JPS59190531A - Engine mount with fluid inside - Google Patents

Engine mount with fluid inside

Info

Publication number
JPS59190531A
JPS59190531A JP6179583A JP6179583A JPS59190531A JP S59190531 A JPS59190531 A JP S59190531A JP 6179583 A JP6179583 A JP 6179583A JP 6179583 A JP6179583 A JP 6179583A JP S59190531 A JPS59190531 A JP S59190531A
Authority
JP
Japan
Prior art keywords
orifice
fluid
damping force
partition plate
engine mount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6179583A
Other languages
Japanese (ja)
Inventor
Yasuo Miyamoto
宮本 康生
Katsuyoshi Arai
新井 克芳
Izumi Nishimura
西村 泉
Hiroshi Yoshida
宏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6179583A priority Critical patent/JPS59190531A/en
Publication of JPS59190531A publication Critical patent/JPS59190531A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To obtain a great damping force in a wide range of frequency band from low to high frequency by providing in series a movable orifice for low frequency area and a fixed orifice for high frequency area inside a fluid chamber. CONSTITUTION:A movable orifice 51 formed on a dividing board 50 elastically supported and sandwiched between an upper and a lower step of share springs 30 and 40 is provided apart from a fixed orifice formed on a dividing board 12 of a base member 10. In a low frequency area, a big damping force is obtained by the fixed orifice 51 and at this time, a small damping force is also obtained by the fixed orifice 13, while in a high frequency area, the damping force of the movable orifice 51 becomes smaller, but on the contrary, a greater damping force can be obtained by the fixed orifice 13.

Description

【発明の詳細な説明】 本発明は流体入りエンジンマウントの改良に係り、特に
低周波域から高周綜域に亘る広い周波数帯域に及んで大
きなダンピングカ全得るようにした流体入りエンジンマ
ウントに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a fluid-filled engine mount, and particularly to a fluid-filled engine mount that can obtain a large damping force over a wide frequency range from a low frequency range to a high frequency range.

エンジンに連結される数句部材と、車体フレームに連結
はれ、エンジンをマウントするベース部材とを振動の伝
達により弾性変形可能々る弾性部材で結合して内部に室
を形成し、該室内に液体、又は気体等の流体を封入し、
更にベース部材にダイヤフラムを付設し、本体の流体室
とダイヤフラム室とをオリフィスにより連通して成り、
該オリアイスを通る流体の移動により振動全減衰する流
体入りエンジンマウントは既に知られている。
An internal chamber is formed by connecting a component connected to the engine and a base component that is connected to the vehicle body frame and mounts the engine using an elastic member that can be elastically deformed by transmitting vibrations. Encloses fluid such as liquid or gas,
Furthermore, a diaphragm is attached to the base member, and the fluid chamber of the main body and the diaphragm chamber are communicated through an orifice.
Fluid-filled engine mounts are already known in which vibrations are totally damped by movement of fluid through the oriice.

例えば第8図に示される如く車体フ詞−ムに固定σれる
ベース部材410は、截頭円錐体411の上部内周に仕
切板412を横設形成するとともに、下部外周には取付
フランジ414を形成して成り、仕切板412の中央に
はオリフィス413が穿設され、又取付フランジ414
には車体フレームへの取付孔41γ・・・が穿設されて
いる。
For example, as shown in FIG. 8, a base member 410 fixed to a vehicle body frame has a truncated cone body 411 with a partition plate 412 horizontally formed on the upper inner periphery and a mounting flange 414 on the lower outer periphery. An orifice 413 is bored in the center of the partition plate 412, and a mounting flange 414 is formed.
Attachment holes 41γ to the vehicle body frame are bored in the holes 41γ.

−万エンジンに連結される円板状の取付部材420の外
周には下方に開放はれ、」二記載頭円錐体411よジも
充分に大径なる截頭円錐体421がその上部でもって固
着一体化されており、この取付部材420の上面の中心
にはエンジン取付ボルト422が上方に突出して固設さ
れている。
- A truncated conical body 421 which is opened downwardly on the outer periphery of a disk-shaped mounting member 420 connected to an engine and whose diameter is sufficiently large is fixed at its upper part. An engine mounting bolt 422 is fixed to the center of the upper surface of the mounting member 420 so as to protrude upward.

斯かるベース部材410を構成する截頭円錐体411の
外周に逆アンブンラ状の弾性部材430であるシェアス
プリングゴムの内周全焼料け、更にこのシェアスプリン
グゴム430の外周に取付部材420の周縁下面及び截
頭円錐体421の内周を焼付け、これによυベース部相
410の仕切板412、シェアスプリングゴム430及
び取・N部拐420により本体の流体室402が形成さ
れる。
On the outer periphery of the truncated conical body 411 constituting the base member 410, the inner periphery of a shear spring rubber, which is an inverted umbrella-like elastic member 430, is completely burnt out, and further, on the outer periphery of this shear spring rubber 430, a lower periphery of the mounting member 420 is coated. Then, the inner periphery of the truncated cone 421 is baked, whereby the fluid chamber 402 of the main body is formed by the partition plate 412 of the υ base part 410, the shear spring rubber 430, and the groove 420.

