JPS59182298A - Production of single crystal of compound semiconductor - Google Patents

Production of single crystal of compound semiconductor

Info

Publication number
JPS59182298A
JPS59182298A JP58052734A JP5273483A JPS59182298A JP S59182298 A JPS59182298 A JP S59182298A JP 58052734 A JP58052734 A JP 58052734A JP 5273483 A JP5273483 A JP 5273483A JP S59182298 A JPS59182298 A JP S59182298A
Authority
JP
Japan
Prior art keywords
crystal
temperature gradient
gap
liquid
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58052734A
Other languages
Japanese (ja)
Inventor
Jisaburo Ushizawa
牛沢 次三郎
Takashi Fujii
高志 藤井
Masayuki Watanabe
正幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58052734A priority Critical patent/JPS59182298A/en
Publication of JPS59182298A publication Critical patent/JPS59182298A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/44Gallium phosphide

Abstract

PURPOSE:In the liquid encapsulating method, the temperature gradient near the solid-liquid inter face in the starting melt for compound semiconductor is set higher outward in the radial direction in a certain temperature range to produce single crystals which causes no B-Pit and have less transition density of the wafer and less residual stress. CONSTITUTION:In the liquid encapsulating method, the starting materials for GaP crystals and B2O3 as a liquid encapsulating agent are melted in the quartz crucible 2 inside the pressure vessel 1 by heating with the carbon heater 3 to cover the surface of the GaP melt 4 with the B2O3 layer 5. The vessel has been previously filled with N2 gas by vacuum replacement and is pressurized, as the temperature is raised up, to avoid GaP from decomposing and vaporizing. Then, the seed crystal 6 is pulled up, as being rotated to form the GaP single crystal 7. At this time, the temperature gradient near the solid-liquid interface in the melt 4 is set higher outward in the radial direction in the range from 4 to 30 deg.C/cm within the zone of at least crossing the outer periphery 15 of the pulled-up crystal 13.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は液体カプセル法(LEC法)による化合物半
導体単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a compound semiconductor single crystal by a liquid encapsulation method (LEC method).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に揮発性成分を含む化合物半導体単結晶はLEC法
により製造されている。−例としてLEC法によるGa
p単結晶の製造装置を第1図に示す。圧力容器1内部の
石英るつぼ2内に収容したGap結晶原料および液体カ
プセル材となるB2O3はカーボンヒーター3により加
熱溶解されて、  Gap融液4の液面は、これより比
重の小さいB2O3層5で覆われた状態になる。圧力容
器l内部はあらかじめ真空置換によりN2ガスで満たし
、温度上昇と共に加圧して溶融時には70気圧程度に保
ってGapの分解・蒸発を防ぐ。その状態で種子結晶6
を、B2O3層5を通してGap融液4に浸漬して回転
させながら徐々に引上げ、 Gap単結晶7を作成する
Generally, compound semiconductor single crystals containing volatile components are manufactured by the LEC method. - For example, Ga by LEC method
FIG. 1 shows an apparatus for producing p single crystals. The Gap crystal raw material and the liquid capsule material B2O3 stored in the quartz crucible 2 inside the pressure vessel 1 are heated and melted by the carbon heater 3, and the liquid surface of the Gap melt 4 is covered with a B2O3 layer 5 having a smaller specific gravity. become covered. The inside of the pressure vessel 1 is filled in advance with N2 gas by vacuum displacement, and as the temperature rises, the pressure is increased and maintained at about 70 atmospheres during melting to prevent decomposition and evaporation of Gap. In that state, seed crystal 6
is immersed in Gap melt 4 through B2O3 layer 5 and gradually pulled up while rotating to create Gap single crystal 7.

引き上げ結晶の品質はデバイス特性に影IRを及ぼすた
め、本発明が先に出願した特願昭57−209601号
に記載のように転位密度、バックグラウンドビット(B
pit)歪などの少ないものが要求される。
Since the quality of the pulled crystal affects device characteristics, dislocation density, background bits (B
(pit) requires little distortion.

