has sufficient porosity, and has a constant thickness during battery operation. I can benefit from something that provides.

以下その実施例について詳述する。Examples thereof will be described in detail below.

多孔質のマグネシア粒子は、平均粒径0.3μのN貿マ
グネシアと、硝酸マグネシウムを原料にして製造したa
まず苗質マグネシアに対して、硝酸マグネシウム水溶液
をマグネシアに挽D’;” シて 2重量%添加し、押
し出し造粒法により顆粒状とした後、この顆粒を100
0℃で焼成して、多孔質でかつ取扱いに充分耐える強度
を有する粒子を得た。
The porous magnesia particles were manufactured using N-trade magnesia with an average particle size of 0.3μ and magnesium nitrate as raw materials.
First, 2% by weight of an aqueous magnesium nitrate solution was added to the magnesia seedling, and the granules were made into granules by extrusion granulation.
By firing at 0°C, particles were obtained that were porous and strong enough to withstand handling.

次にこの多孔質粒子の100〜150μの粒度のもの及
び上部が開放となったくし形の枠体を用いて、第1図に
示すような本発明になるリチウム−)fli化鉄電鉄電
池み、充放電試j倹を行った1、電′池の組立ば、それ
ぞれ加圧成形’ kng 、 fQ j+q板の間に、
上部が開放となったマグネシアの(し形の枠体をはさみ
、それらを電槽に1車人後、くし形の枠体のくしの歯の
間に、多孔質のマグネシア粒子を充l)νすることによ
り行った。
Next, using these porous particles with a particle size of 100 to 150 μm and a comb-shaped frame with an open top, a lithium-)fli iron electric railway battery according to the present invention as shown in FIG. After carrying out the charging and discharging test 1, when assembling the battery, between the pressure molding and fQ j+q plates,
Magnesia with an open top (sandwich the diamond-shaped frame, place them in a battery container, and then fill in porous magnesia particles between the teeth of the comb-shaped frame) ν It was done by doing.

図にJ′3いて(1)は硫化3久を・活物質ど覆る正1
(lよで、硫化鉄の粉末の50μから300μの粒良の
ものに、電解質の塩化リブラム−塩(ヒカリウムの50
μから150μの粒度のものを15重h)%添71■L
、ハニカム形’At<の集電体に充填した1好、等z湿
にて 1 (10MPaで加圧成形し、板状とし)ζも
ので゛ある1、なお、イル板表面には活物質保持のため
の20(lメッシコのステンレス鋼製の網を右する。<
2>4J本発明による上部が開放となったく(〕形のマ
グネシアの枠体に多孔質のマグネシア粒子を充填するこ
と(・二より形成したけパレータで、(3)はりチウム
−アルミニウム合金を活物質とする負極である。、負(
・5も正極と同・様に、ハニカム形状の集電体中に、5
0μから300μ斗での粒度のリヂウムーアルミニウム
合金粉末と50μから 100μまでの粒度の電解質粉
末15重■%を充填し、室温にて iooMplで加圧
成形した板状体である。負極においても活物質保持のた
めの200メツシユのステンレスff4Mの網を有する
。電解質には54重量%塩化リチウム−塩化hリウ11
の溶融塩を用いた。電池の作動湿度は470℃とした。
In the figure, J'3 (1) is a positive 1 covering the sulfide 3 and the active material.
(In this case, iron sulfide powder with a grain size of 50 to 300 μ is mixed with the electrolyte Lybram chloride salt (hypotassium 50 μ
Added 15% of particle size from μ to 150μ 71■L
, a honeycomb-shaped current collector is filled with 1, at equal humidity 1 (press-formed at 10 MPa and made into a plate shape). 20(l mesh) stainless steel mesh for retention.
2>4J According to the present invention, porous magnesia particles are filled into a magnesia frame with an open upper part. It is the negative electrode of the substance., negative (
・Similarly to the positive electrode, 5 is placed in the honeycomb-shaped current collector.
It is a plate-shaped body filled with 15% by weight of lithium aluminum alloy powder with a particle size of 0μ to 300μ and an electrolyte powder with a particle size of 50μ to 100μ, and press-formed with iooMpl at room temperature. The negative electrode also has a 200-mesh stainless steel FF4M net for holding the active material. The electrolyte contains 54% by weight lithium chloride-h chloride 11
molten salt was used. The operating humidity of the battery was 470°C.