又ベース部IJ410の截頭円錐体411の下部内周に
はダイヤフラム470がその開局でもって固着一体化σ
れ、これにより斯かる截頭円錐体411内にはダイヤフ
ラム室471が形成される。
Also, a diaphragm 470 is fixedly integrated with the diaphragm 470 on the lower inner periphery of the truncated cone 411 of the base portion IJ410.
As a result, a diaphragm chamber 471 is formed within the truncated cone 411.

斯くして構成された流体入りエンジンマウント401の
本体の流体室402及びダイヤフラム室471内に液体
、又は気体等の流体(図示では液体)を充填して封入す
る。
The fluid chamber 402 and diaphragm chamber 471 of the main body of the fluid-filled engine mount 401 configured in this way are filled with a fluid such as liquid or gas (liquid in the illustration) and sealed therein.

以上従来の流体入りエンジンマウント401によれば、
オリフィス413が固定であるため、その周波数−損失
係数(tanδ)特性線図を表せば第9図の如く々す、
損失係数、即ちダンピングのビータの周波数帯域が比較
的狭い。
According to the conventional fluid-filled engine mount 401 as described above,
Since the orifice 413 is fixed, its frequency-loss coefficient (tan δ) characteristic diagram is as shown in Fig. 9.
The frequency band of the loss factor, that is, the damping beater, is relatively narrow.

このため、低周波帯域でのダンピング力を大きくとるよ
うにオリフィス413の径を小てくすると、高周波帯域
でのダンピング力が小さくなる。
Therefore, if the diameter of the orifice 413 is made small to increase the damping force in the low frequency band, the damping force in the high frequency band will be reduced.

この特性を第10図において、実線で示した。This characteristic is shown by a solid line in FIG.

一方上記と逆に高周波帯域でのダンピング力を大きくと
るようにオリフィス413の径を大きくすると、反対に
低周波帯域でのダンピング力が小びくなる。この特性全
同図中破線で示した。
On the other hand, if the diameter of the orifice 413 is increased to increase the damping force in the high frequency band, contrary to the above, the damping force in the low frequency band will decrease. All of these characteristics are shown by broken lines in the figure.

従って低周波域から高周波域に亘っての広い周波数帯域
に及ぶ太き々ダンピング力’x T8ることかできなか
った。
Therefore, it was only possible to increase the damping force to a large extent over a wide frequency band from the low frequency range to the high frequency range.

本発明は以上の実情に鑑みて成されたもので、その目的
とする処は、低周波域から高周波域に亘る広い周波数帯
域に及んで大きなダンピング力を得るようにし、ダンピ
ング特性の向上taつた流体入りエンジンマウン)k提
供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to obtain a large damping force over a wide frequency range from low frequency range to high frequency range, and to improve damping characteristics. Fluid-filled engine mounts are provided.

斯かる目的を達成すべく本発明は、流体入りエンジンマ
ウントのダイヤフラム室を含む流体室内にオリフィスを
直列に複数段設け、流体室を少なくとも3室に画成する
とともに、オリフィス全形成した各仕切板のうち少々く
とも1枚を前記弾性部材に[G接支持せしめる等して少
なくとも1個のオリフィスを弾性支持して可動としたこ
とを要旨としている。
In order to achieve such an object, the present invention provides a plurality of orifices in series in a fluid chamber including a diaphragm chamber of a fluid-filled engine mount, defines the fluid chamber into at least three chambers, and divides each partition plate in which the orifice is completely formed. The gist is that at least one of the orifices is elastically supported and movable by supporting the elastic member in G contact.

以下に本発明の実施例を添付図面に基づいて詳述する。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は第1実施例に係る流体入りエンジンマウントの
中央縦断面図である。
FIG. 1 is a central vertical sectional view of a fluid-filled engine mount according to a first embodiment.

第1実施例に係る流体入りエンジンマウント1の本体は
、車体フレームに固定されるベース部材10と、エンジ
ンに連結される数句部材20と、これらベース部材10
と取付部材20とを結合する逆アンブレラ状及びアンブ
レラ状の上下2段の弾性部材30.40とから成ってお
り、ベース部材10にはダイヤスラム70が付設てれて
いる。
The main body of the fluid-filled engine mount 1 according to the first embodiment includes a base member 10 fixed to the vehicle body frame, a coupler member 20 connected to the engine, and these base members 10.
The base member 10 has a diamond slam 70 attached thereto.

即ちベース部材10は、截頭円錐体11の上部内周に仕
切板12を横設形成するとともに、下部外周に形成した
7ランジ14に截頭逆円錐体15の下部内周をカシメ結
合して溶接等により該截頭逆円錐体15を固着一体化し
、更にこの截頭逆円錐体15の上部外周には取付フラン
ジ16を形成して成り、仕切板12の中央にオリフィス
13が穿設され、又取付7ランジ16には車体フレーム
への取付孔17・・・が穿設されている。
That is, the base member 10 has a partition plate 12 horizontally formed on the upper inner periphery of a truncated cone 11, and the lower inner periphery of an inverted truncated cone 15 is caulked to seven flange 14 formed on the lower outer periphery. The truncated inverted conical body 15 is fixed and integrated by welding or the like, and a mounting flange 16 is formed on the upper outer periphery of the truncated inverted conical body 15, and an orifice 13 is bored in the center of the partition plate 12. Further, the mounting 7 langes 16 are provided with mounting holes 17 for connecting to the vehicle body frame.

