JPS59187812A - Preparation of molded piece of electrically conductive plastics - Google Patents

Preparation of molded piece of electrically conductive plastics

Info

Publication number
JPS59187812A
JPS59187812A JP6153083A JP6153083A JPS59187812A JP S59187812 A JPS59187812 A JP S59187812A JP 6153083 A JP6153083 A JP 6153083A JP 6153083 A JP6153083 A JP 6153083A JP S59187812 A JPS59187812 A JP S59187812A
Authority
JP
Japan
Prior art keywords
mold
conductive
thermal conductivity
molded product
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6153083A
Other languages
Japanese (ja)
Inventor
Toru Murayama
徹 村山
Shunichiro Tanaka
俊一郎 田中
Takashi Aoba
青葉 尭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Toshiba Corp
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Products Co Ltd
Toshiba Corp
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd, Toshiba Corp, Toshiba Chemical Corp filed Critical Toshiba Chemical Products Co Ltd
Priority to JP6153083A priority Critical patent/JPS59187812A/en
Publication of JPS59187812A publication Critical patent/JPS59187812A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • B29C2045/0015Non-uniform dispersion of fillers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain the titled molded piece with a high shielding effect to electromagnetic waves by a method wherein the surface of a mold is made up of fine ceramics different in thermal conductivity from the base material of the mold and the variety, the constitution, the thickness, the configuration and the distribution thereof are changed to control electric conductivity of the surface of the molded piece. CONSTITUTION:Fine ceramics 6, 7 of one kind at least that differs in thermal conductivity from mold base material are interposed on the entire or partial portion of a surface through which the mold 1 and plastic material are in contact with each other or the partial portion of a mold is replaced by fine ceramics of one kind at least that differs in thermal conductivity from the base material of the mold to constitute the entire or partial portion of the surface through which the mold surface comes in contact with plastic material. Besides, variety, constitution, thickness, configuration and distribution are changed in said fine ceramics interposed or replaced and plastic material is injected into the molding clearance 4 through a sprue 5 to obtain the desired molded piece with a non-electrically-conductive portion 10 and an electrically-conductive portion 11.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、導電性プラスチック成形品の表面制御式製造
方法に係り、ざらに訝しくはプラスチック成形品の表面
に導電性部分と非導電性部分とが共存した成形品を得る
導電性プラスチック成形品の製造方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for manufacturing a conductive plastic molded product using a surface control method. The present invention relates to a method for producing a conductive plastic molded product, in which a molded product in which .

[発明の技術的背景] 近年、マイクロコンビ1−一部のyf及は目覚ましいも
のがあり、ま−リ−ます広い分野に用いられつつある。
[Technical Background of the Invention] In recent years, the development of some types of microcombi 1 has been remarkable, and it is being used in an increasingly wide range of fields.

 しかし」ンビュータはクロック信号発生用どして高周
波発振器を内蔵しており、またパルス状波を扱うため高
周波成分を多く含み、これらが周辺のjレビや各種通信
機器等の他の電子機器に妨害を与えるという問題があり
、各国でも大きな問題どしで取りあげられつつある。
However, the computer has a built-in high-frequency oscillator for generating clock signals, and since it handles pulsed waves, it contains many high-frequency components, which can interfere with other electronic devices such as nearby TVs and various communication devices. There is a problem of providing people with the right amount of money, and it is being taken up as a major issue in many countries.

一方で?イクロ=】ンビュータの多くは、可搬式であり
、どこにでも運搬および設置することができるが、設置
される条件によつτは、周辺の機器等から発生する強い
パルス状電波(例えば火花放電により発生するもの)に
直接コンピュータの回路が曝され、これにより]ンビコ
ー夕が誤動作する危険がある。 これらの問題への対策
としては、電気回路的に考慮し、不要電波のふく射を少
なくし、外部パルスの影響を受けにくくするのが一番で
あるがこれにも限度があり、やはりマイクロコンピュー
タを包囲するキャビネットに電磁波シールド効果を持た
せることが必要となる。 し/)Xもこのようなキャビ
ネットとしては、量産性、fザインの自由度、経済性、
軽量等の観点からプラスチック製のものが多く用いられ
ており、これに電磁波シールド性を付与するために次の
ような方法が採られている。
on the other hand? Most micrometers are portable and can be transported and installed anywhere; however, depending on the conditions in which they are installed, There is a risk that the computer's circuitry will be directly exposed to the computer's circuits (generated by the computer), which could cause the computer to malfunction. The best way to deal with these problems is to consider electrical circuits, reduce the radiation of unnecessary radio waves, and make them less susceptible to external pulses, but there are limits to this, and microcomputers are still It is necessary to provide an electromagnetic shielding effect to the surrounding cabinet. /)X is also suitable for mass production, f-design freedom, economy,
Plastics are often used due to their light weight, and the following methods are used to provide them with electromagnetic shielding properties.

