JPS5918804B2 - heat sensitive element - Google Patents

heat sensitive element

Info

Publication number
JPS5918804B2
JPS5918804B2 JP7997176A JP7997176A JPS5918804B2 JP S5918804 B2 JPS5918804 B2 JP S5918804B2 JP 7997176 A JP7997176 A JP 7997176A JP 7997176 A JP7997176 A JP 7997176A JP S5918804 B2 JPS5918804 B2 JP S5918804B2
Authority
JP
Japan
Prior art keywords
temperature
conductive
conductive composition
heating element
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7997176A
Other languages
Japanese (ja)
Other versions
JPS535795A (en
Inventor
武夫 近藤
尚 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7997176A priority Critical patent/JPS5918804B2/en
Publication of JPS535795A publication Critical patent/JPS535795A/en
Publication of JPS5918804B2 publication Critical patent/JPS5918804B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明はブチレンテレフタレート構造を有するポリエス
テルと導電性カーボンブラックからなる熱感応性素子に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-sensitive element made of polyester having a butylene terephthalate structure and conductive carbon black.

従来より、導電性カーボンブラックを添加、分散せしめ
たゴム、ポリエチレン、ポリプロピレン、アイオノマー
等の熱可塑性樹脂類からなる導電性組成物が知られてい
るが、いずれも樹脂の融点、軟化点が低いため使用可能
温度は100℃前後以下に限定されている。
Conventionally, conductive compositions made of thermoplastic resins such as rubber, polyethylene, polypropylene, and ionomers have been known to which conductive carbon black is added and dispersed, but all of these resins have low melting points and softening points. The usable temperature is limited to around 100°C or lower.

又、特にゴムやアイオノマーに導電性カーボンブラック
を添加、分散してなる導電性組成物は、温度と共にその
電気抵抗が急激に増大するといつた大きな正の抵抗温度
係数を有することが知られており、この点を利用して、
熱感応性素子あるいは自己温度制御性発熱体例えば面状
発熱体として使用されているが、その使用温度が80℃
前後以下に限定される外に、温度上昇により電気抵抗が
急激に増大する温度が特定の温度に限定されてしまい該
導電性組成物で任意の温度に設定することができない欠
点があつた。本発明はかかる欠点を改良するもので、各
種の熱可塑性樹脂の中でもポリエステル特にブチレンテ
レフタレート構造を有するポリエステルと導電性カーボ
ンブラックからなる導電性組成物がかゝる欠点のないも
のであることを見出したものである。より詳しく説明す
ると、ブチレンテレフタレート構造を有するポリエステ
ル、例えばポリブチレンテレフタレートやポリブチレン
テレフタレート/イソフタレートと導電性カーボンブラ
ック、例えばアセチレンブラックとを混合分散せしめた
導電性組成物が、正の抵抗温度係数を有し、それが急激
に増大する温度が100℃以上であり、しかもその温度
は、驚くべきことに共重合比あるいはブレンド比を変え
ることにより任意に選べることを見出したものである。
Furthermore, conductive compositions made by adding and dispersing conductive carbon black to rubber or ionomers are known to have a large positive temperature coefficient of resistance, meaning that their electrical resistance increases rapidly with temperature. , taking advantage of this point,
Heat-sensitive elements or self-temperature-controlling heating elements are used, for example, as planar heating elements, but the operating temperature is 80°C.
In addition to being limited to around 100% or less, the temperature at which the electrical resistance rapidly increases due to temperature rise is limited to a specific temperature, and the conductive composition has the disadvantage that it is not possible to set the temperature to an arbitrary value. The present invention aims to improve such drawbacks, and it has been discovered that among various thermoplastic resins, a conductive composition made of polyester, particularly polyester having a butylene terephthalate structure, and conductive carbon black is free from such drawbacks. It is something that To explain in more detail, a conductive composition in which a polyester having a butylene terephthalate structure, such as polybutylene terephthalate or polybutylene terephthalate/isophthalate, and conductive carbon black, such as acetylene black, are mixed and dispersed has a positive temperature coefficient of resistance. The inventors have surprisingly found that the temperature at which the temperature increases rapidly is 100° C. or higher, and that the temperature can be arbitrarily selected by changing the copolymerization ratio or blending ratio.

又、本発明はかゝる特長を有するので、自己温度制御性
の発熱体あるいは/および熱感応性素子として有効であ
る。
Furthermore, since the present invention has such features, it is effective as a self-temperature-controlling heating element and/or a heat-sensitive element.