一方円板状の数句部材20の外周には上記截頭逆円錐体
15と略々同径なる截頭円錐体21がその上部内周でカ
シメ結合して溶接等により固着一体化されており、この
取付部材20の上面の中心にはエンジン取付ボルト22
が上方に突出して固設されている。
On the other hand, a truncated cone 21 having approximately the same diameter as the truncated inverted cone 15 is attached to the outer periphery of the disc-shaped shuku member 20 by caulking the upper inner periphery of the inverted truncated cone 15 and fixedly integrated with the truncated cone 21 by welding or the like. At the center of the upper surface of this mounting member 20 is an engine mounting bolt 22.
is fixed and protrudes upward.

斯かるベース部材10を構成する截頭逆円錐体15の内
周にアンブレラ状の弾性部材40であるシェアスプリン
グゴムの外周全焼付け、更にこのシェアスプリングゴム
40の上面に円板状の新た々仕切板50の下面を焼付け
る。この仕切板50の中央にはオリフィス51が穿設さ
れている。
The outer periphery of shear spring rubber, which is an umbrella-shaped elastic member 40, is completely baked on the inner periphery of the truncated inverted conical body 15 constituting the base member 10, and a new disc-shaped partition is added to the upper surface of this shear spring rubber 40. The bottom surface of the plate 50 is baked. An orifice 51 is bored in the center of this partition plate 50.

そしてこの仕切板50の上面に逆アンプレジ状の弾性部
材30であるシェアスプリングゴムf7)下面を焼付け
、更にこのシェアスプリングゴム30の外周に取付部材
20の周縁下面及び截頭円錐体21の内周を焼イて]け
る。
Then, the lower surface of the shear spring rubber f7), which is the elastic member 30 in the shape of an inverted ampule, is baked on the upper surface of the partition plate 50, and the lower surface of the peripheral edge of the mounting member 20 and the inner periphery of the truncated cone body 21 are attached to the outer periphery of the shear spring rubber 30. to roast].

尚ベースT−1S相10と取付部月20及び新た々仕切
板50幻回心的に組イ」けられている。
The base T-1S phase 10, the mounting part 20, and the new partition plate 50 have been assembled in a phantom manner.

斯くしてエンジンマウント1の本体内には、上下2段の
シェアスプリングゴム30,40にサンドインチされ/
こ仕切板50によp上から第1流体室2、第2流体室3
が画成される。
In this way, the engine mount 1 is sandwiched between upper and lower shear spring rubbers 30 and 40 in two stages.
The first fluid chamber 2 and the second fluid chamber 3 are separated from the top by the partition plate 50.
is defined.

又ベース部′)l′A10の截頭円錐体11の下部外周
に形成したフランジ14の下面にitダイヤフラム70
の周縁が重ね合わされ、前記截頭逆円錐体15の固着一
体化と同時にこのダイヤフラム70も固着一体化これ、
これにより截頭円鮪:体11内にはダイヤノラム室71
が形成される。
In addition, an IT diaphragm 70 is attached to the lower surface of the flange 14 formed on the lower outer periphery of the truncated conical body 11 of the base part')l'A10.
The circumferential edges of the diaphragm 70 are overlapped, and at the same time as the truncated inverted cone body 15 is fixed and integrated, the diaphragm 70 is also fixed and integrated.
As a result, the truncated round tuna: the diamondorum chamber 71 inside the body 11
is formed.

以上の如くして構成された流体入りエンジンマウント1
の第1及び第2の流体室2,3並びにダイヤフラム呈7
1内に液体、又は気体等の流体(図示では液体)を充填
して封入する。
Fluid-filled engine mount 1 configured as above
the first and second fluid chambers 2, 3 and the diaphragm 7
1 is filled and sealed with a fluid such as liquid or gas (liquid in the illustration).

而してベース部(210の仕切板12に形成した固定の
オリフィス13の他に、上下2段のシェアスプリングゴ
ム30.40にサンドインチされて弾性支持てれた仕切
板50に形成した可動外るオリフィス51を設けたブヒ
め、これら2段の1宜列に配設された固定オリフィス1
3及び可動メリフイス51により下記の優れた作用効果
全発揮することができる。
In addition to the fixed orifice 13 formed in the partition plate 12 of the base part (210), there is also a movable orifice formed in the partition plate 50 which is sandwiched and elastically supported by upper and lower two stages of shear spring rubber 30 and 40. Fixed orifices 1 are arranged in the first row of these two stages.
3 and the movable merifice 51, all of the excellent functions and effects described below can be exhibited.

ここで2段のオリフィス13.51の径を異ならせたり
、2段のシェアスプリングゴム30,40の弾性を異な
らせたりすることにより一方のオリフィス、例えば可動
オリフィス51ケ低周波域側に損失係数(tanδ)、
即ちダンピングのピークがくるように設定し、他方の固
定オリフィス13を高周波域1011にダンピングのピ
ークがくるように設定する。
Here, by making the diameters of the two-stage orifices 13 and 51 different, and by making the elasticity of the two-stage shear spring rubbers 30 and 40 different, one orifice, for example, the movable orifice 51, has a loss coefficient on the low frequency side. (tanδ),
That is, it is set so that the damping peak occurs, and the other fixed orifice 13 is set so that the damping peak occurs in the high frequency range 1011.

次にその作用を述べる。Next, its effect will be described.

