JPS59189997A - Waste water disposal - Google Patents

Waste water disposal

Info

Publication number
JPS59189997A
JPS59189997A JP58062987A JP6298783A JPS59189997A JP S59189997 A JPS59189997 A JP S59189997A JP 58062987 A JP58062987 A JP 58062987A JP 6298783 A JP6298783 A JP 6298783A JP S59189997 A JPS59189997 A JP S59189997A
Authority
JP
Japan
Prior art keywords
sulfur
acid
sulfide
sulfuric
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58062987A
Other languages
Japanese (ja)
Inventor
Hideki Kamiyoshi
秀起 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58062987A priority Critical patent/JPS59189997A/en
Publication of JPS59189997A publication Critical patent/JPS59189997A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To oxidize sulfuric compounds existent in waste water into sulfuric acid, by bringing a filler obtd. by mixing the predetermined amount of sulfur or a sulfide in the salt of a sulfuric oxyacid and hydrothermally treating the reaction product under pressure into contact with waste water containing dithionic and polythionic acids under an aerobic condition. CONSTITUTION:The predetermined amount of sulfur or a sulfide is mixed in the salt (excluding an ammonium salt) of a sulfuric oxyacid, a caking accelerator is added at need, and the mixture is formed. The formed mixture is hydrothermally treated under pressure to obtain a filler. This filler is brought into contact with waste water containing sulfuric compounds based on dithionic and polythionic acids under an aerobic condition, to biooxidize said sulfuric compounds into sulfuric acid. Said salt of a sulfuric oxyacid may be sulfite, thiosulfate, etc., while said sulfide may be ferric sulfide, ferric bisulfide, etc. The mixing ratio (wt. ratio) of the salt of a sulfuric oxyacid to sulfur or a sulfide is pref. about 1:10-100.

Description

【発明の詳細な説明】 本発明は湿式排煙脱硫廃水、湿式排煙脱硫脱硝廃水、そ
の他アンモニア會主体とする窒素化合物と、ジチオン酸
やポリチオン酸全主体とする硫黄化合物と會含む各種廃
水の生物学的処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of treating wet flue gas desulfurization wastewater, wet flue gas desulfurization denitrification wastewater, and various other wastewaters containing nitrogen compounds mainly composed of ammonia and sulfur compounds mainly composed of dithionic acid and polythionic acid. Concerning biological treatment methods.

湿式排煙脱硫廃水あるいは湿式排煙脱硫脱硝廃水にはア
ンモニアが多量に含まれておシ、海域での赤潮発生や湖
沼での富栄養化を防止するために処理する必要がある。
Wet flue gas desulfurization wastewater or wet flue gas desulfurization and denitrification wastewater contains a large amount of ammonia, and must be treated to prevent the occurrence of red tide in sea areas and eutrophication in lakes and marshes.

このアンモニアゲ好気的条件下で硝化細菌により硝酸に
まで酸化した後、該硝酸?嫌気的条件下で脱窒素細菌で
窒素ガスにまで還元するという生物学的脱窒素法は非常
に有益な方法としてよく知られている。
After this ammonia is oxidized to nitric acid by nitrifying bacteria under aerobic conditions, the nitric acid? Biological denitrification, which reduces nitrogen to nitrogen gas using denitrifying bacteria under anaerobic conditions, is well known as a very useful method.

一方、上記の廃水中に含捷れるジチオン酸は、CODの
主原因となるもので、物理化学的に非常に安定した物質
であるため、従来の凝集沈殿法や活性炭吸着法等の物理
化学的処理法では殆んど除去不可能であり、僅かにイオ
ン交換樹脂法で除去可能であることが確認されているに
過ぎない。しかし、このイオン交換樹脂法は処理コスト
が□非常に高く、また再生廃液の処理全いかにするかと
いう問題があシ、実用的ではなかった。
On the other hand, dithionic acid contained in the wastewater mentioned above is the main cause of COD and is a very stable substance physically and chemically. It is almost impossible to remove with treatment methods, and it has only been confirmed that it can be removed to a small extent with ion exchange resin methods. However, this ion exchange resin method was impractical because the processing cost was very high and there was a problem in how to completely process the recycled waste liquid.

これに対し、ジチオン酸およびポリチオン酸會硫黄酸化
細菌群ヶ有効に利用して、各種チオン酸を硫酸に迄酸化
する生物学的処理方法と、その反応と同時に、共存する
アンモニア?硝化菌によって硝酸に迄酸化する生物学的
処理方法を提案した(特開昭54−75864、特開昭
55−129191、特公昭56−43795、特公昭
56−49658、特願昭56−172151、特願昭
57−56667参照)。
In contrast, there is a biological treatment method that oxidizes various thionic acids to sulfuric acid by effectively utilizing dithionic acid and polythionic acid-associated sulfur-oxidizing bacteria, and at the same time, ammonia coexists with the reaction. He proposed a biological treatment method that oxidizes to nitric acid using nitrifying bacteria. (See patent application No. 57-56667).