<1)  メッキ、塗装、溶用、箔接着等の方法でプラ
スチック製キャビネットの内・外表面に導電性の電磁波
シールド層を設ける。
<1) Provide a conductive electromagnetic shield layer on the inner and outer surfaces of the plastic cabinet by plating, painting, melting, foil adhesion, etc.

(2)  金網ヤ金属箔等の電磁波シールド効果を有す
る物質を予め成形用金型に装置しておき、次いでプラス
チックの成形操作によりプラスチックと一体化し−(電
磁波シールド性キャビネットを得る。
(2) A substance having an electromagnetic shielding effect, such as a wire mesh or metal foil, is placed in a molding mold in advance, and then integrated with the plastic by a plastic molding operation (obtaining an electromagnetic shielding cabinet).

(3)  金属粉、カーボン粉、金属箔、金属繊II[
、カーボン繊維、および金属メッキカーボン繊維等の導
電性物質を混和したプラスチックを用いて成形し電磁波
シールド性キャビネットを得る。
(3) Metal powder, carbon powder, metal foil, metal fiber II [
An electromagnetic shielding cabinet is obtained by molding plastics mixed with conductive materials such as carbon fibers, carbon fibers, and metal-plated carbon fibers.

「背崇技術の問題点」 これらの方法のうちり1)については、落下衝撃や経時
変化、熱ショック等により表面の電磁波シールド層が剥
離し、脱落する恐れがあり、その剥離片がマイクロ」ン
ピュータの電気回路上に落下した場合は、短絡や発火な
どの重大事故につながるという問題がある。 また(2
)の方法については、金網等の層が成形工程で可塑化し
たプラスチックの流動により、移動、変形又は破断する
問題がある。  (3)の方法は、致命的な欠点はない
が、導電性物質をプラスチックに均一に混和しキャビネ
ッ1へとして十分な電磁波シールド効果を持たせること
は容易なことではない。 シールド効果を高めるために
は、導電率の向上が必要であるが、金属やカーボンの繊
維を混入すると特に効果的であるのは周知の事実である
。 しかし、十分な量の導電性物質を混和して成形を行
うと成形品表面にこれらが露出し、外観を著り、<低下
させる。 この外観を改良す゛るものとして金型の一部
を合成樹脂層やガラスで置換して成形を行う方法も85
るが、導電性物質が混入されていることで金型の信頼性
や寿命に問題があり、又成形品表面に導電性部分と非導
電性部分を明確に区別して作ることは極めて困難であり
、これらの諸問題を解消する電磁波シールド効果の優れ
たプラスチック成形品の製造方法の開発が待たれていた
``Problems with treacherous techniques'' Regarding 1) of these methods, there is a risk that the electromagnetic shielding layer on the surface may peel off and fall off due to drop impact, changes over time, thermal shock, etc., and the peeled pieces may be microscopic. If it falls onto a computer's electrical circuits, it can lead to serious accidents such as short circuits and fires. Also (2
Regarding the method (2), there is a problem that the layer such as the wire mesh may move, deform, or break due to the flow of the plasticized plastic during the molding process. Although the method (3) does not have any fatal drawbacks, it is not easy to uniformly mix the conductive material into the plastic and provide the cabinet 1 with a sufficient electromagnetic shielding effect. In order to enhance the shielding effect, it is necessary to improve the electrical conductivity, and it is a well-known fact that mixing metal or carbon fibers is particularly effective. However, when a sufficient amount of conductive material is mixed and molded, these materials are exposed on the surface of the molded product, significantly deteriorating its appearance. To improve this appearance, there is also a method of replacing part of the mold with a synthetic resin layer or glass.85
However, there are problems with the reliability and lifespan of the mold due to the inclusion of conductive substances, and it is extremely difficult to clearly distinguish conductive and non-conductive parts on the surface of the molded product. The development of a method for manufacturing plastic molded products with excellent electromagnetic shielding effects that solves these problems has been awaited.