先ず低周波域にあっては、可動オリフィス51により大
きなダンピング力が得られ、この時、固定オリフィス1
3によっても小さなダンピング力が得られている。
First, in the low frequency range, a large damping force is obtained by the movable orifice 51, and at this time, the fixed orifice 1
3 also provides a small damping force.

更に中周波域に移行すると、可動オリフィス51による
ダンピング力が小さくなり、これに代わって固定オリフ
ィス13によるダンピング力が大きく々るため、これら
が相俟って適度に大きなダンピング力が得られている。
Furthermore, as the frequency shifts to the medium frequency range, the damping force by the movable orifice 51 becomes smaller, and in its place, the damping force by the fixed orifice 13 increases, so that a moderately large damping force is obtained by combining these factors. .

そして高周波域に移行すると、可動オリフィス51によ
るダンピング力は小さくなるが、逆に固定オリフィス1
3により大きなターンビングカが得られている。
Then, when moving to a high frequency range, the damping force by the movable orifice 51 becomes smaller, but conversely, the damping force by the fixed orifice 1 becomes smaller.
3, a large turning force is obtained.

従って本発明に係る流体入りエンジンマウント1によれ
姓j1第5図に示される通、!ンビークは若干減少する
が、低周波域から高周波域に亘っての広い周波数帯域に
及ぶ大きなダンピング力を得ることができ、ダンピング
特性の向上を達成することができる。
Therefore, according to the fluid-filled engine mount 1 according to the present invention, the name j1 shown in FIG. Although the peak beak is slightly reduced, it is possible to obtain a large damping force over a wide frequency band from a low frequency region to a high frequency region, and it is possible to achieve an improvement in damping characteristics.

尚本実施例では、例えは可動オリフィスを低周波域用に
、固定オリフィスを高周波域用として設定し、その作用
を述べたが、勿論設定の条件を反対にしても良い。
In this embodiment, the movable orifice is set for the low frequency range and the fixed orifice is set for the high frequency range, and the operation thereof is described, but of course, the setting conditions may be reversed.

ところで以上の実施例においては、可動オリフィスを2
段のシェアスプリングゴム間に介装して弾性支持したが
、以下の如く構成しても同様の作用効果を奏することが
できる。
By the way, in the above embodiment, there are two movable orifices.
Although the elastic support is provided by interposing the shear spring rubber between the stages, the same effect can be obtained by using the following configuration.

第2図に示されるように第2実施例に係る流体入Qエン
ジンマウント101’l:構成するベース部材110け
、截頭円錐体111の上部内周に仕切板112を横設形
成するとともに、下部外周には数句フランジ114全形
成して成り、仕切板112の中央にはオリフィス113
が穿設されている。
As shown in FIG. 2, a fluid-filled Q engine mount 101'l according to the second embodiment: a base member 110 is formed, and a partition plate 112 is horizontally formed on the upper inner periphery of a truncated cone 111; Several flanges 114 are formed on the outer periphery of the lower part, and an orifice 113 is formed in the center of the partition plate 112.
is drilled.

斯かるベース部材110を構成する截頭円錐体111の
外周に逆アンプVう状のシェアスプリングゴム130の
内周を焼付け、更にこのシェアスプリングゴム130の
外周に前記と同様の数句部材120の周縁下面及び截頭
円錐体121の内周を焼付ける。
The inner periphery of a shear spring rubber 130 in the shape of an inverse amplifier V is baked onto the outer periphery of the truncated conical body 111 constituting the base member 110, and the same numeral member 120 as described above is attached to the outer periphery of this shear spring rubber 130. The lower surface of the periphery and the inner periphery of the truncated cone 121 are baked.

又ベース部材110の取付フランジ114の内周寄り下
面には円筒体118が溶接等により固着一体化され、こ
の円筒体118の下部内周にダイヤフラム170の外周
を固着一体化する。
A cylindrical body 118 is fixedly integrated with the lower surface of the mounting flange 114 of the base member 110 near the inner periphery by welding or the like, and the outer periphery of the diaphragm 170 is fixedly integrated with the lower inner periphery of this cylindrical body 118.

そして本第2実施例では、シェアスプリングゴム130
の中間部内周に環状溝131を形成し、該環状溝131
内に円板状の新たな仕切板150の外周を嵌着して焼付
ける。この仕切板150の中央にはオリフィス151が
穿設されている。
In the second embodiment, the shear spring rubber 130
An annular groove 131 is formed on the inner periphery of the intermediate portion of the annular groove 131.
The outer periphery of a new disc-shaped partition plate 150 is fitted inside and baked. An orifice 151 is bored in the center of this partition plate 150.

斯くしてエンジンマウント1010本体内には、シェア
スプリングゴム130の中間部内周にて支持され/4仕
切板150により上方から第1流体室102、第2流体
室103が画成きれるとともに、当該エンジンマウント
101内には、ベース部材110の仕切板112に形成
した固定オリフィス113の他に、シェアスプリングゴ
ム130にて支持された仕切板150に形成した可動オ
リフィス151が直列に配設されることと々る。
In this manner, inside the main body of the engine mount 1010, the first fluid chamber 102 and the second fluid chamber 103 are defined from above by the /4 partition plate 150 supported by the inner periphery of the intermediate portion of the shear spring rubber 130, and the engine Inside the mount 101, in addition to the fixed orifice 113 formed on the partition plate 112 of the base member 110, a movable orifice 151 formed on the partition plate 150 supported by the shear spring rubber 130 is arranged in series. That's it.