上記提案のうち、特開昭54−758.64号において
は主栄養源としてチオシアン酸塩またはチオ硫酸塩を用
いてポリチオン酸?生物酸化するもので、特開昭55−
12919M号、特公昭56−43795号および特公
昭56−49658号においては硫黄粒子又は粒子状硫
化鉄を用いて浮遊生物方式活性汚泥又は生物膜付着方式
生物f過又は浸漬f床によって処理装置のコンパクト化
と処理コストの低減を図ったものであった。また特願昭
56−172151号では上記一連の硫黄化合物の他に
、三二価化鉄、二硫化鉄?用い、特願昭57−5666
7号ではアンモニウム塩および硫黄酸素酸塩の混合物、
硫化物、硫化物と多硫化物との混合物、チオ硫酸アンモ
ニウム、硫化アンモニウム、多硫化アンモニウムのうち
の1種以上?用いてポリチオン酸とアンモニアの酸化?
、同時に行る方法ケ提案した。
Among the above proposals, in JP-A-54-758.64, thiocyanate or thiosulfate is used as the main nutrient source, and polythionic acid? It undergoes biological oxidation, and is disclosed in Japanese Unexamined Patent Application Publication No. 1988-
No. 12919M, Japanese Patent Publication No. 56-43795, and Japanese Patent Publication No. 56-49658 use sulfur particles or particulate iron sulfide to compact the treatment equipment by suspended biological method activated sludge or biofilm adhesion method biological filtration or soaked bed. The aim was to reduce processing costs and reduce processing costs. In addition to the above-mentioned series of sulfur compounds, Japanese Patent Application No. 172151/1984 also uses iron sesquivalent, iron disulfide? Used, patent application No. 57-5666
In No. 7, a mixture of ammonium salts and sulfur oxyacids;
One or more of sulfides, mixtures of sulfides and polysulfides, ammonium thiosulfate, ammonium sulfide, ammonium polysulfides? Oxidation of ammonia with polythionic acid?
We proposed a method to do this simultaneously.

上記提案は、いずれも硫黄酸化細菌群および硝化菌の量
?できるだけ速く、経済的に増加させる方法で、処理能
力が充分に発現する迄、上記一連の硫黄化合物およびア
ンモニウム塩を注入し続け、而る後徐々に当該薬品音減
少させてゆくもので、上記薬品の注入装置は当初の成る
期間だけ必要で、それ以降は不要でちゃ、また上記薬品
の注入は処理能力が充分に発現する迄の間に繁雑に操作
する必要のあるものである。
Are the above suggestions all about the amount of sulfur oxidizing bacteria and nitrifying bacteria? The above series of sulfur compounds and ammonium salts are continuously injected as quickly and economically as possible until the treatment capacity is fully developed, and then the sound of the chemicals is gradually reduced. The injection device is required only for the initial period and is not needed thereafter, and the injection of the above-mentioned chemicals requires complicated operations until the processing capacity is fully developed.

本発明は、既に得られた上記提案の成果にもとづき、そ
れらと同等ないしはそれ以上の処理効果會有し、さらに
簡便で経済的に処理できる方法全提案するものである。
The present invention is based on the results of the above-mentioned proposals that have already been obtained, and proposes a complete method that has processing effects equal to or greater than those, and which is simpler and more economical.

すなわち本発明は、 (1)  ジチオン酸およびポリチオン酸ヲ主体とする
硫黄化合物會含む廃水の生物学的処理法において、硫黄
酸素酸塩(アンモニウム塩ゲ除く)に、硫黄又は硫化物
ケそれぞれ適当量混合し、必要に応じて固化促進剤全添
加・成型し、加圧水熱処理した充填材紮好気的条件下で
前記廃水と接触させ、ジチオン酸およびポリチオン酸欠
主体とする硫黄化合物ヶ硫酸に才で生物酸化させること
を特徴とする廃水処理方法、 (2)  ジチオン酸およびポリチオン酸を主体とする
硫黄化合物とアンモニア全主体とする窒素化合物會含む
廃水の生物学的処理方法において、アンモニウム塩およ
び硫黄酸素塩(アンモニウム塩奮除く)の混合物、又は
備黄酸素酸アンモニウム化合物、又はチオシアン酸塩に
、硫黄又は硫化*にそれぞれ適邑量混合し、必要に応じ
て固化促進剤?添加・成型し、カロ王水熱処理した充填
材會好気的条件下で前記廃水と接触させ、ジチオン酸お
よびポリチオン酸欠主体とする硫黄化合物ケ硫酸にまで
、アンモニア全主体とする窒素化合物全硝酸にまでそれ
ぞれ同時に生物酸化させることを特徴とする廃水処理方
法、 に関するものである。
That is, the present invention provides: (1) A biological treatment method for wastewater containing a sulfur compound group mainly consisting of dithionic acid and polythionic acid, in which an appropriate amount of sulfur or sulfide is added to a sulfur oxyacid (excluding ammonium salt). The filler is mixed, a solidification accelerator is added thereto if necessary, the filler is molded, and the filler is subjected to pressure hydrothermal treatment.The filler is then brought into contact with the wastewater under aerobic conditions to form a sulfur compound containing dithionic acid and polythionic acid deficiency. A wastewater treatment method characterized by biological oxidation; (2) A biological treatment method for wastewater containing a sulfur compound mainly consisting of dithionic acid and polythionic acid and a nitrogen compound group mainly consisting of ammonia, in which ammonium salts and sulfur oxygen A mixture of salts (excluding ammonium salt), ammonium oxoxylate compounds, or thiocyanates, mixed with appropriate amounts of sulfur or sulfide*, and a solidification accelerator as necessary. Added, molded, and thermally treated filler with Calo aqua regia is brought into contact with the wastewater under aerobic conditions to produce sulfuric acid and sulfuric acid, which are mainly composed of dithionic acid and polythionic acid, and nitrogen compounds, which are mainly composed of ammonia, and total nitric acid. This invention relates to a wastewater treatment method characterized by simultaneously carrying out biological oxidation of up to 100% of wastewater.