本発明でいうブチレンテレフタレート構造を有するポリ
エステルとは、熱可塑性ポリエステル樹脂の一種であり
、ポリブチレンテレフタレートまたはポリブチレンテレ
フタレートを主体とする共重合体を意味するが、テレフ
タル酸および1、4−ブタンジオールの含有率は、ヒー
タや信号導体との接着性、溶融押出時の粘度特性、結晶
化特性等の点で、それぞれ60モル%以上のものである
The polyester having a butylene terephthalate structure in the present invention is a type of thermoplastic polyester resin, and means polybutylene terephthalate or a copolymer mainly composed of polybutylene terephthalate, including terephthalic acid and 1,4-butanediol. The content of each is 60 mol % or more in terms of adhesion to heaters and signal conductors, viscosity characteristics during melt extrusion, crystallization characteristics, etc.

又使用し得るテレフタル酸の残部のジカルボン酸成分と
しては、アゼライン酸、セバシン酸、アジピン酸、ドデ
カンジカルボン酸などの炭素数2〜20の脂肪族ジカル
ボン酸またはイソフタール酸、ナフタレンジカルボン酸
などの芳香族ジカルボン酸またはシクロヘキサンジカル
ボン酸などの脂環式ジカルボン酸の単独ないしは混合物
が挙げられる。又、使用し得る1,4−ブタンジオール
の残部のジオール成分としては、エチレングリコール、
ネオペンチグリコール、1,4−シクロヘキサンジメタ
ノール、1,6−ヘキサンジオール、1,10−デカン
ジオール、1,4−シクロヘキサンジオール、2−エチ
ル−2−ブチル−1,3−プロパンジオールなどの脂肪
族グリコール、脂環式グリコールの単独または混合物な
どが挙げられる。また高分子グリコール、たとえば、ポ
リエチレングリコール、ポリプロピレングリコール、ポ
リテトラグリコールも残部のジオール成分として用いら
れる。本発明でいうブチレンテレフタレート構造を有す
るポリエステルの一部を具体的に示すと、ポリブチレン
テレフタレート、ポリブチレンテレフタレート/イソフ
タレート、ポリブチレンテレフタレート/セバケート、
ポリブチレンテレフタレート/イソフタレート、ポリテ
トラメチレングリコールプロツクコポリマなどが代表的
であるが、これに限定されるものではない。又該ブチレ
ンテレフタレート構造を有するポリエステルに、他の物
質、例えばイオン性基を有する有機化合物やイオン性基
を有する高分子化合物を配合したりすることにより、熱
感応性素子としての性能を向上せしめることもできる。
The remaining dicarboxylic acid component of terephthalic acid that can be used includes aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as azelaic acid, sebacic acid, adipic acid, and dodecanedicarboxylic acid, or aromatic dicarboxylic acids such as isophthalic acid and naphthalene dicarboxylic acid. Dicarboxylic acids or alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid may be used alone or in mixtures. In addition, the remaining diol components of 1,4-butanediol that can be used include ethylene glycol,
Fats such as neopentyglycol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, 1,10-decanediol, 1,4-cyclohexanediol, 2-ethyl-2-butyl-1,3-propanediol Examples include group glycols and alicyclic glycols alone or in mixtures. Polymeric glycols such as polyethylene glycol, polypropylene glycol, and polytetraglycol may also be used as the remaining diol component. Specific examples of polyesters having a butylene terephthalate structure in the present invention include polybutylene terephthalate, polybutylene terephthalate/isophthalate, polybutylene terephthalate/sebacate,
Typical examples include polybutylene terephthalate/isophthalate, polytetramethylene glycol protein copolymers, but are not limited thereto. Furthermore, the performance as a heat-sensitive element can be improved by blending other substances, such as an organic compound having an ionic group or a polymer compound having an ionic group, with the polyester having a butylene terephthalate structure. You can also do it.