以上何れの実施例においても、可動オリフィスをエンジ
ンマウント本体の流体室内に配設したが、ダイヤフラム
至内に配設することも可能である。
In all of the above embodiments, the movable orifice is disposed within the fluid chamber of the engine mount body, but it is also possible to dispose it within the diaphragm.

即ち第3図に示されるように第3実施例に係る流体入り
エンジンマウント201’z構成するベース部材210
は、截頭円錐体211の上部内周に仕切板212tlJ
設形叛するとともに、下部外周には数句フランジ214
全形成して成り、仕切板212の中央にはオリフィス2
13が穿設されている。
That is, as shown in FIG. 3, a base member 210 constituting a fluid-filled engine mount 201'z according to the third embodiment
is a partition plate 212tlJ on the upper inner circumference of the truncated cone 211.
In addition to the shape, there are several flanges 214 on the lower outer periphery.
The partition plate 212 has an orifice 2 in the center.
13 are drilled.

斯かるベース部材210を構成する截頭円錐体211の
外周に前記と同様に逆アンブレラ状のシェアスプリング
ゴム230の内周を焼付け、更にこのシェアスプリング
ゴム230の外周に同じく数句部材220の周縁下面及
び截頭円錆、体221の内周を焼付ける。
The inner periphery of the reverse umbrella-shaped shear spring rubber 230 is baked on the outer periphery of the truncated cone 211 constituting the base member 210 in the same manner as described above, and the outer periphery of the shear spring rubber 230 is also baked with the periphery of the cylindrical member 220. The lower surface, the truncated circular rust, and the inner periphery of the body 221 are baked.

そして本第3実施例では、ベース都月210の截頭円錐
体211の内周に円筒体261の外周全溶接等により固
着一体化するとともに、円筒体261の内周に環状のシ
ェアスプリングゴム260の外周を焼付け、更にこのシ
ェアスプリングゴム260の内周に上記より小径なる円
筒体262の外周全焼付ける。この小径なる円筒体26
2の上部内周には新たな仕切板263が横設形成きれ、
該仕切板263の中央にはオリフィス264が穿設され
ている。
In the third embodiment, the cylindrical body 261 is fixedly integrated with the inner periphery of the truncated cone 211 of the base 210 by welding the entire outer periphery of the cylindrical body 261, and an annular shear spring rubber 260 is attached to the inner periphery of the cylindrical body 261. The outer periphery of a cylindrical body 262 having a smaller diameter than the above is completely baked on the inner periphery of this shear spring rubber 260. This small diameter cylindrical body 26
A new partition plate 263 has been horizontally formed on the upper inner circumference of 2.
An orifice 264 is bored in the center of the partition plate 263.

尚ベース部材210の取付フランジ214の内周寄り下
面には、内方に開放せる断面コ牢形の環状取付片219
が形成され、この取付片219にダイヤフラム270の
外周を固着一体化する。
Incidentally, on the lower surface of the mounting flange 214 of the base member 210 near the inner circumference, there is an annular mounting piece 219 with a cage-shaped cross section that opens inward.
is formed, and the outer periphery of the diaphragm 270 is fixedly integrated with this mounting piece 219.

斯くしてエンジンマウント201の本体内には、第1流
体室202が形成され、一方ベース部相210の截頭円
錐体211とダイヤフラム270とにより形成される流
体室内には、内外2重の円筒体261.262間に介装
した環状のシェアスプリングゴム260にて支持され7
’c仕切板263により上方から第2流体室203、ダ
イヤフラム室271が1ifii成されるとともに、当
該エンジンマウント201内には、ベース部材210の
仕切板212に形成した固定オリフィス213の他に、
シェアスプリングゴム260にて支持された仕切板26
3に形成した可動オリフィス264が直列に配設される
こととなる。
In this way, a first fluid chamber 202 is formed within the main body of the engine mount 201, while a fluid chamber formed by the truncated cone 211 of the base portion 210 and the diaphragm 270 has a double inner and outer cylinder. It is supported by an annular shear spring rubber 260 interposed between bodies 261 and 262.
A second fluid chamber 203 and a diaphragm chamber 271 are formed from above by the partition plate 263, and inside the engine mount 201, in addition to the fixed orifice 213 formed in the partition plate 212 of the base member 210,
Partition plate 26 supported by shear spring rubber 260
The movable orifices 264 formed in No. 3 are arranged in series.

以上3種の実施例では、何れも一方のオリフィスを従来
と同様に固定とし、他方を可動オリフィスとして構成し
たが、両方ともに可動オリフィスとして構成することも
可能である。
In each of the three embodiments described above, one of the orifices is fixed as in the prior art and the other is configured as a movable orifice, but it is also possible to configure both as movable orifices.

即ち第4図に示はれるように第4実施例に係る流体入り
エンジンマウン)301’に構成するベース部材310
は、截頭逆円錐体°315の」二部外周に取付7ランジ
316を形成して成り、斯かるベース部材310の截頭
逆円錐体315の内周に第1図と同様のアンブレラ状の
シェアスプリングゴム340の外周を焼付け、更にこの
シェアスプリングゴム340の上面に円板状の第1の仕
切板350の下面を焼付ける。この仕切板350の中央
にはオリフィス351が穿設されている。
That is, as shown in FIG. 4, a base member 310 configured in a fluid-filled engine mount 301' according to the fourth embodiment.
A mounting flange 316 is formed on the outer periphery of the two parts of the truncated inverted conical body 315, and an umbrella-shaped flange 316 similar to that shown in FIG. The outer periphery of the shear spring rubber 340 is baked, and the lower surface of the disk-shaped first partition plate 350 is further baked on the upper surface of the shear spring rubber 340. An orifice 351 is bored in the center of this partition plate 350.