本発明方法(第1発明ンにおいては、硫黄酸素酸塩(ア
ンモニウム塩?除く、以下同じ)に硫黄(粒子ン又は硫
化物音それぞれ適当量混合し、必要ならげ固化促進剤ケ
添加する。
In the method of the present invention (in the first invention, an appropriate amount of sulfur (particles or sulfide) is mixed with a sulfur oxyacid (excluding ammonium salt, the same applies hereinafter), and a necessary solidification accelerator is added.

硫黄酸素酸塩としては亜硫酸塩、チオ硫酸塩等、例えば
亜硫酸ナトリウム、亜硫酸カリウム、チオ硫酸ナトリウ
ム(Na2S203・5H20) 、チオ硫酸カリウム
(X2S、、O3・”AHzO)笠が使用できる。
As the sulfur oxygen salt, sulfite, thiosulfate, etc., such as sodium sulfite, potassium sulfite, sodium thiosulfate (Na2S203.5H20), potassium thiosulfate (X2S, O3.''AHzO), etc. can be used.

硫化物としては硫化鉄(FeS )、二硫化鉄(Fθs
、)等全屈いる。
Examples of sulfides include iron sulfide (FeS) and iron disulfide (Fθs).
,) etc. are completely bent.

硫黄酸素酸塩と硫黄(粒子ン又は硫化物の混合比(゛重
量化)は1:10〜100程度が適している。これは、
硫黄酸素酸塩の混合比率が高ければ高い程、生物処理用
としては好ましいが、後述する固化物の強度は低下し、
逆にその混合比率が低ければ低い程、生物処理用として
は不利であるが、得られる固化物の強度は上がるため、
生物処理の面および固化物強度の面の両者において好ま
しい範囲全選択したものである。
The suitable mixing ratio (weight) of sulfur oxylate and sulfur (particles or sulfide) is about 1:10 to 100.
The higher the mixing ratio of sulfur oxylate, the better it is for biological treatment, but the strength of the solidified product, which will be described later, decreases.
Conversely, the lower the mixing ratio, the more disadvantageous it is for biological treatment, but the higher the strength of the solidified product obtained,
All preferred ranges were selected in terms of both biological treatment and solidified material strength.

固化促進剤としては石灰岩、炭酸カルシウム(OaOO
3)、大理石、消石灰(0a(OH)z)、硫酸カルシ
ウム(0aSO4)  などの不溶性カルシウム塩、炭
酸マグネシウム(MgCo5) % kfelマグネシ
ウム(MiSOi )  などの不溶性マグネシウム塩
、ケイ酸ナトリウム(NaO・n5i02)  などの
ケイ酸塩類、ベントナイト等の粘土類等が使用できるが
、不溶性カルシウム塩又はマグネシウム塩は、生物反応
による生成物音利用できることから、好都合である。
As a solidification accelerator, limestone, calcium carbonate (OaOO
3) Insoluble calcium salts such as marble, slaked lime (0a(OH)z), calcium sulfate (0aSO4), insoluble magnesium salts such as magnesium carbonate (MgCo5)% kfel magnesium (MiSOi), sodium silicate (NaO・n5i02) Silicates such as silicates, clays such as bentonite, etc. can be used, but insoluble calcium salts or magnesium salts are advantageous because they can utilize the sound produced by biological reactions.

固化促進剤の添加量は上記混合物に対して1〜40重量
%程度が好ましい。これは、後述するように、固化促進
剤は硫黄酸素酸塩と硫黄又は硫化物との混合物の固化強
度全高めるために添加するものであって、少な過ぎると
その効果が得られず、また多過ぎてもそれ程効果が上が
らないので1〜40重量係程度とするのである。
The amount of the solidification accelerator added is preferably about 1 to 40% by weight based on the above mixture. This is because, as will be explained later, the solidification accelerator is added to increase the solidification strength of the mixture of sulfur oxyacid and sulfur or sulfide, and if it is too small, the effect will not be obtained, and if it is too small, the effect will not be obtained. If the weight is too high, the effect will not be that great, so the weight ratio should be about 1 to 40.

この混合物に結合剤として水を5〜20重量係程度添加
し、混練して成型する。これは、水が少な過ぎれば混合
物がパサついて混線ができず、多過ぎてもベトついて混
線ができないので5〜20重量係程度とするのである。
About 5 to 20 parts by weight of water is added as a binder to this mixture, and the mixture is kneaded and molded. This is because if there is too little water, the mixture will be too dry and no crosstalk will occur, and if there is too much water, it will become sticky and no crosstalk will occur, so the weight ratio should be about 5 to 20.

成型の方法としては転勤、押し出し、圧縮等の方法があ
るが、いずれの方法?用いてもよい。
There are methods of molding such as transfer, extrusion, and compression, but which method is it? May be used.