この場合イオン性基を有する有機化合物としては、溶融
押.出しの安定性、耐熱性等の点から、金属石ケン、有
機スルホン酸塩、有機リン酸エステル塩、ホスホン酸塩
、ホスフイン酸塩等が好ましく、イミダゾリン型、アミ
ドアミン型のカルボン酸塩両性界面活性剤等もある。配
合量は0.01〜5重量%がよ 5く、0.01重量%
以下では熱感応性素子としての性能向上効果がなく、5
重量%以上では該ポリエステル樹脂の優れた一般特性が
損われる。又イオン性基を有する高分子化合物も特に限
定されるものではないが、溶融押出し性、耐熱性等 ク
の点から、例えば6サーリン”という商標のアイオノマ
ー樹脂の如く、エタレンを含むa−オレフインと不飽和
カルボン酸とから得られる共重合体に、原子価が1〜3
の金属イオンが付加したイオン性炭化水素重合体が好ま
しく、又“アドマ”や”デユラン”という商標で市販さ
れているポリプロピレン、ポリエチレンあるいはエチレ
ン一酢ビコポリマにアクリル酸あるいは無水マレイン酸
をグラフト重合したポリマであつてもよい。
In this case, the organic compound having an ionic group is melt-extruded. From the viewpoint of stability and heat resistance, metal soaps, organic sulfonates, organic phosphate ester salts, phosphonates, phosphinates, etc. are preferred, and imidazoline-type and amidoamine-type carboxylates with amphoteric surfactants There are also drugs. The blending amount is preferably 0.01 to 5% by weight, preferably 0.01% by weight.
Below, there is no performance improvement effect as a heat sensitive element, and 5
If the amount exceeds % by weight, the excellent general properties of the polyester resin will be impaired. Also, polymer compounds having ionic groups are not particularly limited, but from the viewpoint of melt extrudability, heat resistance, etc., for example, ionomer resins with the trademark ``6Surlyn'' and a-olefins containing etalene are preferred. The copolymer obtained from unsaturated carboxylic acid has a valence of 1 to 3.
Preferred are ionic hydrocarbon polymers to which acrylic acid or maleic anhydride is grafted onto polypropylene, polyethylene, or ethylene monoacetate bicopolymer, which are commercially available under the trademarks of "ADMA" and "DURAN". It may be.

なお本発明は、熱感応性素子としての性能を損なわぬ限
り、ポリエステル樹脂に一般的に添加される種々の添加
剤、例えば耐熱剤、耐光剤、充填剤、可塑剤、難燃剤、
着色剤等を併用してもよい。
The present invention also includes various additives commonly added to polyester resins, such as heat resistant agents, light resistant agents, fillers, plasticizers, flame retardants,
A coloring agent or the like may be used in combination.

該樹脂の重合度は機械的物性の点より、該樹脂のオルソ
クロロフエノール0.501)溶液の25℃での相対粘
度が1.2以上が好ましい。本発明でいう導電性カーボ
ンブラツクとしては、フアーネス法のEOF(Extr
aCOnductiveFurnace)、S.CF(
SuperCOnductiveFurnace),C
F(COnductiveFurnace)、チヤンネ
ル法のCC(COnductiveChannel)、
アセチレンブラツク等があるが、特に導電性、正の抵抗
温度係数の点でアセチレンブラツクが好ましい。
From the viewpoint of mechanical properties, the polymerization degree of the resin is preferably such that the relative viscosity of a solution of the resin in orthochlorophenol (0.501) at 25° C. is 1.2 or more. The conductive carbon black referred to in the present invention is EOF (Extr.
aConductive Furnace), S. CF(
Super Conductive Furnace), C
F (Conductive Furnace), CC (Conductive Channel) of channel method,
Although there are acetylene black and the like, acetylene black is particularly preferred in terms of conductivity and positive temperature coefficient of resistance.

又導電性カーボンブラツクの添加率は、熱感応性素子と
しての抵抗温度係数および信号導体との接着性の点で1
0〜20重量%必要である。
In addition, the addition rate of conductive carbon black is 1 in terms of the temperature coefficient of resistance as a heat-sensitive element and the adhesion to the signal conductor.
0 to 20% by weight is required.

又その添加方法も該ポリエステルの重合段階、溶融押出
段階等任意である。又該ブチレンテレフタレート構造を
有するポリエステルと導電性カーボンブラツクからなる
導電性組成物に、第4図〜第6図の如く通電用電極を設
けて通常の商用電源に接続すれば、ある温度に達すると
電気抵抗が急激に増大して電流量が激減し、その付近の
温度を維持するといつた自己温度制御性を有する線状あ
るいは面状の発熱体である電熱部材が容易に得られる。
Further, the addition method may be arbitrary, such as during the polymerization stage of the polyester, or during the melt extrusion stage. Furthermore, if a conductive composition made of polyester having a butylene terephthalate structure and conductive carbon black is provided with current-carrying electrodes as shown in FIGS. 4 to 6 and connected to a normal commercial power source, when a certain temperature is reached, It is easy to obtain an electric heating member, which is a linear or planar heating element, which has a self-temperature control property in which the electrical resistance rapidly increases and the amount of current decreases, and the temperature in the vicinity is maintained.