[発明の目的] 本発明の目的は、−回の成形でプラスチック成形品の表
面に導電性物質が露出する程度、形状および分布等を任
意に制御し得る電磁波シールド効果に優れた導電性プラ
スナック成形品の表面制御式製造方法を提供しようとす
るものである。
[Object of the Invention] The object of the present invention is to provide a conductive plastic snack that has an excellent electromagnetic shielding effect and can arbitrarily control the degree, shape, distribution, etc. of the conductive substance exposed on the surface of the plastic molded product during molding. The present invention aims to provide a surface-controlled manufacturing method for molded products.

[発明の概要] 本発明は前記の目的を達成ずべく鋭意旬(究を重ねた結
果、金型/I1月に比較して熱伝導率の異なる1種類以
上のファインセラミックスを使用すれば導電性プラスチ
ック成形品表面の導電性を任意に制御し得ることを見出
したものである。
[Summary of the Invention] The present invention has been made to achieve the above-mentioned object.As a result of extensive research, it has been found that the use of one or more types of fine ceramics with different thermal conductivity compared to the mold/I1 makes it possible to achieve electrical conductivity. It has been discovered that the conductivity of the surface of a plastic molded product can be controlled arbitrarily.

即ち本発明は、導電性プラスチック成形品を成形するに
あたり、金型どプラスチック材料の接触づる面の全部若
しくは一部に金型fZJ′+、jに比較して熱伝導率の
革なる1種9n以上のファインセラミックスを介在さけ
るか、又は金型の一部を金型IJ祠に比較して熱伝導率
の異なる1種類以上のファインセラミックスで置換して
金型面とプラスチックvJ料の接触覆る面の全部若しく
は一部を構成させて、前記介在又は置換するファインセ
ラミックスの種類、構成、厚さ、形状おJ:び分布を変
化させて、成形品表面の導電性を制御−りることを特徴
とする導電性プラスチック成形品の製造方法である。
That is, in molding a conductive plastic molded product, the present invention uses a type of leather 9n that has a thermal conductivity higher than that of the mold fZJ'+,j on all or part of the contact surface of the plastic material such as the mold. Avoid intervening the above fine ceramics, or replace a part of the mold with one or more types of fine ceramics that have a different thermal conductivity compared to the mold IJ material, so that the contact surface between the mold surface and the plastic VJ material is covered. The conductivity of the surface of the molded product is controlled by controlling the type, composition, thickness, shape, and distribution of the intervening or substituting fine ceramics. This is a method for manufacturing conductive plastic molded products.

グラスチックの創出成形等では、流動状態のプラスチッ
クが金型表面に接触づると【Jぼ瞬時に表面層が形成さ
れる。 しかし、その場合、金型表面の温度tこよって
表面層の状態が異なってくる。
When plastic in a plastic mold comes into contact with the surface of a mold, a surface layer is formed almost instantaneously. However, in that case, the state of the surface layer differs depending on the temperature t of the mold surface.

これはプラスデックの冷却速度が異なるためである。This is due to the different cooling rates of the plus decks.