そしてこの仕切板350の上面に逆アンブレラ状のシェ
アスプリングゴム330の下面全焼付け、更にこのシェ
アスプリングゴム330の外周に前記と同様に塩41部
材320の周縁下面及び截頭円錐体321の内周全焼イ
ボける。
Then, the lower surface of a reverse umbrella-shaped shear spring rubber 330 is completely baked on the upper surface of this partition plate 350, and the lower surface of the peripheral edge of the salt 41 member 320 and the inner periphery of the truncated cone body 321 are attached to the outer periphery of the shear spring rubber 330 in the same manner as described above. It's completely burnt and warts.

一方ベース部材310全構成する截頭逆円錐体315の
下部には、内方に開放せる断面コ字形の環状取付片31
9が形成をれており、この取付片319を円筒体361
の上部外周に形成したフランジ362にカシメ結合して
溶接等により該円筒体361を固着一体化するとともに
、円筒体361の内周に第3図と同様の環状のシェアス
プリングゴム360の外周を焼付け、更にこのシェアス
プリングコム360の内周に上記より小径々る円筒体3
63の外周全焼伺ける。この小径なる円筒体363の上
部内周には紀2の仕切板364が横設形成てれ、該仕切
板364の中央にはオリフィス365が穿設きれている
On the other hand, at the bottom of the truncated inverted conical body 315 that constitutes the entire base member 310, there is an annular mounting piece 31 with a U-shaped cross section that opens inward.
9 is formed, and this mounting piece 319 is attached to the cylindrical body 361.
The cylindrical body 361 is fixedly integrated with the flange 362 formed on the upper outer periphery of the cylindrical body 361 by welding or the like, and the outer periphery of an annular shear spring rubber 360 similar to that shown in FIG. 3 is baked on the inner periphery of the cylindrical body 361. , Furthermore, a cylindrical body 3 having a smaller diameter than the above is attached to the inner circumference of this shear spring comb 360.
The outer periphery of 63 can be seen completely burnt down. A second partition plate 364 is horizontally formed on the upper inner periphery of this small-diameter cylindrical body 363, and an orifice 365 is bored in the center of the partition plate 364.

尚外側の円筒体361の上部外周に形成したフランジ3
62の下面にはダイヤフラム370の周縁が重ね合わさ
れ、ベース部材310の截頭逆円り111体3′15へ
の円筒体361の固九一体化と同時にこのダイヤフラム
370も固着一体化きれる。
Furthermore, the flange 3 formed on the upper outer periphery of the outer cylindrical body 361
The periphery of a diaphragm 370 is superimposed on the lower surface of the diaphragm 370, and the diaphragm 370 can be fixed and integrated at the same time as the cylindrical body 361 is fixedly integrated with the truncated inverted circular body 3'15 of the base member 310.

斯くしてエンジンマウント301内には、上下2段のシ
ェアスプリングコム330,340にサンドインチきれ
た第1の仕切板350と、内外2重の円筒体361,3
63間に介装した環状のシェアスプリングコム360に
て支持てれた第2の仕切板364とにより」−力から第
1流体室302、第2流体室303及びダイヤフラム室
371が画成づれるとともに、2段の可動オリフィス、
即ちともに弾性支持はれた第1及び第2の仕切板350
゜365が直列に配設されることとなる。
Thus, inside the engine mount 301, there is a first partition plate 350 sandwiched between the upper and lower shear spring combs 330, 340, and the inner and outer double cylindrical bodies 361, 3.
A first fluid chamber 302, a second fluid chamber 303, and a diaphragm chamber 371 are defined by a second partition plate 364 supported by an annular shear spring comb 360 interposed between 63 and 63. Along with a two-stage movable orifice,
That is, the first and second partition plates 350 are both elastically supported.
365 are arranged in series.

次に以上の流体入りエンジンマウントの構成全第4実施
例を例にとって更に理論的に解析する。
Next, the fourth embodiment of the above fluid-filled engine mount configuration will be further theoretically analyzed as an example.

先ず第4実施例の流体入りエンジンマウントの構造は第
6図に示すようにモデル化することができる。
First, the structure of the fluid-filled engine mount of the fourth embodiment can be modeled as shown in FIG.

即ちエンジンXと車体フレームFとの間に介装される当
該エンジンマウン) 301 B、上段の逆アンブンラ
状シェアスプリングゴム330のバネ成分]<zと、上
段の可動オリフィス351を弾性支持する上下2段のシ
ェアスプリングゴム330゜340のバネ成分1り3並
びに該オリフィス351での流体の質量流量CIとが並
列に構成され、更に下段のアンプVう状シェアスプリン
グゴム340のバネ成分に2と、下段の可動オリフィス
3s5−を弾1生支持する環状シェアスプリングコム3
60のバネ成分に4並びに該オリフィス365ての流体
の質量流量C2とが並列に構成てれ、これら前者の成分
と後者の成分とが直列をもって構成式れたものである。
That is, the engine mount interposed between the engine The spring components 1 and 3 of the stage shear spring rubber 330 and 340 and the mass flow rate CI of the fluid at the orifice 351 are configured in parallel; An annular shear spring comb 3 that supports the lower movable orifice 3s5- for one bullet.
The spring component 60 and the mass flow rate C2 of the fluid through the orifice 365 are configured in parallel, and the former component and the latter component are configured in series.