又該ブチレンテレフタレート構造を有するポリエステル
と導電性カーボンブラツクからなる導電性組成物に、第
7図〜第9図の如く電極を設け、発熱体と熱的に一体化
すれば、発熱体の温度が上昇すると該導電性組成物の電
気抵抗も増大するので、これをコントローラに接続して
検知し、発熱体への電力供給を制御することにより容易
に任意の温度制御ができるし、あるいは、該導電性組成
物と発熱体とを電気的に直列に結線すれば発熱体の温度
上昇に伴い該導電性組成物の電気抵抗も増大して、発熱
体への電流量を減少し、一定の温度に維持することがで
き、熱感応性素子機能を有する電熱部材が得られる。
Furthermore, if an electrode is provided on the conductive composition made of polyester having a butylene terephthalate structure and conductive carbon black as shown in FIGS. 7 to 9, and it is thermally integrated with the heating element, the temperature of the heating element can be reduced As the electrical resistance increases, the electrical resistance of the conductive composition also increases, so by connecting it to a controller to detect it and controlling the power supply to the heating element, it is possible to easily control the temperature as desired. If the conductive composition and the heating element are electrically connected in series, the electrical resistance of the conductive composition will increase as the temperature of the heating element increases, reducing the amount of current to the heating element and keeping the temperature constant. An electric heating member having a heat-sensitive element function is obtained.

こ\で第4図は該導電性組成物を発熱体として使用した
線状の電熱部材の断面構造の一例であり、電極2と電極
3の間に該導電性組成物1を介して一体化し、その上に
電気絶縁体4を被覆したものである。又第5図、第6図
は該導電性組成物1の両端あるいは両面に電極2,3を
設け、電気絶縁体4で被覆した発熱体とした面状の発熱
部材の断面構造の一例である。又第7図はニクロム線の
如き通常の線状発熱体5に電気絶縁体4を被覆後電極2
と該導電性組成物1と電極3とを一体化して設け、外被
4を設けた線状発熱体で、該導電性組成物1が熱感応性
素子として機能する電熱部材の断面図の一例である。又
第8図、第9図は、通常の面状の発熱体5と、該導電性
組成物の面状体1の両端部あるいは両面に電極2,3を
設けたものを、電気絶縁体4を介して熱的に一体化した
面状発熱体で、該導電性組成物1が面状の熱感応性素子
として機能する電熱部材の断面図の一例である。なおこ
こで使用する電極2,3としては、第4図、第7図の如
き線状体の場合には、一般的に導体として使用されるも
のならよく、例えばアルミニウム、銅、ニツケル等の線
あるいはテープが使用できる。
Figure 4 shows an example of the cross-sectional structure of a linear electric heating member using the conductive composition as a heating element, and is integrated between electrodes 2 and 3 via the conductive composition 1. , on which an electrical insulator 4 is coated. Further, FIGS. 5 and 6 are examples of the cross-sectional structure of a planar heat generating member, which is a heat generating body with electrodes 2 and 3 provided on both ends or both surfaces of the conductive composition 1 and covered with an electrical insulator 4. . FIG. 7 shows an ordinary linear heating element 5 such as a nichrome wire coated with an electrical insulator 4 and then an electrode 2
An example of a cross-sectional view of an electric heating member, which is a linear heating element in which the conductive composition 1 and the electrode 3 are integrated and provided with a jacket 4, and the conductive composition 1 functions as a heat-sensitive element. It is. Moreover, FIGS. 8 and 9 show an ordinary planar heating element 5 and an electric insulator 4 having electrodes 2 and 3 provided on both ends or both surfaces of the planar heating element 1 made of the conductive composition. 1 is an example of a cross-sectional view of an electrothermal member in which the conductive composition 1 functions as a planar heat-sensitive element, which is a planar heating element that is thermally integrated through the conductive composition 1. In the case of the electrodes 2 and 3 used here, in the case of wire bodies as shown in Figs. 4 and 7, any material that is generally used as a conductor may be used, such as wires made of aluminum, copper, nickel, etc. Alternatively, you can use tape.