即ち、金型母Hに比較して熱伝導率の大ぎいファインセ
ラミックスを介在又は置換さゼてプラスデックを充1f
1.するとファインセラミックス部が急冷されて導電性
物質が成形品の表面に露出したままプラスチックが固化
する。 一方今型母材に比較して熱伝導率の小さいファ
インセラミックスを介在又は置換さゼで、プラスチック
を充1iづると、ファインセラミックス部の熱が伝導さ
れずそのまま保持され、プラスチックの冷却速度が低下
し、プラスチックがよく溶融して流れやすくなり、成形
品のファインセラミックスの当接部分は導電性物質の露
出が全くなく、光沢の面を得ることができる。 本発明
は、この冷却速度に注目し、金型表面に熱伝導率の異な
る物質を介在又は置換させて、導電性物質を混入したプ
ラスチックを成形し、成形品の表面状態を制御するもの
である。 特に金型母材に比較して熱伝導率の異なる物
質どしてファインセラミックスに限定することに特徴が
あり、ガラス、レメン1〜、合成樹脂、七宝焼等では得
られない、極めて優れた効果を右するものである。 そ
の理由は次に定義するように、化学的に組成を制御した
ことによるものである。
In other words, fine ceramics having a higher thermal conductivity than that of the mold base H is interposed or replaced and the plus deck is filled with 1f.
1. Then, the fine ceramic part is rapidly cooled, and the plastic solidifies while the conductive material remains exposed on the surface of the molded product. On the other hand, if plastic is filled with fine ceramics, which have a lower thermal conductivity than the base material, by intervening or replacing them, the heat in the fine ceramics will not be conducted and will be retained, reducing the cooling rate of the plastic. However, the plastic melts well and flows easily, and the part of the molded product in contact with the fine ceramics has no exposed conductive material, making it possible to obtain a glossy surface. The present invention focuses on this cooling rate, and controls the surface condition of the molded product by intervening or substituting a substance with a different thermal conductivity on the mold surface to mold plastic mixed with a conductive substance. . In particular, it is unique in that it is limited to fine ceramics as it is a material with a different thermal conductivity compared to the mold base material, and it has extremely excellent effects that cannot be obtained with glass, Remen 1~, synthetic resin, cloisonné, etc. It is the right thing to do. The reason for this is that the composition is chemically controlled, as defined below.

本発明に使用覆るファインはラミックスとは次のような
ものをいう。
The fine lamix used in the present invention refers to the following.

即ち、天然原石をそのままあるいは精製しで使うのでは
なく、化学的に調製、合成し、組成、組織を高度に制御
しl〔人工合成原料を用いて(その際、従来のように酸
化物だけでなく、天然に存在しない炭化物、窒化物、ケ
イ化物、ホウ化物等を用い)、′形状的にも多結晶粉体
の焼結体としてだ【プでなく、単結晶、薄膜、繊維、非
晶質等として、組成や微構造を精密に制御し、製造加工
され、優れl〔特性を有するレラミックスをいう。 例
えば酸化物のファインセラミックスとしては、アルミナ
(Al2O2>、ベリリア(Be O) 、ジル」ニア
(ZrO5)、シリカ<Si O2)等がある。
In other words, rather than using natural raw stones as they are or purified, they are chemically prepared and synthesized, and their composition and structure are highly controlled. It uses carbides, nitrides, silicides, borides, etc. that do not exist in nature), and it is a sintered body of polycrystalline powder in terms of shape. It refers to Reramix, which is manufactured and processed as a crystalline material with precisely controlled composition and microstructure, and has excellent properties. For example, oxide fine ceramics include alumina (Al2O2>, beryllia (BeO), zirinnia (ZrO5), silica<SiO2), and the like.

非酸化物ファインセラミックスとしては、炭化ケイ素(
SiC)、窒化ケイ素(Si、N、)、窒化アルミニウ
ム(AIN)@が挙げられる。 これらのファインセラ
ミックスは金型母材に比較して熱伝導率が異なり、非常
に大きなものから非常に小さなものがあり所望の成形品
によって1種又は2種以上組み合わせて使用する。 フ
ァインセラミックスの構造、形状、分布や厚さも期待J
る成形品によって変化さぜることができる。
Non-oxide fine ceramics include silicon carbide (
Examples include SiC), silicon nitride (Si, N, ), and aluminum nitride (AIN). These fine ceramics have different thermal conductivities compared to the mold base material, ranging from very large to very small, and are used singly or in combination of two or more depending on the desired molded product. Expectations are high for the structure, shape, distribution and thickness of fine ceramics.
It can be changed depending on the molded product.

組合せの例として、例えば Si C−Ba 0−Zr
O2、Be0−7r02、 5iC−AI 203、S
i C−Zr 02 、Si  −8i C−813N
4、 se −AI 203、  Be0−8i3N、
+、AlN−Be0−ZrO3,5iC−Be 0−A
I 、03 、Si C−8i 3 N4の組合せで用
いることができる。
As an example of the combination, for example, Si C-Ba 0-Zr
O2, Be0-7r02, 5iC-AI 203, S
i C-Zr 02 , Si-8i C-813N
4, se-AI 203, Be0-8i3N,
+, AlN-Be0-ZrO3,5iC-Be0-A
It can be used in combination of I, 03, and SiC-8i3N4.