このように成型した混合物音オートクレーブにて加圧水
熱処理すると固化する。その処理条件は各成分の混合比
によって変るが、通常5〜20気圧でオートクレーブで
(加圧水熱)処理すると水蒸気飽和温度が150〜21
0℃になり、斯る条件で1〜5時間程度処理すれば、得
られる固化物の圧縮強度がカラム等に充填する際に必要
な強度、すなわち2〜5 Kg/cm2となるため、・
一般にはオートクレーブでの処理において5〜20気圧
、1〜5時間程度とすることが望ましい。
The mixture thus molded is solidified when subjected to pressurized hydrothermal treatment in a sonic autoclave. The treatment conditions vary depending on the mixing ratio of each component, but usually when treated in an autoclave (pressurized hydrothermal) at 5 to 20 atmospheres, the water vapor saturation temperature is 150 to 21
If the temperature reaches 0°C and the treatment is carried out under such conditions for about 1 to 5 hours, the compressive strength of the obtained solidified product will be the strength required for packing into columns, etc., that is, 2 to 5 Kg/cm2.
In general, it is desirable that the autoclave treatment be carried out at 5 to 20 atmospheres for about 1 to 5 hours.

この固化物音破砕して10〜40メツシユの粒度に調整
し、ジチオン酸を含む排水の処理用充填材に供するので
ある。
This solidified material is crushed to a particle size of 10 to 40 mesh and used as a filler for treating wastewater containing dithionic acid.

ところで、硫黄酸素酸塩と硫黄又は硫化物の混合物は、
それ自体でも加圧水熱処理すると固化するが、固化促進
剤が添加されていれば、それだけ固化後の圧縮強度が増
加する。固化の過程は明らかではないが、硫黄酸素酸塩
、硫黄又は硫化物の溶融および固化促進剤の水利反応に
よるものと考えられる。
By the way, a mixture of sulfur oxylate and sulfur or sulfide is
Although it solidifies when subjected to pressurized hydrothermal treatment, if a solidification accelerator is added, the compressive strength after solidification increases accordingly. Although the solidification process is not clear, it is thought to be due to the melting of sulfur oxylate, sulfur, or sulfide and the water utilization reaction of the solidification accelerator.

そして、ジチオン酸?含む排水と接触することにより、
上記固化物の表面上では硫黄酸化菌群により次のように
生物酸化反応が生ずる。
And dithionic acid? By contact with wastewater containing
On the surface of the solidified material, a biological oxidation reaction occurs as follows by a group of sulfur-oxidizing bacteria.

・ 82062−  +  02   → 2S042
−(ジチオン酸) (チオ個我) SO+     202      →    5O4
2−(偵門嘆ン S”−+    20□−+   5O42−(@化物
ン これらの生物酸化によって生成された硫酸根(EIo、
2−)が上記固化物に含まれるCa  塩と反応して硫
酸カルシウム(CaBO4) k形成し、粒子表面に析
出する。また反応槽内のpHコントロール用Ca  塩
も同様にして硫酸根(So、2−)と反応して硫酸カル
シウム(Ca5O4) k形成し、粒子表面に析出する
・ 82062- + 02 → 2S042
-(dithionic acid) (thio) SO+ 202 → 5O4
2-(S”-+ 20□-+ 5O42-(@chemical) Sulfate radicals (EIo,
2-) reacts with the Ca salt contained in the solidified material to form calcium sulfate (CaBO4), which precipitates on the particle surface. Similarly, the Ca salt for pH control in the reaction tank reacts with the sulfate radical (So, 2-) to form calcium sulfate (Ca5O4) and precipitates on the particle surface.

一方、硫黄酸素酸塩は水に易溶性であるため、固化物粒
子中よシ水中に徐々に溶出してゆくが、他の成分は水に
難溶性であるため水中に溶出しない。そのため固化物粒
子は徐々に多孔性の粒子となる。
On the other hand, since sulfur oxyacid salts are easily soluble in water, they gradually dissolve into the solidified particles and into the water, whereas other components are poorly soluble in water and do not dissolve into the water. Therefore, the solidified particles gradually become porous particles.

以上説明した本発明方法(第一発明ンによれば、次のよ
うな効果ケ奏することができる。
According to the method of the present invention (first invention) explained above, the following effects can be achieved.

(1)従来の物理化学的処理では非常に困難とされるジ
チオン酸およびポリチオン散音生物学的に処理すること
ができる。
(1) Dithionic acid and polythione can be treated biologically, which is extremely difficult with conventional physicochemical treatments.

(2)硫黄酸化菌群全粒子状の栄養源に付着生育させる
ことによって汚泥量の安定保持ができる。
(2) The amount of sludge can be stably maintained by allowing all sulfur-oxidizing bacteria to grow attached to particulate nutrient sources.

(3)従来のような硫黄粒子、硫化鉄又は二硫化鉄粒子
全単独に用いる場合よシも固化物表面上に生物が付着し
やすく、生長速度が速い。
(3) Compared to conventional cases where sulfur particles, iron sulfide or iron disulfide particles are used alone, living things tend to adhere to the surface of the solidified material and the growth rate is fast.

そのため馴致期間が短縮できるという効果がある。This has the effect of shortening the acclimatization period.

(4)粒子状の固化物が多孔質の粒子となるため表面積
が増加する。そのため単位容積あた9の付着生物量が増
加し、処理性能の向上が図れる。
(4) The surface area increases because the particulate solidified material becomes porous particles. Therefore, the amount of attached organisms increases by 9 times per unit volume, and treatment performance can be improved.

(5)  固化物粒子表面上に不溶性カルシウム塩(c
aso4)  の被膜が生成されるため、固化物の強度
の低下が防止できる。
(5) Insoluble calcium salt (c
Since a film of aso4) is generated, a decrease in the strength of the solidified product can be prevented.