又第5図、第6図、第8図、第9図の如き面状体の場合
には、アルミニウム、銅、ニツケル等のテープ、箔等が
好適であり、又金網や、導電性クロス、導電性フイルム
等も使用でき、特に限定はない、又電気絶縁体4は、通
常のプラスチツクや無機物でよく、発熱体5はニクロム
線や、面状の場合には、アルミニウムを蛇行状にエツチ
ングしたもの、抵抗線織物、織物に導電性塗料を含浸し
たもの、フイルムに導電性塗料を塗布したもの、あるい
はゴムやプラスチツクに導電性微粒子を練り込んだシー
ト等面状発熱体として使用できるものなら特に制限はな
い。なお該導電性組成物は金属やカーボンとの接着性が
よいので、電極との一体化方法は、予めシート状に制膜
してから電極を熱圧着してもよく、あるいは電極間に該
導電性組成物をエクストルージヨンラミネートしてもよ
い。
In the case of planar bodies as shown in Figs. 5, 6, 8, and 9, tapes, foils, etc. made of aluminum, copper, nickel, etc. are suitable; wire mesh, conductive cloth, etc. A conductive film or the like can also be used, and there is no particular limitation.The electric insulator 4 may be made of ordinary plastic or an inorganic material, and the heating element 5 can be made of nichrome wire or, if it is planar, aluminum etched in a serpentine shape. Especially if it can be used as a planar heating element, such as resistance wire fabric, fabric impregnated with conductive paint, film coated with conductive paint, or sheet made of rubber or plastic kneaded with conductive particles. There are no restrictions. Since the conductive composition has good adhesion to metals and carbon, the method for integrating it with the electrode may be to form a film in advance into a sheet and then bond the electrode by thermocompression, or to bond the conductive composition between the electrodes. The sexual composition may be extrusion laminated.

なお本発明でいう熱感応性素子とは、いわゆるプラスチ
ツクサーミスタ一を意味し、温度の変化に伴い、その電
気的性質、例えば体積固有電気抵抗、インピーダンス、
誘電率、リアクタンス等が可逆的に大きく変化する性質
を有するものを意味する。
Note that the heat-sensitive element in the present invention refers to a so-called plastic thermistor, which changes its electrical properties such as volume specific electrical resistance, impedance, etc. as the temperature changes.
It refers to a material that has properties such as permittivity, reactance, etc. that change significantly and reversibly.

実施例 1 ブチレンテレフタレート構造を有するポリエステルとし
て、テレフタール酸と1,4−ブタンジオールからなる
25℃におけるオルソクロロフエノール0.5%溶液の
相対粘度が1.55のポリブチレンテレフタレートを液
体窒素で冷却して機械的に粉砕し、約100メツシユの
粉末となした。
Example 1 As a polyester having a butylene terephthalate structure, polybutylene terephthalate having a relative viscosity of 1.55 in a 0.5% orthochlorophenol solution at 25°C consisting of terephthalic acid and 1,4-butanediol was cooled with liquid nitrogen. It was mechanically ground into a powder of about 100 mesh.

該粉末85重量部に、導電性カーボンブラツクとして粉
末状のアセチレンブラツク(平均粒径400〜500人
、圧力50k9/CTilでの電気抵抗0.23Ω・?
)15重量部を添加し、スーパーミキサーにて10分間
攪拌混合した。該混合粉末を8『Cにて1昼夜真空乾燥
後、ダルメージ型40mmφエクストリーダ一に−C2
8O℃で熔融押出しし20℃水中で急冷してカット状の
導電性組成物を得た。次に該導電性組成物を5α長さに
切断し、両端に電極として導電性銀ペイントを塗布、乾
燥し、リード線を接続じC熱風オープン中に入れ、室温
(3『C)から温度を変えて該導電性組成物の電気抵抗
を(株)横河電機製作所製のユニバーサルデイジタル電
圧計゜TYPE2502にて測定した結果、室温での電
気抵抗を1とし、各温度の電気抵抗を比較すると、第1
図Aの如く、18『C付近にて20〜30倍に急激に増
大し、大きな正の抵抗温度係数を有することがわかつた
。実施例 2 ブチレンテレフタレート構造を有するポリエステルとし
て、酸成分がテレフタール酸とイソフタール酸からなり
、ジオール成分が1,4−ブタンジオールからなる25
℃におけるオルソクロロフエノール0.5%溶液の相対
粘度が1.55のポリブチレンテレフタレート/イソフ
タレートプロツクコポリマを得た。
To 85 parts by weight of the powder, powdered acetylene black (average particle size 400 to 500, electrical resistance 0.23Ω·? at pressure 50k9/CTil) was added as conductive carbon black.
) 15 parts by weight were added and mixed by stirring for 10 minutes using a super mixer. After drying the mixed powder in vacuum for 1 day and night at 8"C, it was placed in a Dalmage type 40mmφ extreme leader -C2.
The conductive composition was melt-extruded at 80° C. and rapidly cooled in water at 20° C. to obtain a cut-shaped conductive composition. Next, the conductive composition was cut into a length of 5α, conductive silver paint was applied to both ends as electrodes, dried, the lead wires were connected, and the temperature was lowered from room temperature (3°C) by placing it in a hot air open chamber. The electrical resistance of the conductive composition was then measured using a universal digital voltmeter TYPE 2502 manufactured by Yokogawa Electric Corporation. Assuming that the electrical resistance at room temperature was 1, the electrical resistance at each temperature was compared. 1st
As shown in Figure A, it was found that the resistance suddenly increases by 20 to 30 times around 18'C, and has a large positive temperature coefficient of resistance. Example 2 As a polyester having a butylene terephthalate structure, the acid component consists of terephthalic acid and isophthalic acid, and the diol component consists of 1,4-butanediol.
A polybutylene terephthalate/isophthalate block copolymer was obtained having a relative viscosity of 1.55 in a 0.5% solution of orthochlorophenol at °C.