断力・るモデルに基づく損失係数tanδ、即ちダンピ
ングは次式により算出される。
The loss coefficient tan δ based on the shear force model, that is, damping, is calculated by the following equation.

イ刀 し、  UJ二に+]<zk 31< 4− ω
 ctc 2(k 1+L+)(k 2+k 4)U2
−ω(cxk2に4(k1十に3)+czk+に3(k
z+に4)]U3 = k31<4(lu +に2)−
ωc1c2(k1+に2+]<3+kx)TJ4=ω[
clに4(lu+kJ−に3) +c21<3(kコ十
に2+に4):]面ここでωは振動周波数である。
I sword, UJ second +] <zk 31< 4- ω
ctc 2(k 1+L+)(k 2+k 4)U2
-ω (4 for cxk2 (3 for k1) + 3 for czk+ (k
z+4)]U3=k31<4(lu+2)−
ωc1c2 (2+ to k1+]<3+kx)TJ4=ω[
4 for cl (3 for lu+kJ-) +c21<3 (4 for 2+ for k):] where ω is the vibration frequency.

そして各パラメーターとして kx−2X10  N7m k2 = 2X 105rシ侃 に3 = 1.32 X 1 0 ” N/m](4=
 1.32 X 10 N/mC1= 3 X 10 
Ns7’rn c2−0.333 X 10 ” Ns/yn全力え、
これによす皿δを上式から算出すると、第7図に示した
周波数−損失係数特性線図が得られる。
And as each parameter kx-2X10N7m k2 = 2X 105r and 3 = 1.32
1.32 x 10 N/mC1= 3 x 10
Ns7'rn c2-0.333
If the disc δ is calculated from the above equation, the frequency-loss coefficient characteristic diagram shown in FIG. 7 is obtained.

従って本発明によれば、広い周波数帯域で大きなダンピ
ングが発生することが理論的にも裏付けられていること
が鹿角¥きれる。
Therefore, according to the present invention, it can be concluded that it is theoretically supported that large damping occurs in a wide frequency band.

尚各実施例では、少なくとも1個の可動オリフィスを含
むオリフィス全直列に2段としたが、3段以上の多数段
とすることも可能である。
In each embodiment, the orifices including at least one movable orifice are arranged in two stages in series, but it is also possible to have three or more stages.

以上の説明から明らかな如く本発明によれば、流体入り
エンジンマウントの流体室内にオリフィスを直列に複数
段設けるとともに、少々くとも1個のオリフィスを弾性
支持して可動としたため、低周波域から高周波域に亘る
広い周波数帯域に及んで大きなダンピング力を得ること
ができ、ダンピング特性の向上全達成することができる
As is clear from the above description, according to the present invention, a plurality of orifices are provided in series in the fluid chamber of a fluid-filled engine mount, and at least one orifice is elastically supported to make it movable. A large damping force can be obtained over a wide frequency band covering a high frequency range, and the damping characteristics can be completely improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第7図は本発明の実施例を示すもので、第1
図乃至第4図は第1乃至第4実施例に係る流体入りエン
ジンマウントの各中央縦断面図、第5図はその周波数−
損失係数特性線図、第6図は理論的モデル図、第7図は
その算出により得られた周波数−損失係数特性線図、第
8図は従来の流体入りエンジンマウントの一例を示す中
央縦断面図、第9図及び第10図月夫々その周波数・−
損失係数特性線図である。 116図面中1・・301は流体入りエンジンマウン1
.2・・303及び71・・・3γ1は流体室、10・
・・310はベース部材、20・・・320は取付部材
、30・・・340は弾性部材、70・・370はダイ
ヤフラム、13と51・・・及び351と365はオリ
フィスである。 特許出願人  本田技研工業株式会社 代 理 人 弁理士下 1)容一部 間     弁理士 大 橋 邦 部 同     弁理士 小 山    上第1図 第2図 第3図 第5図 周fL[[Hzl 第7図 固汲役旧z1 第8図 第 用朕数[H2J 第10図 00
1 to 7 show embodiments of the present invention.
Figures to Figures 4 are central vertical sectional views of the fluid-filled engine mounts according to the first to fourth embodiments, and Figure 5 is the frequency -
Loss factor characteristic diagram, Figure 6 is a theoretical model diagram, Figure 7 is a frequency-loss coefficient characteristic diagram obtained by the calculation, and Figure 8 is a central longitudinal section showing an example of a conventional fluid-filled engine mount. Figures 9 and 10 each have their frequency -
It is a loss factor characteristic diagram. 1.301 in 116 drawings is fluid-filled engine mount 1
.. 2...303 and 71...3γ1 are fluid chambers, 10.
. . 310 is a base member, 20 . . . 320 is a mounting member, 30 . . . 340 is an elastic member, 70 . Patent Applicant Honda Motor Co., Ltd. Representative Patent Attorney 1) Patent Attorney Kuni Ohashi Department Patent Attorney Koyama 1 Figure 1 Figure 2 Figure 3 Figure 5 ZhoufL[[Hzl] Figure 7: Old z1 Figure 8: Usage number [H2J Figure 10: 00