なお、正極の容量は25AtT及び100△1)とし、
負極容量は正極の1.3倍とした。
In addition, the capacity of the positive electrode is 25AtT and 100△1),
The negative electrode capacity was 1.3 times that of the positive electrode.

本発明による多孔質のマグネシア粒子をマグネシアの枠
体の間に流し込むことにより形成した粒子層の多孔度は
85%と大ぎな幀を示し、水銀圧入法により測定したそ
の細孔分布は、30μと1μに大きなピークを示した。
The particle layer formed by pouring the porous magnesia particles according to the present invention between the magnesia frames has a large porosity of 85%, and the pore distribution measured by mercury intrusion method is 30μ. A large peak was observed at 1μ.

前者の細孔は粒子間の間隙によるしのであり、後者の微
小な細孔は粒子の内部に分布するもので必るが、粒子間
の間隙は活物質の粒径より小さく、レバレータ層で充分
に活物質が保持できることがわかる。
The former pores are caused by gaps between particles, while the latter micro pores are distributed inside the particles and are necessary, but the gaps between particles are smaller than the particle size of the active material, and the lever layer is sufficient. It can be seen that the active material can be retained.

容量25A11の電池による電池試験においては、本発
明による多孔質のマグネシア粒子を用いた電池の2.5
A充放電時の正極活物質利用率が83%と高い値を示し
た。同様の構成?1″′多孔度46%のマグネシア粉末
セパレータを用いた電池では、品物jjj利用率は64
%にとどまり、多孔度89%の窒化ホウ素フェルトはパ
1ノー夕を用いたものも8(5%と、本発明によるセパ
レータと同等の値となった。
In a battery test using a battery with a capacity of 25A11, it was found that the battery using porous magnesia particles according to the present invention had a capacity of 2.5A.
A: The utilization rate of the positive electrode active material during charging and discharging was as high as 83%. Similar configuration? In a battery using a magnesia powder separator with a porosity of 46%, the product jjj utilization rate is 64
Boron nitride felt with a porosity of 89% had a porosity of 8 (5%), which is equivalent to that of the separator according to the present invention.

さらに、極(反面偵44fSの100Δ11電池を組み
、゛電池の充放電による極板の変形の影響をみた。窒化
ホウ素フェルト−セパ1ノータを用いた電池の81侍間
率充放電で100サイクル後の01板厚ざは、正極で1
,2倍に、負極は゛電池のふくれが極板の中火にか〕こ
より、最高部では1.5倍に達した。そのためセパレー
タ厚さは、電池中央部l゛は初1!I]の1/3以下に
なってしまった。本発明によるマグネシアの枠体及び多
孔質のマグネシア粒子をセパレータに用いた電池では、
同様の条件下でもセパ1ノータ層の厚みの変化はなく、
極板の形イノ(変化も緩和きれ、窒化ホウ素フェル1−
セパレータを用いた電池よりも、長寿命化が期待される
。また本発明にょる100A h電池の活物質利用率は
、25△h電池と同様高い値を示した。
Furthermore, a 100Δ11 battery with a polarity of 44fS was assembled to examine the effect of deformation of the polar plate due to charging and discharging of the battery. After 100 cycles at a rate of 81% charging and discharging of a battery using a boron nitride felt-separator. The 01 plate thickness is 1 at the positive electrode.
, 2 times, and the negative electrode reached 1.5 times at the highest point due to the bulging of the battery causing the middle heat of the electrode plate. Therefore, the thickness of the separator at the center of the battery is 1! I] has become less than 1/3. In a battery using a magnesia frame and porous magnesia particles as a separator according to the present invention,
Even under similar conditions, there was no change in the thickness of the Sepa 1 Nota layer,
The shape of the electrode plate (changes can be relaxed, boron nitride fer 1-
It is expected to have a longer lifespan than batteries using separators. Further, the active material utilization rate of the 100A h battery according to the present invention showed a high value similar to that of the 25Δh battery.