金型の一部にファインセラミックスを置換スる場合は、
接着剤、機械的カンボウ、溶射又は、CVDもしくはP
VD等による被覆方法(゛置換す信 ここで使用されるプラスチックはX1に創出成形等を行
う通常の熱可塑性樹脂又は熱硬化性樹脂が使用される。
When replacing part of the mold with fine ceramics,
Adhesive, mechanical spray, CVD or P
Coating method by VD etc. (Replacement method) The plastic used here is a normal thermoplastic resin or thermosetting resin which is subjected to creation molding etc. in X1.

 プラスチックに混入される導電性物′e1については
特に制限はなく、通常使用されているものが全て使用で
きる。
There are no particular restrictions on the conductive material 'e1 mixed into the plastic, and all commonly used materials can be used.

導電性物質を混合した電磁波シールド用プラスチック成
形品でシールドケースを構成−リ−るとき、例えばケー
ス本体ど蓋とは電気的に連結されな1:1ればならない
。 このような場合は、連結部分の表面層を導電性とし
、(れ以外の部分を非導電性どすればケースの本体と蓋
が電気的に連結される一方、ケースは電磁波シールド効
果をもつ非導電性と覆ることができる。
When a shielding case is made of a plastic molded product for electromagnetic shielding mixed with a conductive substance, it must be electrically connected to the case body lid on a 1:1 basis, for example. In such cases, the case body and the lid can be electrically connected by making the surface layer of the connecting part conductive (and making the other parts non-conductive), while the case can be made of a non-conductive material that has an electromagnetic shielding effect. Can be covered with conductivity.

電磁波シールド成形品は所望の形態、タイプにより金型
母月に比較して熱伝導率の小さいファインセラミックス
1種類、熱伝導率の大きいファインセラミックス1種類
、熱伝導率の大きいファインセラミックス1種類と熱伝
導率の小さい〕j・インセラミックスを組み合わせて金
型を構成又は介在させで得ることができる。 これらは
所望により適宜選択構成し所望の成形品を1シヨツ1〜
により得ることがで゛きる。
Electromagnetic shielding molded products are made of one type of fine ceramic with a lower thermal conductivity than that of the mold motherboard, one type of fine ceramic with a higher thermal conductivity, one type of fine ceramic with a higher thermal conductivity, and one type of fine ceramic with a higher thermal conductivity than the mold motherboard, depending on the desired form and type. It can be obtained by constructing a mold by combining or interposing ceramics with low conductivity. These can be selected and configured as desired to produce the desired molded product from one shot to one.
It can be obtained by

次に本発明を図面を用いて説明する。Next, the present invention will be explained using the drawings.

第1図において金型1はそれぞれ、例えば調性の111
1型2と、これに係合する雄型3とがら成り、雌型2と
雄型3の間には、成形空隙部4が形成され、雌型2には
成形時に溶融樹脂が供給されるスプルー5が設けられて
いる。 このような金型において、雄型3に設(プた熱
伝導率の良いファインセラミックス6と、これに隣接し
て設f−1だ熱伝導率の悪いファインセラミックス7ど
にょっ−c1例えばカーボン繊維混合のポリスチレンを
射出成形したとき、熱伝導率の悪いファインセラミック
ス7に接した成形品表面はカーボン繊維が表面に露出ゼ
ず、平滑、美麗、かつ非導電性(絶縁性)となる。 一
方、熱伝導率の良いファインセラミックス6に接した成
形品表面は、カーボン1Jli Hが表面に露出し導電
性となる。
In FIG. 1, the molds 1 each have a tonality of 111, for example.
Consisting of a mold 1 and a male mold 3 that engages with the mold 2, a molding cavity 4 is formed between the female mold 2 and the male mold 3, and the female mold 2 is provided with a sprue through which molten resin is supplied during molding. 5 is provided. In such a mold, a fine ceramic 6 with good thermal conductivity is installed in the male mold 3, and a fine ceramic 7 with poor thermal conductivity is installed adjacent to it (f-1), for example, carbon. When polystyrene mixed with fibers is injection molded, the surface of the molded product in contact with the fine ceramics 7, which has poor thermal conductivity, has no carbon fibers exposed on the surface and becomes smooth, beautiful, and non-conductive (insulating). The surface of the molded product in contact with the fine ceramics 6 having good thermal conductivity has carbon 1Jli H exposed on the surface and becomes conductive.