(6)  固化物中には馴致期間中に必要な栄養源が含
まれており、馴致期間中に徐々に消費されてゆく。これ
は従来行なってきた、馴致の進行にともない徐々に栄養
源を減らしてゆくという複雑な操作と同じ効果が得られ
る。その、ため運転操作が容易であシ、馴致期間中だけ
使用する装置を設ける必要がなく経済的である。
(6) The solidified material contains nutrients necessary during the acclimatization period, and is gradually consumed during the acclimatization period. This has the same effect as the conventional complicated operation of gradually reducing the nutritional source as adaptation progresses. Therefore, it is easy to operate and is economical since there is no need to provide a device that is used only during the acclimatization period.

(7)従来行なってきたチオシアン酸塩又はチオ硫酸塩
単独の処理方法にくらべて薬品費を大巾に低減できる(
処理コストは従来の4o〜60係になる)。
(7) Compared to conventional treatment methods using thiocyanate or thiosulfate alone, chemical costs can be significantly reduced (
The processing cost will be 40 to 60 times the conventional cost.)

次に、上記第一発明方法の実施例ケあげる。Next, examples of the above-mentioned first invention method will be given.

実施例1 チオmWナトリウム、硫黄粒子および炭酸カルシウム(
0aO03)  を1 :2D :20の重量比で混合
し、これに水t5重重量法加し、混練した上、押し出し
成型機で直径4+mn、長さ5mのペレットに成型した
。これをオートクレーブ中で15気圧(この時の水蒸気
飽和温度は約195℃)、2時間固化処理ケした。得ら
れた固化物を10〜40メツシユの粒度に調整し、第1
図に示す反応槽1に充填した。続いて、反応槽1に原水
7を満たしながら、種汚泥として硫黄酸化細菌群全優占
種とする活性汚泥ケ投入した。
Example 1 ThiomW sodium, sulfur particles and calcium carbonate (
0aO03) were mixed at a weight ratio of 1:2D:20, 5 tons of water was added thereto, kneaded, and molded into pellets with a diameter of 4+mn and a length of 5m using an extrusion molding machine. This was solidified in an autoclave at 15 atm (steam saturation temperature at this time was about 195°C) for 2 hours. The obtained solidified material was adjusted to a particle size of 10 to 40 mesh, and
The reaction tank 1 shown in the figure was filled. Subsequently, while filling the reaction tank 1 with raw water 7, activated sludge containing the entire sulfur-oxidizing bacteria group was added as a seed sludge.

反応槽1内のpHは消石灰Ca(OH)2により7〜8
に調整し、好気性に保つため曝気ブロワ5によって空気
を槽内に供給した。なお水温は25℃に保った。原水7
はジチオン酸濃度が1100ppとなるように調整して
おき、以降定常的に反応槽1に供給した。
The pH in the reaction tank 1 is 7 to 8 due to slaked lime Ca(OH)2.
and air was supplied into the tank by an aeration blower 5 to keep it aerobic. Note that the water temperature was maintained at 25°C. Raw water 7
The dithionic acid concentration was adjusted to 1100 pp, and thereafter it was constantly supplied to the reaction tank 1.

比較試験として、第1図に示す別の反応槽1に2111
1粒径の慨化鉄(FθS)の粒子會充填し、上記と同様
にして種汚泥?投入し、原水7を通水した。
As a comparative test, 2111 was placed in another reaction tank 1 shown in FIG.
Particles of iron sludge (FθS) of 1 particle size were filled, and seed sludge was prepared in the same manner as above. and raw water 7 was passed through.

以上の処理結果ケ表1に示す。The results of the above processing are shown in Table 1.

なお、ジチオン酸の処理が行なわれるようになったとき
には各充填材表面には生物膜が形成また本発明方法(第
2発明)においては、アンモニウム塩および硫黄酸素酸
塩の混合物又は硫黄酸素酸アンモニウム化合物又はチオ
シアン酸塩に、硫黄又は硫化物ヶそれぞれ適当量混合し
、必要ならば同化促進剤?添加する。
In addition, when the dithionic acid treatment is carried out, a biofilm is formed on the surface of each filler. Mix appropriate amounts of sulfur or sulfide with the compound or thiocyanate, and add an assimilation promoter if necessary. Added.

ここで、アンモニウム塩としては、硫酸アンモニウム(
(”kk)x SO4)、塩化アンモニウム(1ia4
cz ) 、硝酸アンモニウム(NH4NO3)などケ
使用する。
Here, as the ammonium salt, ammonium sulfate (
(“kk) x SO4), ammonium chloride (1ia4
cz), ammonium nitrate (NH4NO3), etc. are used.

硫黄酸素酸塩としては、前記第1発明と同様の薬品が使
用できる。
As the sulfur oxyacid salt, the same chemicals as in the first invention can be used.

硫黄酸素酸アンモニウム化合物としては、亜硫酸アンモ
ニウム、チオ硫酸アンモニウム(NHa )tB20s
等が使用できる。
Examples of ammonium sulfur oxygen acid compounds include ammonium sulfite, ammonium thiosulfate (NHa)tB20s
etc. can be used.

チオシアン酸塩としては、チオシアン酸カリウム(KS
ON )、チオシアン酸ナトリウム(NaSON)、チ
オシアン酸アンモニウム(NH4SCN )等が使用で
きる。
As a thiocyanate, potassium thiocyanate (KS
ON), sodium thiocyanate (NaSON), ammonium thiocyanate (NH4SCN), etc. can be used.