該コポリマのテレフタレートとイソフタレートとのモル
比は90/10,80/20,70/30,65/35
の4種類とした。(順にB,C,D,Eと呼ぶ。)次に
実施例1と同様にして、粉砕、アセチレンブラツクの添
加、撹拌混合、乾燥、熔融押出し、冷却、電気抵抗の測
定、比較を行なつた結果、第1図のB,C,D,Eの如
く、イソフタレート成分の増加と共に電気抵抗が急激に
増大する温度が低温側にシフトすること、即ち共重合比
を変えることにより、任意の立上り温度が得られること
がわかつた。
The molar ratio of terephthalate and isophthalate in the copolymer is 90/10, 80/20, 70/30, 65/35.
There were four types. (Referred to as B, C, D, and E in this order.) Next, in the same manner as in Example 1, pulverization, addition of acetylene black, stirring and mixing, drying, melt extrusion, cooling, measurement of electrical resistance, and comparison were performed. As a result, as shown in B, C, D, and E in Figure 1, the temperature at which the electrical resistance rapidly increases as the isophthalate component increases shifts to the lower temperature side, that is, by changing the copolymerization ratio, arbitrary rise It turns out that the temperature can be obtained.

なお従来から知られているアイオノマー樹脂とカーボン
ブラツクからなる導電性組成物のそれは第1図Fの如く
であり、70℃付近で立上つてしまつているが、本発明
のものはそれより高温側にあり、かつ抵抗温度係数(第
1図の勾配)も同等以上である。又B(共重合比90/
10)の体積固有電気抵抗値は室温で1.1X10Ω・
礪であり、これに電極を設け通電すれば自己温度制御性
の発熱体としても充分使用できるレベルのものであつた
Incidentally, the conventionally known conductive composition consisting of an ionomer resin and carbon black is shown in Fig. 1F and rises at around 70°C, but the composition of the present invention rises at a higher temperature than that. , and the temperature coefficient of resistance (slope in FIG. 1) is also the same or higher. Also B (copolymerization ratio 90/
The volume specific electrical resistance value of 10) is 1.1X10Ω・at room temperature.
It was a hollow shape, and if electrodes were attached to it and electricity was applied, it could be used as a self-temperature heating element.

実施例 3ブチレンテレフタレート構造を有するポリエ
ステルとして、実施例1のポリブチレンテレフタレート
粉末と実施例2の共重合比65/35のポリブチレンテ
レフタレート/イソフタレートプロツクコポリマ粉末と
を混合し、混合比が100/0.,60/40,40/
60,20/80,0/100の混合粉末を得た。
Example 3 As a polyester having a butylene terephthalate structure, the polybutylene terephthalate powder of Example 1 and the polybutylene terephthalate/isophthalate block copolymer powder of Example 2 with a copolymerization ratio of 65/35 were mixed, and the mixture ratio was 100. /0. ,60/40,40/
Mixed powders of 60, 20/80, and 0/100 were obtained.