また結晶引き上げの際結晶の外周部に多結晶が発生する
場合がある。多結晶は多くの場合、成長中の結晶の外周
部液面上に発生し、その後の引き上げ結晶を多結晶化し
て単結晶の製造歩留シを低下させるので、このような多
結晶の発生を防Iトする必要がある。
Further, during crystal pulling, polycrystals may be generated on the outer periphery of the crystal. In many cases, polycrystals are generated on the liquid surface at the outer periphery of a growing crystal, and the subsequent pulled crystal becomes polycrystallized, reducing the manufacturing yield of single crystals. It is necessary to defend against I.

従来からこれらの要求に対して種々の方法がとられてい
るが、中でも結晶の固液界面近傍の温度勾配をその結晶
に1弯したものにすることが一つの有効外方法である。
Conventionally, various methods have been taken to meet these requirements, but one method that is not effective is to make the temperature gradient near the solid-liquid interface of the crystal one-sided.

例えば’j、Kokubun et、 elAppli
ed Physecs Letters 41 Nc、
9 p841(1982)に示す如(Gap単結晶の転
位密度は引き上げ方向の温度勾配をゆるくすることによ
り減少する。
For example 'j, Kokubun et, elAppli
ed Physecs Letters 41 Nc,
As shown in 9 p. 841 (1982), the dislocation density of a Gap single crystal is reduced by softening the temperature gradient in the pulling direction.

Gapのバックグラウンドピット(B−pif)も不純
物と温度勾配の低減化によりなくすことができる。
Gap background pits (B-pif) can also be eliminated by reducing impurities and temperature gradients.

しかし温度勾配をゆるくすると前記した多結晶化が生じ
易くなるため無制限にゆるくすることはできず、f3−
pjtのない結晶を装造することがOr能な温度勾配領
域はあまシ広くない。そのため引上げ方向の温度勾配が
ゆる(、 B−pifは生じないと思われるいくつかの
ヒーターを用いてqair単結晶を引上げた場合、実際
にはB−pifが現われてしまうことがしばしばあり、
再現性に問題があった。温度勾配はシードホルダーに熱
電対を取り付けて測定し、るつは中心部の縦方向の勾配
で表わすのが一般的であるが、これらのヒーターの縦方
向の温度勾配にはほとんど差はな(,13−pifに対
する再現性の問題は明確でなかった。
However, if the temperature gradient is made gentler, the above-mentioned polycrystallization tends to occur, so it cannot be made looser indefinitely, and f3-
The temperature gradient region in which it is possible to fabricate a crystal without pjt is not very wide. Therefore, when a Qair single crystal is pulled using several heaters that are thought not to produce B-pif, B-pif often appears in reality, with a gentle temperature gradient in the pulling direction.
There was a problem with reproducibility. The temperature gradient is generally measured by attaching a thermocouple to the seed holder and expressed as the vertical gradient in the center of the seed holder, but there is almost no difference in the longitudinal temperature gradient of these heaters ( , 13-pif was not clear.

一方G a p 争結晶の固液界面の形状は第2図に示
したように中央部(8)で僅かに下に凸であるが、周辺
に近い部分(9)では上に凸となり、外周部ttaでは
鋭く下に突き出た形になっている。結晶の外周部は内部
より急冷し易く、熱歪が生じるため転位密度も非常に高
くなってbる。一般に固液界面の形状は平らな方が均一
で歪の少ない結晶が得られる。
On the other hand, as shown in Figure 2, the shape of the solid-liquid interface of the G ap crystal is slightly convex downward at the center (8), but convex upward at the near periphery (9). In part tta, it has a sharp downward protruding shape. The outer periphery of the crystal is more easily cooled than the inside, and thermal strain occurs, resulting in a very high dislocation density. Generally, the flatter the shape of the solid-liquid interface, the more uniform and less strained crystals can be obtained.