硫化物としては、前記第1発明と同様の薬品が使用でき
る。
As the sulfide, the same chemicals as in the first invention can be used.

同化促進剤としては前記第1発明と同様の薬品類が使用
でき、不溶性カルシウム塩又はマグネシウム塩を用いる
ことが同様の理由により好都合である。
As the assimilation promoter, the same chemicals as those in the first invention can be used, and it is advantageous to use an insoluble calcium salt or magnesium salt for the same reason.

アンモニウム塩と硫黄酸素酸塩の混合比は重量比で1:
1〜10程度が好ましい。これは硝酸化菌群の生長速度
と硫黄ば化菌群の生長速度が約1 : O,1〜1程度
であるため、この比率に合わせてその栄養塩の混合比を
1゛1〜10とするのである。筐たこの混合物又は硫黄
酸素数アンモニウム化合物又はチオシアン酸塩と、硫黄
又は硫化物の混合比は重量比で1:10〜100程度が
適している。理由は前記第1発明と同様に生物処理と固
化物強度の両面から好ましい範囲として選定されπもの
である。
The mixing ratio of ammonium salt and sulfur oxychloride is 1:1 by weight.
About 1 to 10 is preferable. This is because the growth rate of the nitrifying bacteria group and the growth rate of the sulfur-oxidizing bacteria group are approximately 1:0, 1 to 1, so the mixing ratio of the nutrients should be adjusted to 1:1 to 10 to match this ratio. That's what I do. A suitable mixing ratio of the mixture of octopus or sulfur/oxygen ammonium compound or thiocyanate and sulfur or sulfide is about 1:10 to 100 by weight. The reason is that π is selected as a preferable range in terms of both biological treatment and solidified material strength, as in the first invention.

固化促進剤の添加量は前記第1発明と同様上記混合物に
対して1〜40重量%程度が好ましい。この混合物に結
合剤として水音5〜20重量係程度添加し、混練し成型
する。
The amount of the solidification accelerator added is preferably about 1 to 40% by weight based on the mixture as in the first invention. About 5 to 20 parts by weight of water is added as a binder to this mixture, and the mixture is kneaded and molded.

以下前記第1発明と同様にしてオートクレーブで加圧水
熱処理すると、前記と同程度の圧縮強度會有する固化物
が得られる。
Thereafter, a pressurized hydrothermal treatment is performed in an autoclave in the same manner as in the first invention, to obtain a solidified product having a compressive strength comparable to that described above.

この固化物ケ10〜40メツシュの粒度に調整シ、ジチ
オンfRオよびアンモニア1含む排水の処理用充填材に
供する。
This solidified material was adjusted to a particle size of 10 to 40 mesh and used as a filler for treating wastewater containing dithione fR and 1 part ammonia.

ところで、アンモニウム塩および硫黄酸素酸塩の混合物
又は硫黄酸素酸アンモニウム化合物又はチオシアン酸塩
と硫黄又は硫化物の混合物は、それ自体でも加圧水熱処
理すると固化するが、固化促進剤が添加されていれば、
それだけ固化物の圧縮強度が増加する。固化の過程は明
らかでないが、前記第一発明と同様の反応によるもの、
と考えられる。
By the way, a mixture of an ammonium salt and a sulfur oxyacid salt, an ammonium sulfur oxyacid compound, or a mixture of a thiocyanate and sulfur or sulfide will solidify by itself when subjected to pressure hydrothermal treatment, but if a solidification accelerator is added,
The compressive strength of the solidified product increases accordingly. Although the solidification process is not clear, it is caused by the same reaction as in the first invention,
it is conceivable that.

ソシて、アンモニアおよびジチオン散音含む排水と接触
することにより、上記固化物の表面上では、前記第一発
明で述べた硫黄化合物の生物酸化反応と同時に、次のよ
うな硝化菌群によるアンモニー、アの硝酸化反応が生ず
る。
By coming into contact with the wastewater containing ammonia and dithione, the surface of the solidified material undergoes the biological oxidation reaction of the sulfur compound as described in the first invention, as well as ammonia and oxidation by the following nitrifying bacteria group. A nitrification reaction occurs.

NH4−1−202→ No3−÷H20+ 2H”こ
れらの生物反応によって生成された硫酸根(Boa”)
が、上記固化物に含まれているCa  塩および反応槽
内のpHコントロール用Oa 塩と反応し、硫酸カルシ
ウム((!asO4)k形成し、それが粒子表面上に析
出する。
NH4-1-202→ No3-÷H20+ 2H"Sulfate radical (Boa") generated by these biological reactions
reacts with the Ca salt contained in the solidified product and the Oa salt for pH control in the reaction tank to form calcium sulfate ((!asO4)k, which is precipitated on the particle surface.

また、アンモニウム塩、硫黄酸素酸塩、硫黄酸素酸アン
モニウム化合物、チオシアン酸塩は水に易溶性で、他の
成分は水に難溶性であるため、前記第一発明と同様に固
化物は徐々に多孔性の粒子となる。
In addition, since ammonium salts, sulfur oxyacids, sulfur oxyacid ammonium compounds, and thiocyanates are easily soluble in water, and the other components are poorly soluble in water, the solidified product gradually forms as in the first invention. The result is porous particles.