第1図の例では成形品の縁の部分の内面に導電性の部分
をつくり、それ以外の内面に非導電性(絶縁性)の部分
を゛つくるものであるが、成形品の内面でも外面でもど
この部分にも応用することができることはいうまでもな
い。 例えば第2図のごとく、成形品表面を非導電性部
分10、中間層を導電性部分11に覆ることや、第3図
のにうに成形品表面を導電性部分20にし、中間層を非
導電性部分21にり−ることもできる。
In the example shown in Figure 1, a conductive part is created on the inner surface of the edge of the molded product, and a non-conductive (insulating) part is created on the other inner surface. However, it goes without saying that it can be applied to any part. For example, as shown in Figure 2, the surface of the molded product is covered with a non-conductive part 10 and the intermediate layer is covered with a conductive part 11, or as shown in Figure 3, the surface of the molded product is covered with a conductive part 20 and the intermediate layer is covered with a non-conductive part. It is also possible to attach to the sexual part 21.

[発明の実施例1 以下本発明を実施例によって具体的に説明する。[Embodiment 1 of the invention The present invention will be explained in detail below using examples.

実施例 1 内径40 mm、深さ3111nlの空隙部を有り−る
鋼製金型の)i側内形部に、中央部直径30 n1ll
lの範囲は厚さ 1 、 On+mのジル工1ニアで被
覆し、その外側の範囲に厚さ 0.5mmのシリコンノ
J−バーrト被留領域を形成した。
Example 1 A steel mold having a cavity with an inner diameter of 40 mm and a depth of 3111 nl has a central part diameter of 30 nl in the i-side inner shape part.
The region 1 was covered with a zirconia layer having a thickness of 1 mm and a thickness of On+m, and a silicon J-bart retaining region having a thickness of 0.5 mm was formed in the outer region.

ここに直径8μmのカーボン繊維にニッケルを1μmメ
ッキした導電性物質を重量比で20%混合したポリスチ
レン樹脂(商品名ダイA7レツクス1−I T 90 
 三菱モンザン1〜社製)をシリンダ一温度200℃、
射出圧力1000 kg101112、金型温度50℃
で射出成形した。 得られた成形品は中央部直径30n
1mの部分は、表面平滑、美麗でかつ絶縁性で中火部の
電気抵抗は長さ 10 mmの間で1010Ω以上で゛
あった。 一方、周囲のリング状の部分は、表面にカー
ボン繊維である導電性物質が露出し、外観が良くなく、
かつ導電性でリング状部の電気抵抗は長さ10 mmの
間で10−’Ω以下であった。
Here, polystyrene resin (product name: Dai A7 Rex 1-I T 90) is made by mixing 20% by weight of a conductive material made by plating carbon fibers with a diameter of 8 μm with nickel to a thickness of 1 μm.
(manufactured by Mitsubishi Monzan 1~) at a cylinder temperature of 200℃,
Injection pressure 1000 kg101112, mold temperature 50℃
injection molded. The resulting molded product has a central diameter of 30n.
The surface of the 1 m long part was smooth, beautiful, and insulating, and the electrical resistance of the medium heating part was 1010 Ω or more over a length of 10 mm. On the other hand, the surrounding ring-shaped part has a conductive material such as carbon fiber exposed on the surface and does not look good.
Moreover, it was conductive and the electrical resistance of the ring-shaped part was 10-'Ω or less within a length of 10 mm.

この金型を成形サイクル20秒で連続1万シヨツト成形
したが、ファインセラミック層のはがれ等の1−ラブル
は全くなく、量産性の良いことが確認された。
This mold was continuously molded for 10,000 shots at a molding cycle of 20 seconds, but there were no problems such as peeling of the fine ceramic layer, confirming that it is suitable for mass production.