界面形状(はほぼ等温血になっているので界面近傍の半
径方向の温度勾配はゆるくするのが望ましい。
Since the interface shape is almost isothermal, it is desirable to have a gentle temperature gradient in the radial direction near the interface.

しかしLEC法では高圧下でもあり、結晶叛面は冷却し
易く、前記したように界面外周部が鋭角になって歪を増
す原因になっている。そのため引上げ結晶にクラックが
生じたり、クラックのない引上げ結晶でも加工工程でク
ラックが入るなどの問題がある。
However, in the LEC method, the crystal surfaces are easily cooled under high pressure, and as described above, the outer periphery of the interface becomes an acute angle, which causes increased strain. As a result, there are problems such as cracks occurring in the pulled crystal, and even crack-free pulled crystals developing cracks during the processing process.

界面形状およびヒーターとB−Pitの再現性の問PO
から、温度勾配は引上げ方向だけでなく半径方向も重要
であると考えられる。このような知見に7基き本発明者
等は多くのヒーターについてるつぼ内の半径方向の温度
勾配を調べた。直径55咽び)ap単結晶を引上げる炉
内に、熱電対全中心(Co)および中心から25cmの
点(C1)と35悶点(C2)に設置してるつぼ内の半
径方向の温度勾配を測定した結果、界面近傍の融液面で
Coと01の点間では温度勾配が11〜8,4℃にの範
囲で異なることが明らかになった。
Questions regarding interface shape and reproducibility of heater and B-Pit
Therefore, it is considered that the temperature gradient is important not only in the pulling direction but also in the radial direction. Based on this knowledge, the present inventors investigated the temperature gradient in the radial direction within the crucible for many heaters. In the furnace for pulling single crystals, thermocouples are installed at the entire center (Co), at a point 25 cm from the center (C1), and at a point 35 cm (C2) to measure the temperature gradient in the radial direction inside the crucible. The measurement results revealed that the temperature gradient between the Co and 01 points on the melt surface near the interface was different in the range of 11 to 8.4°C.

半径方向の温度勾配は種々の条件によって変化する。例
えばヒーターが異なれば温度勾配も変9、同一規格のヒ
ーターでもバラツキがあって、最高温部の位置や均熱帯
の長さが異なったシする。従ってるつぼとヒーターの相
対位Hによっても変化する。その他結晶回転やるつぼ回
転によっても融液の対流が変って温度勾配も変化してく
る。また、特に大容量の融液から長い大型結晶を引上げ
ると、結晶の成長につれて液面低下などにより、引上方
向だけでなく半径方向の温度勾配も相当に変り、全長に
わたって高品質な結晶を製造することが離しくなる。
The radial temperature gradient changes depending on various conditions. For example, different heaters will have different temperature gradients9, and even heaters of the same standard will have variations, resulting in different positions of the hottest parts and different lengths of soaking zones. Therefore, it also changes depending on the relative position H between the crucible and the heater. In addition, crystal rotation and crucible rotation also change the convection of the melt and the temperature gradient. In addition, when pulling a long, large crystal from a particularly large volume of melt, the temperature gradient not only in the pulling direction but also in the radial direction changes considerably due to factors such as a drop in the liquid level as the crystal grows, resulting in a high quality crystal over the entire length. Manufacturing becomes more difficult.

この発明の目的はエツチング妬よ、すB−Pitが現わ
れず、ウェハーの転位密度特に周辺部の転位密度や残留
応力の少ない化合物半導体単結晶を歩留り良く製造する
方法を提供することにある。
An object of the present invention is to provide a method for producing a compound semiconductor single crystal with high yield, in which B-Pits do not appear during etching, and the dislocation density in the wafer, particularly in the peripheral region, and the residual stress are low.