以上の説明及び実施例から明らかなように、本発明は、
従来のセパレータの欠点を改良し、安価なマグネシウム
化合物を原料として、多孔質で、溶融塩への濡れも良好
な上、充分に活物質が保持され、厚さの変することのな
いセパレータを用いた溶融塩電池を提供するものである
As is clear from the above description and examples, the present invention
We have improved the shortcomings of conventional separators by using a separator made from an inexpensive magnesium compound that is porous, has good wettability to molten salt, retains the active material sufficiently, and does not change in thickness. The present invention provides a molten salt battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる電池の一実施例を示″cJI17
i面図である。 1・・・・・・正極、2・・・・・・マグネシアの枠体
に多孔質のマグネシア粒子を充1眞してなるセパレータ
、3・・・・・・負極 図  1
Figure 1 shows an embodiment of the battery according to the present invention.
It is an i-side view. 1... Positive electrode, 2... Separator made of a magnesia frame filled with porous magnesia particles, 3... Negative electrode Figure 1

Claims (1)

【特許請求の範囲】[Claims] 負極にリチウムあるいはリチウム合金を、正極に金属硫
化物を用い、極間にセパレータとして多孔質のマグネシ
ア粒子を充填したマグネシアの枠体を介在させることを
特徴とする高温形電池。
A high-temperature battery characterized by using lithium or a lithium alloy for the negative electrode, metal sulfide for the positive electrode, and interposing a magnesia frame filled with porous magnesia particles as a separator between the electrodes.
JP6740683A 1983-04-15 1983-04-15 High temperature cell Pending JPS59191269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6740683A JPS59191269A (en) 1983-04-15 1983-04-15 High temperature cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6740683A JPS59191269A (en) 1983-04-15 1983-04-15 High temperature cell

Publications (1)

Publication Number Publication Date
JPS59191269A true JPS59191269A (en) 1984-10-30

Family

ID=13344019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6740683A Pending JPS59191269A (en) 1983-04-15 1983-04-15 High temperature cell

Country Status (1)

Country Link
JP (1) JPS59191269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014626B1 (en) 2009-01-30 2011-02-16 국방과학연구소 Electrolyte separator for thermal battery, method for fablicatign the same, and thermal battery having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014626B1 (en) 2009-01-30 2011-02-16 국방과학연구소 Electrolyte separator for thermal battery, method for fablicatign the same, and thermal battery having the same

Similar Documents

Publication Publication Date Title
CN108735985A (en) Negative electrode material together, the cathode comprising the negative electrode material together and the all-solid-state lithium-ion secondary battery with the cathode
JP2002279985A5 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
JP2015153452A (en) Method for manufacturing electrode complex, electrode complex and battery
JP7042426B2 (en) Solid electrolytes and batteries
JP6648649B2 (en) Manufacturing method of all solid lithium sulfur battery
JP6931464B2 (en) Method of manufacturing the electrode body
CN109860603A (en) Lithium battery pole slice and preparation method thereof and lithium battery
US2838590A (en) Composite electrode for electric batteries and method of making same
JP2013140745A (en) Method for manufacturing porous aluminum current collector for nonaqueous electrolytic secondary battery, and method for manufacturing positive electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery with positive electrode
JPS59191269A (en) High temperature cell
JP2014022150A (en) Nonaqueous electrolyte secondary battery
JPH0237661B2 (en)
JP2002093409A (en) Control valve type lead-acid battery
JP3575145B2 (en) Negative electrode plate for lead storage battery and method for producing the same
JPS59169081A (en) High temperature type battery
JPS63500481A (en) Porous electrode and its manufacturing method
JPS59173971A (en) High temperature type battery
CN109449444A (en) Battery anode slice and its manufacturing method and lithium ion battery and its manufacturing method
US3161545A (en) Rechargeable cell and electrode therefor
JPS59221973A (en) High temperature type battery
JP3163510B2 (en) Sealed lead-acid battery
JPS59169080A (en) High temperature type battery
JPS59169079A (en) High temperature type battery
JP2586249B2 (en) Sealed lead-acid battery
JPS61114470A (en) Plate for lead storage battery