[発明の効果] 本発明の方法を利用ずれば成形品表面に15ける導電性
物質の露出状態を任意にコントロールして、導電性部分
と非導電性部分とが明確な電磁波シールド効果の極めて
優れた所望のプラスチック成形品を1シヨツトにより得
ることができる。 従って成形品への導電性塗料の塗布
等の二次加工二[稈を必要とせず安価の成形品を得るこ
とができる。
[Effects of the Invention] By using the method of the present invention, the exposed state of the conductive substance on the surface of the molded product can be controlled arbitrarily, resulting in extremely excellent electromagnetic shielding effects with clear conductive and non-conductive parts. A desired plastic molded article can be obtained in one shot. Therefore, inexpensive molded products can be obtained without the need for secondary processing such as application of conductive paint to the molded products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す導電性プラスチック成
形用金型の断面図である。 第2図および第3図は本発
明に係る成形品の断面図である。 1・・・金型、 2・・・雌型、 3・・・雄型、 4
・・・成形空隙部、 5・・・スプルー、 6・・・熱
伝導率の大きいファインセラミックス、 7・・・熱伝
導率の小さいファインセラミックス、 10.21・・
・非導電性部分、 11.20・・・導電性部分。 特許出願人 東芝ケミカル株式会社 東京芝浦電気株式会社
FIG. 1 is a sectional view of a conductive plastic molding die showing an embodiment of the present invention. FIGS. 2 and 3 are cross-sectional views of molded products according to the present invention. 1...Mold, 2...Female mold, 3...Male mold, 4
... Molding cavity, 5... Sprue, 6... Fine ceramics with high thermal conductivity, 7... Fine ceramics with low thermal conductivity, 10.21...
・Non-conductive part, 11.20... Conductive part. Patent applicant: Toshiba Chemical Co., Ltd. Tokyo Shibaura Electric Co., Ltd.

Claims (1)

【特許請求の範囲】 1 導電性プラスチック成形品を成形刃るにあたり、金
型とプラスチック材料の接触する面の全部若しくは一部
に金型母材に比較して熱伝導率の異なる1種類以上のフ
ァインセラミックスを介在させるか、又は金型の一部を
金型母材に比較して熱伝導率の異なる1種類以上のファ
インセラミックスで置換して金型面とプラスチック材料
の接触する面の全部若しくは一部を構成さUて、前記介
在又は置換するファインセラミックスの種類、構成、厚
さ、形状J5よび分布を変化さばて、成形品表面の導電
性を制御することを特徴とする導電性プラスチック成形
品の製造方法。 2 ファインセラミックスが、金型母材に比較して熱伝
導率の大きいファインヒラミックスと熱伝導率の小さい
ファインセラミックスとの併用であることを特徴とする
特許請求の範囲第1項記載の導電性プラスチック成形品
の製造方法。 3 ファインセラミックスが、金型母Hに比較して熱伝
導率の大きいファインセラミックスであることを特徴と
する特許請求の範囲第1項記載の導電性プラスチック成
形品の製造方法。 4 ファインセラミックスが、金型母材に比較して熱伝
導率の小さいファインセラミックスであることを特徴と
する特許請求の範囲第1項記載の導電性プラスデック成
形品の製造方法。 5 導電性プラスチック成形品が、1回の成形において
その表面に導電性部分と非導電性部分を同時に形成する
ことを特徴とする特許請求の範囲第1項乃至第4項いず
れか記載の導電性プラスデック成形品の製造方法。 6 導電性プラスチック成形品が、表面に非導電性部分
、中苦に導電性部分、接合端面に導電性部分を有するこ
とを特徴とする特W[請求の範囲第1項乃至第5項いず
れか記載の導電。 性プラスチック成形品の製造方法。
[Claims] 1. When molding a conductive plastic molded product, all or part of the contact surface between the mold and the plastic material is coated with one or more types of thermal conductivity different from that of the mold base material. By interposing fine ceramics or by replacing a part of the mold with one or more types of fine ceramics having different thermal conductivity compared to the mold base material, the whole or the contact surface between the mold surface and the plastic material can be replaced. Conductive plastic molding, characterized in that the conductivity of the surface of the molded product is controlled by changing the type, configuration, thickness, shape, and distribution of the intervening or substituting fine ceramics. method of manufacturing the product. 2. The electrical conductivity according to claim 1, wherein the fine ceramic is a combination of a fine Hiramix having a higher thermal conductivity and a fine ceramic having a lower thermal conductivity than the mold base material. Method of manufacturing plastic molded products. 3. The method for manufacturing a conductive plastic molded product according to claim 1, wherein the fine ceramic is a fine ceramic having a higher thermal conductivity than the mold matrix H. 4. The method for manufacturing a conductive PlusDeck molded product according to claim 1, wherein the fine ceramic is a fine ceramic having a lower thermal conductivity than the mold base material. 5. The conductive plastic molded product according to any one of claims 1 to 4, wherein a conductive part and a non-conductive part are simultaneously formed on the surface of the conductive plastic molded product in one molding process. A method for manufacturing plus deck molded products. 6. A conductive plastic molded product characterized by having a non-conductive part on the surface, a moderately conductive part, and a conductive part on the joint end surface [any one of claims 1 to 5] Conductive as described. A method for manufacturing plastic molded products.
JP6153083A 1983-04-09 1983-04-09 Preparation of molded piece of electrically conductive plastics Pending JPS59187812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6153083A JPS59187812A (en) 1983-04-09 1983-04-09 Preparation of molded piece of electrically conductive plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6153083A JPS59187812A (en) 1983-04-09 1983-04-09 Preparation of molded piece of electrically conductive plastics