〔発明の概要〕[Summary of the invention]

LEC法により化合物半導体単結晶を製造する際、原料
融液内の固液界面近傍の半径方向の温度勾配を引上結晶
の外周を横切る領域で4℃/cm〜3o℃^で外方向に
篩く設定して引上けること’r%徴とし、また引上げ時
には結晶の周辺領域液面の半径方向2点間の温度差を熱
電対により検出し、その変化に応じて威張条件を変化さ
せて上記温度勾配を常に4℃/cm〜30℃2名に制御
することを特徴とする。
When manufacturing compound semiconductor single crystals by the LEC method, the temperature gradient in the radial direction near the solid-liquid interface in the raw material melt is pulled up and sieved outward at a temperature of 4°C/cm to 30°C in a region crossing the outer periphery of the crystal. During pulling, the temperature difference between two points in the radial direction of the liquid surface in the surrounding area of the crystal is detected by a thermocouple, and the pulling conditions are changed according to the change. The temperature gradient is always controlled at 4°C/cm to 30°C for 2 people.

〔発明の効果〕〔Effect of the invention〕

前記温度勾配を4℃/Crn〜3o℃/αにすることに
より、化合物半導体単結晶の引上げKおける多結晶化を
なくシ、結晶表層部の熱歪を減少させてクランクを防止
することができる。また従来結晶表層部で105^2以
上あった転位密度は1o47乙→4台に減少し、ウェハ
ー内の転位密度を均一化できる。このようなウニ・・−
は残留応力も非常に少なく、水晶光楔法による測定でも
従来の%以下に減少(〜ている。勿論このような高品質
結晶はデバイス化工程での歩留りや特性にも好影響をも
たらす。また、Gap単結晶の場合にはエツチングによ
るB−Pitが現れない均一な結晶が再現性良く得られ
ることも確認できた。
By setting the temperature gradient to 4° C./Crn to 30° C./α, it is possible to eliminate polycrystalization in the pulling K of the compound semiconductor single crystal, reduce thermal strain in the surface layer of the crystal, and prevent cranking. . In addition, the dislocation density, which was conventionally 105^2 or more in the crystal surface layer, is reduced to 1047→4, and the dislocation density within the wafer can be made uniform. A sea urchin like this...
The residual stress is also extremely low, and it has been reduced to less than % of the conventional value when measured using the crystal optical wedge method.Of course, such high-quality crystals also have a positive effect on the yield and characteristics in the device fabrication process. It was also confirmed that, in the case of Gap single crystals, uniform crystals in which B-Pits due to etching do not appear can be obtained with good reproducibility.