以上説明した本発明方法(第二発明)によれば、前記第
一発明による効果のほかに、次のような効果會奏するこ
とができる。
According to the method of the present invention (second invention) explained above, in addition to the effects of the first invention, the following effects can be achieved.

(1)従来の物理化学的処理では非常に困難とされるジ
チオン酸およびポリチオン散音アンモニアの硝酸化と同
時に生物学的に処理できる。
(1) Dithionic acid and polythionate ammonia can be treated biologically at the same time as nitrification, which is extremely difficult with conventional physicochemical treatments.

(2)硫黄酸化菌群および硝化菌群全粒子状の栄養源に
付着生育させることにょシ汚泥量の安定保持ができる。
(2) The amount of sludge can be stably maintained by allowing all sulfur-oxidizing bacteria and nitrifying bacteria to grow attached to particulate nutrient sources.

次に、上記第二発明方法の実施例ヶあげる。Next, an example of the above-mentioned second invention method will be given.

実施例2 チオ硫酸ナトリウムと塩化アンモニウムの混合物(重量
比1:1)、硫黄粒子(S’Jおよび炭酸カルシラA 
(OaCO3)  51 : 20 : 20(7)□
混合比(重量)で混合しこれらの混合物に対して5%水
全全添加混練した上押し出し成型機で直径4慎、長さ5
ffiII+のペレツトに成型した。これ紮オートクレ
ーブ中で15気圧(この時の水蒸気飽和温度は約195
℃)、2時間固化処理ケした後、10〜40メツシュ粒
度の粒子に調整し、第1図に示す反応槽1に充填し、実
施例1と同様にして反応槽1の条件葡設定した。原水7
は・ジチオン酸1100pp、アンモニア50ppmと
なるように調整しておき、定常的に反応槽1に供給した
Example 2 A mixture of sodium thiosulfate and ammonium chloride (1:1 weight ratio), sulfur particles (S'J and Calcilla carbonate A)
(OaCO3) 51: 20: 20(7)□
The mixture was mixed at the mixing ratio (weight), 5% water was added to the mixture, and then kneaded using an extrusion molding machine to form a mold with a diameter of 4 mm and a length of 5 mm.
It was molded into pellets of ffiII+. This was placed in an autoclave at 15 atm (the water vapor saturation temperature at this time was approximately 195
After solidification treatment for 2 hours, the particles were adjusted to a particle size of 10 to 40 mesh, and filled into the reaction tank 1 shown in FIG. 1, and the conditions of the reaction tank 1 were set in the same manner as in Example 1. Raw water 7
- Dithionic acid and ammonia were adjusted to 1100 ppm and 50 ppm, respectively, and were constantly supplied to the reaction tank 1.

又実施例1の比較試験と同様にして第1図に示す別の反
応槽1に2m粒径の硫化鉄(FeS )粒子全充填し、
原水7を通水し処理試験をおこなった。
Further, in the same manner as in the comparative test of Example 1, another reaction tank 1 shown in FIG. 1 was completely filled with iron sulfide (FeS) particles having a particle size of 2 m,
A treatment test was conducted by passing raw water 7 through the tube.

表   2Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で使用した装置の概要ゲ示す図
である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 第1図 昭和584 5 月 ノン1」 特許庁長官若杉和夫殿 2 発明′°名称 廃水処理方法 3 デ山」にをする名 中f’lとの関係  11」許出19+′i人fi1’
li   東京都千代田区丸の内二丁目5番1号7、補
正の対象 (1)  顧 書 &補正の内容 (1)  願書の1特許願]の下に「(特許法第38条
ただし書の規定による特許出願)jなる文を挿入する。 (2)願書の「1、発明の名称」と(2)発明者」との
間に「2、特許請求の範囲に記載された発明の数 2」
なる文を挿入する。 (3)願書の「2発明者」を「3発明者」に、「五特許
出願人」を「4.特許出願人」に、「40代理人」を「
51代理人」に、「5.復代理人」を「&復代理人」に
、「&添付書類の目録」を「7.添付書類の目録」に、
[Z前記以外の発明者、代理人および復代理人」を「a
前記以外の発明者、代理人および復代理人」にそれぞれ
訂正する。 −535−
FIG. 1 is a diagram showing an overview of the apparatus used in the embodiment of the present invention. Sub-agents 1) Meifuku agent Ryo Hagiwara - Fig. 1 May 1984 Non-1'' Mr. Kazuo Wakasugi, Commissioner of the Patent Office 2 Name of the invention: Waste water treatment method 3. Relationship with 11" permission 19 + 'i person fi 1'
li 2-5-1-7 Marunouchi, Chiyoda-ku, Tokyo Subject of amendment (1) Advisor's letter & content of amendment (1) 1 patent application in the application Patent application) Insert the sentence j. (2) In the application, between "1. Title of the invention" and (2) Inventor, "2. Number of inventions stated in the claims 2"
Insert the following sentence. (3) In the application, "2 inventors" should be changed to "3 inventors,""5 patent applicants" should be changed to "4. patent applicant," and "40 agents" should be changed to "40.
51 Agent”, “5. Sub-Agent” to “& Sub-Agent”, “& List of Attached Documents” to “7. List of Attached Documents”,
[Z Inventors, agents and sub-agents other than the above” are referred to as “a
Inventors, agents, and subagents other than those listed above.'' -535-

Claims (2)