Publications (1)

Publication Number Publication Date
JPS59187812A true JPS59187812A (en) 1984-10-25

Family

ID=13173745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6153083A Pending JPS59187812A (en) 1983-04-09 1983-04-09 Preparation of molded piece of electrically conductive plastics

Country Status (1)

Country Link
JP (1) JPS59187812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152110A (en) * 1990-10-16 1992-05-26 Taiho Kogyo Kk Cavity for molding synthetic resin and its manufacture
JPH05269131A (en) * 1993-01-11 1993-10-19 Olympus Optical Co Ltd Intracelom ultrasonic diagnostic device
FR2797610A1 (en) * 1999-08-16 2001-02-23 Gemplus Card Int CHIP CARD BODY MOLD COMPRISING A WEAR CATCHING PART AND CHIP CARD BODY OBTAINED BY THE MOLD

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555839A (en) * 1978-10-21 1980-04-24 Toyota Central Res & Dev Lab Inc Fiber-contained resin injection molding die

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555839A (en) * 1978-10-21 1980-04-24 Toyota Central Res & Dev Lab Inc Fiber-contained resin injection molding die

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152110A (en) * 1990-10-16 1992-05-26 Taiho Kogyo Kk Cavity for molding synthetic resin and its manufacture
JPH05269131A (en) * 1993-01-11 1993-10-19 Olympus Optical Co Ltd Intracelom ultrasonic diagnostic device
FR2797610A1 (en) * 1999-08-16 2001-02-23 Gemplus Card Int CHIP CARD BODY MOLD COMPRISING A WEAR CATCHING PART AND CHIP CARD BODY OBTAINED BY THE MOLD
WO2001012412A3 (en) * 1999-08-16 2002-09-26 Gemplus Card Int Smart card body mould comprising a wear take-up part and smart card obtained from the mould

Similar Documents

Publication Publication Date Title
US20040160771A1 (en) Concave cup printed circuit board for light emitting diode and method for producing the same
TW201308041A (en) Housing for electronic device and method for making the same
JPH04314506A (en) Adiabatic mold structure with multilayer metal surface layers
CN108882598A (en) Composite decking and preparation method thereof
JPS59187812A (en) Preparation of molded piece of electrically conductive plastics
MY121094A (en) Nickel composite particle and production process therefor
DE50309456D1 (en) Spray powder for the production of a high temperature resistant thermal barrier coating by means of a thermal spray process
CN106313787B (en) A kind of composite wire rod for 3D printing and preparation method thereof
JPH04150089A (en) Wiring material
CN103223525A (en) Ultrathin blade for cutting
KR102023636B1 (en) Parts of wrist watch using carbon composite and method for manufacturing the same
KR20080061792A (en) Manufacturing method for ceramic dbc substrate using cold spraying coating process
JPH0541574A (en) Manufacture of printed circuit board
TWI687531B (en) Ceramic printed circuit board and method of making the same
JPS56111650A (en) Manufacture of internal equipment parts of automobile
KR101260493B1 (en) Printed circuit board and producing method thereof
JPS63182110A (en) Forming method for metallic film on surface of plastics
KR20120033212A (en) Magazine for receiving semiconductor package
Bogenschutz Functional Electroplating in Electronics
WO2006113287A3 (en) In-mold metallized polymer components and method of manufacturing same
JPS59232836A (en) Metallic mold for film insert injection molding
JPH0935939A (en) High-frequency coil and manufacture thereof
SU1508947A1 (en) Process of manufacture of multilayer printed circuit board
CN112339194A (en) Preparation method of multilayer composite resin material
KR20030048763A (en) Plastic surface reforming method