前記温度勾配を大きくすると固液界面形状は第2図の外
周部10に見られるような鋭角な突き出しはなくなり、
第3図の外周部11のように丸くなってで応力集中が起
き難いためクラックや残留応力の少々い結晶ができると
考えられる。特にウェハー周辺部の転位密度が低くなる
のは界面形状の影響が大きい。これを模式的に示すとB
−Pitが籾、れず周辺部転位密度も低い結晶が得られ
るヒータ一群では直径方向の等搗練12は第3図に示し
たようになっている。即ち界面近傍で結晶13の中心領
域の等搗練14triはぼ平らで結晶13の外周位置工
5を横契る部分16でより急勾配になって外側の温度が
より高いことを意味している。従って結晶周辺部液面上
に晶出し易い多結晶がなくなる効果が生じ歩留りが向上
する。Gap単結晶においてはウェハーをエツチングし
たときにJ3−Pitが現れる問題があった。B−Pi
tに関しては原料中の水分などの不純物の影響の他、界
面近傍の温度勾配にも依存している。従来は引上方向の
温低勾配依存性だけであったが半径方向にも依存するこ
とが実験的に明らかとなった。B−Pitは不純物に転
位や歪が互いに影響して生成すると考えられる。この発
明によりB−Pitが現れないGap単結晶が再現性良
く製造できる。また、引上げ時に結晶の周辺領域液面の
半径方向2点間の温度差を検出し、その変化に応じて温
度勾配を常K 4’C/lyn〜30℃/mになるよう
に制悟1することにより、長尺結晶においても全長にわ
たり均質な結晶を製造できる。前記温度勾配が30℃2
乙蒲以上になると界面形状は中心領域においても下に凸
となり、再びB−Bitが生成するようになり、結晶の
残留応力や転位も増大してくる。
When the temperature gradient is increased, the solid-liquid interface shape no longer protrudes at an acute angle as seen at the outer peripheral portion 10 in FIG.
It is thought that cracks and crystals with slightly small residual stress are formed because the outer peripheral portion 11 in FIG. 3 is rounded and stress concentration is less likely to occur. In particular, the low dislocation density around the wafer is largely influenced by the interface shape. This is shown schematically by B
- In a group of heaters that can obtain crystals with no pits and a low peripheral dislocation density, the uniform milling 12 in the diametrical direction is as shown in FIG. In other words, near the interface, the central region of the crystal 13 has a substantially flat slope, and in the portion 16 that crosses the outer circumferential position 5 of the crystal 13, it becomes steeper, meaning that the temperature on the outside is higher. . Therefore, there is an effect that polycrystals that tend to crystallize are eliminated from the liquid surface around the crystal, and the yield is improved. Gap single crystals have a problem in that J3-Pits appear when the wafer is etched. B-Pi
Regarding t, it depends not only on the influence of impurities such as moisture in the raw material but also on the temperature gradient near the interface. Previously, the dependence was only on the temperature gradient in the pulling direction, but it has been experimentally revealed that it also depends on the radial direction. It is thought that B-Pit is generated due to mutual influence of impurities, dislocations, and strains. According to this invention, a Gap single crystal in which B-Pit does not appear can be produced with good reproducibility. In addition, during pulling, the temperature difference between two points in the radial direction of the liquid surface in the peripheral area of the crystal is detected, and the temperature gradient is controlled to be between K4'C/lyn and 30°C/m according to the change. By doing so, it is possible to produce a crystal that is homogeneous over the entire length even in the case of a long crystal. The temperature gradient is 30℃2
When the thickness exceeds Otsuka, the interface shape becomes downwardly convex even in the central region, B-Bit is generated again, and the residual stress and dislocations of the crystal increase.

〔発明の実施例〕 実施例1 結晶の外形近傍の半径方向の温度勾配が1.1〜b 結晶を引上げた。その結果B−Patは前記温度勾配が
4.3℃^〜284°C/cynである場合の引上結晶
ではエンチングにより現れてこないことが判った。
[Examples of the Invention] Example 1 The temperature gradient in the radial direction near the outer shape of the crystal was 1.1 to b. The crystal was pulled up. As a result, it was found that B-Pat does not appear due to etching in the pulled crystal when the temperature gradient is between 4.3° C. and 284° C./cyn.

実施例2 前記半径方向の温度勾配を12℃^に設定し、直径60
咽のOa p単結晶を5本連続で引上げた。その結果t
ai1部の界―i形状はいずれも周辺部で丸味をもち、
クラックや多結晶は発生せず、300μmのウェハー切
断に際しても割れることはなかった。
Example 2 The temperature gradient in the radial direction was set at 12°C^, and the diameter was 60°C.
Five Oap single crystals from the throat were pulled up in succession. As a result t
The boundary of ai1 part-i shape is rounded at the periphery,
No cracks or polycrystals were generated, and no breakage occurred even when cutting a wafer of 300 μm.