(順にG,H,I,J,Kと呼ぶ。)次に実施例1と同
様にして、アセチレンブラツクの添加、攪拌混合、乾燥
、熔融押出し、冷却、電気抵抗の測定、比較を行なつた
結果、第2図のG,H,I,J,Kの如くとなり、ポリ
マブレンドにおいても大きな正の抵抗温度係数が得られ
、しかもホモポリマとコポリマのブレンド比を変えるこ
とにより立上り温度を任意に選択できる利点があること
がわかつた。比較実施例 1 ブチレンテレフタレート構造を有しないポリエステルと
してテレフタル酸とエチレングリコールからなる25℃
でのオルソクロロフエノール0.5%溶液の相対粘度が
0.64であるポリエチレンテレフタレートを、実施例
1と同様に粉砕、アセチレンブラツクの添加、撹拌混合
、乾燥、熔融押出し、冷却、電気抵抗の測定比較を行な
つた結果、第3図のLの如く一応正の抵抗温度係数を有
するが勾配は小さく、発熱体としての自己温度制御性が
なく、熱感応性素子としても不十分なものであつた。
(Referred to as G, H, I, J, and K in this order.) Next, in the same manner as in Example 1, addition of acetylene black, stirring and mixing, drying, melt extrusion, cooling, measurement of electrical resistance, and comparison were performed. As a result, the results are as shown in G, H, I, J, and K in Figure 2, and a large positive temperature coefficient of resistance can be obtained even in a polymer blend, and the rise temperature can be arbitrarily selected by changing the blend ratio of homopolymer and copolymer. I found out that there are some advantages. Comparative Example 1 Polyester without butylene terephthalate structure consisting of terephthalic acid and ethylene glycol at 25°C
Polyethylene terephthalate having a relative viscosity of 0.64 as a 0.5% solution of orthochlorophenol was pulverized in the same manner as in Example 1, added with acetylene black, stirred and mixed, dried, melt extruded, cooled, and measured for electrical resistance. As a result of the comparison, it was found that although it has a positive temperature coefficient of resistance, as shown by L in Fig. 3, the slope is small, it lacks self-temperature control as a heating element, and is insufficient as a heat-sensitive element. Ta.

なお250℃以上では軟化、熔断してしまつた。比較実
施例 2 ポリエステル以外の熱可塑性樹脂として、ナイロン6、
ポリプロピレン、ポリエチレンにつき実施例1と同様な
実験を行なつた結果、第3図のM,N,Oの如く、比較
実施例1と同様に一応正の抵抗温度係数を有するが、勾
配は小さく、発熱体としての自己温度制御性がなく、又
熱感応性素子としても不十分なものであつた。
Note that at temperatures above 250°C, it softened and melted. Comparative Example 2 As a thermoplastic resin other than polyester, nylon 6,
As a result of conducting the same experiment as in Example 1 for polypropylene and polyethylene, it was found that M, N, and O in FIG. 3 had a positive temperature coefficient of resistance similar to Comparative Example 1, but the slope was small. It lacked self-temperature controllability as a heating element, and was also insufficient as a heat-sensitive element.

なおナイロン6は210℃、ポリ 口ピレンは160℃
、ポリエチレンは110℃以上では軟化、熔断してしま
つた。
The temperature for nylon 6 is 210℃, and the temperature for polypyrene is 160℃.
, polyethylene softens and melts at temperatures above 110°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は導電性組成物及び本発明以外の導電性
組成物の温度に対する体積固有電気抵抗を室温でのそれ
と比較した電気抵抗変化比を示すグラフである。 第4図は導電性組成物を線状発熱体として使用した電熱
部材の断面図の一例である。第5図、第6図は導電性組
成物を面状の発熱体として使用した電熱部材の断面図の
例である。第7図は、導電性組成物を線状の熱感応性素
子として使用した電熱部材の断面図の一例である。第8
図、第9図は、導電性組成物を面状の熱感応性素子とし
て使用した電熱部材の断面図の例である。1・・・・・
・本発明の導電性組成物、2・・・・・・電極、3・・
・・・・電極、4・・・・・・電気絶縁体、5・・・・
・・発熱体。
FIGS. 1 to 3 are graphs showing the electrical resistance change ratio of conductive compositions and conductive compositions other than the present invention, comparing the volume specific electrical resistance with respect to temperature with that at room temperature. FIG. 4 is an example of a cross-sectional view of an electric heating member using a conductive composition as a linear heating element. FIGS. 5 and 6 are examples of cross-sectional views of an electric heating member using a conductive composition as a planar heating element. FIG. 7 is an example of a cross-sectional view of an electric heating member using a conductive composition as a linear heat-sensitive element. 8th
FIG. 9 is an example of a cross-sectional view of an electric heating member using a conductive composition as a planar heat-sensitive element. 1...
- Conductive composition of the present invention, 2... Electrode, 3...
...Electrode, 4...Electric insulator, 5...
・Heating element.