Claims (1)

【特許請求の範囲】[Claims] エンジンに連結される取付部材と、エンジンをマウント
するベース部材と全振動の伝達により弾性変形可能外る
弾性部材で結合するとともに、」二記ベース部材、にダ
イヤフラムを開設し、内部の室内に流体を封入して成る
流体入りエンジンマウントにおいて、流体室内にオリア
イスを直列に複数段設けるとともに、少なくとも1個の
オリフィスを弾性支持して成る流体入りエンジンマウン
ト。
The mounting member connected to the engine and the base member on which the engine is mounted are connected by an elastic member that can be elastically deformed by transmitting all vibrations, and a diaphragm is opened in the base member described in 2. What is claimed is: 1. A fluid-filled engine mount comprising a fluid chamber in which a plurality of orifices are arranged in series in a fluid chamber, and at least one orifice is elastically supported.
JP6179583A 1983-04-08 1983-04-08 Engine mount with fluid inside Pending JPS59190531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6179583A JPS59190531A (en) 1983-04-08 1983-04-08 Engine mount with fluid inside

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6179583A JPS59190531A (en) 1983-04-08 1983-04-08 Engine mount with fluid inside

Publications (1)

Publication Number Publication Date
JPS59190531A true JPS59190531A (en) 1984-10-29

Family

ID=13181388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6179583A Pending JPS59190531A (en) 1983-04-08 1983-04-08 Engine mount with fluid inside

Country Status (1)

Country Link
JP (1) JPS59190531A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0147242A2 (en) * 1983-12-28 1985-07-03 Bridgestone Corporation Vibration isolating devices
JPS60139941A (en) * 1983-12-28 1985-07-24 Bridgestone Corp Vibration isolator
FR2589208A1 (en) * 1985-10-28 1987-04-30 Hutchinson Sa IMPROVEMENTS ON HYDRAULIC ANTIVIBRATORY SUPPORTS
FR2592114A1 (en) * 1985-12-24 1987-06-26 Hutchinson Sa IMPROVEMENTS ON HYDRAULIC ANTIVIBRATORY SUPPORTS
FR2596838A1 (en) * 1986-04-05 1987-10-09 Freudenberg Carl Engine bearing with hydraulic damping
JPS62270842A (en) * 1986-05-19 1987-11-25 Mazda Motor Corp Mounting device for power unit
JPS63195441A (en) * 1987-02-05 1988-08-12 Tokai Rubber Ind Ltd Fluid sealed type mount device
JPH0254939U (en) * 1988-10-13 1990-04-20

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0147242A2 (en) * 1983-12-28 1985-07-03 Bridgestone Corporation Vibration isolating devices
JPS60139941A (en) * 1983-12-28 1985-07-24 Bridgestone Corp Vibration isolator
US4630808A (en) * 1983-12-28 1986-12-23 Bridgestone Corporation Vibration isolating devices
JPH0434018B2 (en) * 1983-12-28 1992-06-04 Burijisuton Kk
FR2589208A1 (en) * 1985-10-28 1987-04-30 Hutchinson Sa IMPROVEMENTS ON HYDRAULIC ANTIVIBRATORY SUPPORTS
FR2592114A1 (en) * 1985-12-24 1987-06-26 Hutchinson Sa IMPROVEMENTS ON HYDRAULIC ANTIVIBRATORY SUPPORTS
FR2596838A1 (en) * 1986-04-05 1987-10-09 Freudenberg Carl Engine bearing with hydraulic damping
JPS62270842A (en) * 1986-05-19 1987-11-25 Mazda Motor Corp Mounting device for power unit
JPS63195441A (en) * 1987-02-05 1988-08-12 Tokai Rubber Ind Ltd Fluid sealed type mount device
JPH0254939U (en) * 1988-10-13 1990-04-20

Similar Documents

Publication Publication Date Title
US4651980A (en) Vibration isolator
US4391435A (en) Suspension device
US4709898A (en) Fluid-sealed engine mounting
EP0058408B1 (en) Fluid-filled engine mount device
JPS5943657B2 (en) automotive engine mount
JPS59110936A (en) Supporter for two-chamber type engine
US4572490A (en) Shock absorbing support
EP0065298A2 (en) Engine mount device
US4779585A (en) Hydraulic-damping engine mount
US20040239021A1 (en) Fluid-sealed anti-vibration device
JPS59190531A (en) Engine mount with fluid inside
JPS6145130A (en) Liquid damping type vibration insulating supporting device
US4802658A (en) Vibration isolating apparatus
JPS60249749A (en) Vibro-isolator
US4638981A (en) Engine mount
JPH04231746A (en) Hydraulic type shock absorber
JP2003139190A (en) Liquid pressure buffer damping mount
US6932332B2 (en) Hydraulic antivibration support
US4664360A (en) Engine mount
JPH0247615B2 (en)
JPS63266242A (en) Fluid-sealed type mount device
JPS59219540A (en) Dynamic damper mount
JPS63275827A (en) Vibrationproofing method using liquid sealing mounting device
JPH024814B2 (en)
JPH0247616B2 (en)