【特許請求の範囲】[Claims] (1)  ジチオン酸およびポリチオン[’t−主体と
する硫黄化合物を含む廃水の生物学的処理法において、
硫黄酸素酸塩(アンモニウム@會除く)に、硫黄又は硫
化物をそれぞれ適当量混合し、必要に応じて固化促進剤
會添加・成型し、加圧水熱処理した充填材全好気的条件
下で前記廃水と接触させ、ジチオン酸およびポリチオン
酸を主体、とする硫黄化合物を硫酸にまで生物酸化させ
ることを特徴とする廃水処理方法。
(1) In the biological treatment method of wastewater containing sulfur compounds mainly composed of dithionic acid and polythione ['t-
Sulfur oxylate (ammonium@excluded) is mixed with appropriate amounts of sulfur or sulfide, a solidification accelerator is added and molded as necessary, and the filler is subjected to pressurized hydrothermal treatment. A wastewater treatment method characterized by biologically oxidizing sulfur compounds mainly composed of dithionic acid and polythionic acid to sulfuric acid by contacting with water.
(2)  ジチオン酸およびポリチオン酸全主体とする
硫黄化合物とアンモニア?主体とする窒素化合物1含む
廃水の生物学的処理方法において、アンモニウム塩およ
び硫黄酸素塩(アンモニウム塩會除く)の混合物、又は
硫黄酸素酸アンモニウム化合物、又はチオシアン酸塩に
、硫黄又は硫化物音それぞれ適当量混合し、必−要に応
じて固イヒ促進剤ヶ添加・成型し、加圧水熱処理した充
填材?好気的東件下で前記廃水と接触させ、ジチオン酸
およびポリチオン酸全主体とする硫黄化合物を硫酸にま
で、アンモニア?主体とする窒素化合物音硝酸にまでそ
れぞれ同時に生物酸化させることを特徴とする廃水処理
方法。
(2) Sulfur compounds and ammonia based entirely on dithionic acid and polythionic acid? In the biological treatment method for wastewater containing nitrogen compounds as the main ingredient, a mixture of ammonium salts and sulfur oxygen salts (excluding ammonium salts), or ammonium sulfur oxygen acid compounds, or thiocyanates, and sulfur or sulfide salts, respectively, are added as appropriate. A filler that has been mixed in different amounts, added with a hardening accelerator as necessary, molded, and treated with pressure hydrothermal treatment? By contacting the wastewater under aerobic conditions, sulfur compounds mainly consisting of dithionic acid and polythionic acid are converted to sulfuric acid and ammonia? A wastewater treatment method characterized by simultaneous biological oxidation of the main nitrogen compounds to nitric acid.
JP58062987A 1983-04-12 1983-04-12 Waste water disposal Pending JPS59189997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58062987A JPS59189997A (en) 1983-04-12 1983-04-12 Waste water disposal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58062987A JPS59189997A (en) 1983-04-12 1983-04-12 Waste water disposal

Publications (1)

Publication Number Publication Date
JPS59189997A true JPS59189997A (en) 1984-10-27

Family

ID=13216221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58062987A Pending JPS59189997A (en) 1983-04-12 1983-04-12 Waste water disposal

Country Status (1)

Country Link
JP (1) JPS59189997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466374A (en) * 1993-07-31 1995-11-14 Bachhofer; Bruno Process for treating organically polluted water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466374A (en) * 1993-07-31 1995-11-14 Bachhofer; Bruno Process for treating organically polluted water

Similar Documents

Publication Publication Date Title
CA1046303A (en) Animal waste odor treatment
JP4572504B2 (en) Biological denitrification method
US7109022B1 (en) Composition containing calcium carbonate particles dispersed in sulfur for removing nitrate nitrogen
JPH0256957B2 (en)
JP4554833B2 (en) Apparatus and method for removing nitrate nitrogen in waste water
JPH11262793A (en) Post-treatment apparatus for anaerobic sewage treatment
JP2001179295A (en) Method and apparatus for treating sewage
KR100722655B1 (en) Advanced wastewater treatment system with alkalinity-added sulfur media and submerged membrane module
JPS59189997A (en) Waste water disposal
JPS60206494A (en) Simultaneous removal of nitrogen and phosphorus in waste water by sulfur replenishing aerobic-anaerobic activated sludge method
JPS6317513B2 (en)
JP3477187B2 (en) Method and apparatus for decolorizing wastewater
JP4153267B2 (en) Dephosphorization / ammonia removal method, ammonia fertilizer production method, and melt solidification method
JP2003071490A (en) Method for removing nitrogen from wastewater
JPH0474598A (en) Method and apparatus for simultaneous removal of nitrogen and phosphorus
JP2004002509A (en) Method for desulfurizing fermentation gas and apparatus therefor
JPH0253117B2 (en)
KR100890605B1 (en) Microorganism media for treatment of wastewater and its manufacturing method
KR102225883B1 (en) Partial Nitritation Methods of Sewage Using Autotrophic microorganism immobilized in Bead
JPS62225294A (en) Biological denitrification device
KR102101020B1 (en) Nitrogen Removal Methods of Sewage Using Autotrophic microorganism immobilized in Bead
JPH10309585A (en) Water quality purifying method
JPS5867396A (en) Removing method for nitrogen and phosphorus in waste water
JPH0760260A (en) Method for removing nitrogen in water
JP3639679B2 (en) Nitrogen removal method of wastewater by modified activated sludge circulation method