Claims (1)

【特許請求の範囲】[Claims] 1 テレフタル酸および1,4ブタンジオールの含有率
がそれぞれ60%モル%以上のブチレンテレフタレート
構造を有するポリエステルに導電性カーボンブラックを
10〜20重量%配合してなる組成物を、電極間に介在
せしめてなる熱感応性素子。
1. A composition obtained by blending 10 to 20% by weight of conductive carbon black with a polyester having a butylene terephthalate structure in which the content of terephthalic acid and 1,4-butanediol is 60% by mole or more, respectively, is interposed between the electrodes. A heat-sensitive element.
JP7997176A 1976-07-07 1976-07-07 heat sensitive element Expired JPS5918804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7997176A JPS5918804B2 (en) 1976-07-07 1976-07-07 heat sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7997176A JPS5918804B2 (en) 1976-07-07 1976-07-07 heat sensitive element

Publications (2)

Publication Number Publication Date
JPS535795A JPS535795A (en) 1978-01-19
JPS5918804B2 true JPS5918804B2 (en) 1984-05-01

Family

ID=13705197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7997176A Expired JPS5918804B2 (en) 1976-07-07 1976-07-07 heat sensitive element

Country Status (1)

Country Link
JP (1) JPS5918804B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667358A (en) * 1979-11-06 1981-06-06 Teijin Ltd Polyester composition
JPS5819887A (en) * 1981-07-29 1983-02-05 住友電気工業株式会社 Method of forming reinforced insulating layer in connector of rubber, plastic insulated wire cable
JPS6014791A (en) * 1983-07-04 1985-01-25 松下電器産業株式会社 Heater
JPS6015787U (en) * 1983-07-13 1985-02-02 株式会社フジクラ sheet heating element
JPS60249285A (en) * 1984-05-23 1985-12-09 松下電工株式会社 Heat sensitive panel heater
US4818439A (en) * 1986-01-30 1989-04-04 Sunbeam Corporation PTC compositions containing low molecular weight polymer molecules for reduced annealing
ES2259216T3 (en) * 1997-12-08 2006-09-16 Acome Societe Cooperative De Travailleurs ELECTRIC THREAD WITH THIN INSULATION BASED ON POLYBUTTENTEREFTALATE.
JP5880276B2 (en) * 2012-05-25 2016-03-08 Jsr株式会社 Conductive resin composition and conductive resin film

Also Published As

Publication number Publication date
JPS535795A (en) 1978-01-19

Similar Documents

Publication Publication Date Title
US4304987A (en) Electrical devices comprising conductive polymer compositions
JP4188682B2 (en) Conductive polymer composition and device containing NNm-phenylene dimaleimide
EP0140893B1 (en) Self-limiting heater and resistance material
JPS60155268A (en) Electroconductive polymer composition
EP0912631A1 (en) Ptc conductive polymer compositions containing high molecular weight polymer materials
JPS5918804B2 (en) heat sensitive element
US5196145A (en) Temperature self-controlling heating composition
JPS63302501A (en) Ptc conductive polymer composition
JP2002012777A (en) Electroconductive polymer composition containing fibril fiber and its element using the same
CA1133085A (en) Temperature sensitive electrical device
JP2000109615A (en) Conductive polymer composition having positive temperature coefficient characteristic
JPH0831554A (en) Panel heat radiating body
JPS63178191A (en) Composite heat storage article
JPS5963688A (en) Panel heater and method of producing same
JP3301866B2 (en) Polymer thermosensor, manufacturing method thereof, and heat-sensitive heater wire
JPS58136624A (en) Heat-sensitive element
JPH0927383A (en) Surface heater element and its manufacture
JP2010132055A (en) Vehicle heater
JPS5918802B2 (en) heat sensitive element
JPS63184303A (en) Manufacture of ptc compound
JPH03222802A (en) Sign body
JPH01186783A (en) Manufacture of heater element of positive temperature characteristic
JPH0374472B2 (en)
JPH01304684A (en) Temperature self controlling heat radiating composition
JPH0374473B2 (en)