ま/こ、エツチングによるB−Pitも現れず、再現性
が確窮された。このウェハーを従来の前記温度勾配が2
℃^の場合の結晶と比較して見ると第4図及び第5図の
ようになる。第4図は水晶光楔法により測定した従来ウ
ェハー17m、’径方向の残留応力分布18と転位密度
分布19の平均的な例で最高65に9//cm2の玉網
応力があp、応力分布形態も複雑になっている。転位密
度もウェハー周辺部でば5×105/6n2と高く々っ
ている。これに対し本実施例によるウェハー20では第
5図に示したように残留応力分布21はピークが低く、
最高25に9^2である。転位密度22は周辺部で8×
104/an2以下で非常に少なく、中央部でも従来ウ
ェハーより若干低くなっている。今回の5本の平均では
残留応力ピーク値は24、6 h/1yn2の圧縮応力
であった。
B-Pits caused by etching did not appear either, and reproducibility was at a loss. The temperature gradient of this wafer is 2
When compared with the crystal in the case of ℃^, it becomes as shown in Figs. 4 and 5. Figure 4 shows an average example of the radial residual stress distribution 18 and dislocation density distribution 19 of a conventional wafer 17 m measured by the crystal optical wedge method. The distribution pattern has also become more complex. The dislocation density is also as high as 5×10 5 /6 n 2 at the wafer periphery. On the other hand, in the wafer 20 according to this embodiment, the residual stress distribution 21 has a low peak as shown in FIG.
The maximum is 25 to 9^2. Dislocation density 22 is 8× at the periphery
It is very small, less than 104/an2, and is slightly lower than the conventional wafer even in the center. The average of the five samples this time had a residual stress peak value of 24.6 h/1yn2 compressive stress.

実施例3 前配淵度勾配を12’C/cmに設定し、かつ結晶の周
辺部領域液面の半径方向2点間の温度差を2本の熱電対
によシ検出し、その塩m差が〜1℃に相当したと久にる
つぼを2.5mm/Hで上昇させることにょシ、半径方
向の温度勾配全補市しながら1G径約55能のGap単
結晶を約70rmn引上げた。その結果全長にわたりB
−Pitの現れない、残留応力が最高値で361’47
cm と小さい単結晶を作成できた。
Example 3 The pre-depth gradient was set to 12'C/cm, and the temperature difference between two points in the radial direction of the liquid surface in the peripheral region of the crystal was detected using two thermocouples, and the salt m When the difference corresponded to ~1°C, the crucible was raised at 2.5 mm/H, and a Gap single crystal with a 1G diameter of about 55 nm was pulled up by about 70 rpm while compensating the temperature gradient in the radial direction. As a result, B over the entire length
-Pit does not appear, maximum residual stress is 361'47
We were able to create single crystals as small as cm.

以上の説明は主としてGapについて行なったが同様の
LEC法で引上げられるGaAs 、 In p fz
どの化合物半導体(でついても勿論適用できる。
The above explanation was mainly about Gap, but GaAs, In p fz, which is pulled by a similar LEC method,
Of course, it can be applied to any compound semiconductor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はT、EC法によるGap単結晶成長装置を示す
図、第2図は従来法によるGap単結晶の固液界面形状
を示す図、第3図はこの発明によるGap単結晶の界面
形状及び界面近傍の直径方向の等搗練を示す図、第4図
は従来法による()ap単結晶のウェハーの残留応力と
転位密度の直径方向分布図、第5図はこの発明によるG
 a p単結晶のウェハーの残留応力と転位密度の直径
方向分布図である。 1 圧力容器、2・石英るつぼ、3−カーボンヒーター
4− Ga p融液、 5・ B2O3層(カプセル材
)、6 種子結晶、7・・・引上結晶、8− Ga p
単結晶の中央部固液界面、9・周辺近傍の固液界面、1
0・・・外周部固液界面、11  ・外周部固液界面、
12・・直径方向の等搗練、13・・引上結晶、14・
・中心領域の等温線、15  結晶の外周位置、16・
・等温線が外周位置を横切る部分、17・従来のウニノ
・−118・従来ウニノ・−の残留応力分布、19・・
・従来ウェハーの転位密度分布、20・・本発明による
ウニノー21  本発明によるウニノ・−の残留応力分
布、22・・・本発明によるウェーノ・−の転位密度分
布第1図 第 2  図           第  8 固溶4
図    第5図 、I と
Figure 1 is a diagram showing a Gap single crystal growth apparatus using the T, EC method, Figure 2 is a diagram showing the solid-liquid interface shape of a Gap single crystal according to the conventional method, and Figure 3 is a diagram showing the interface shape of a Gap single crystal according to the present invention. Figure 4 shows the distribution of residual stress and dislocation density in the diametrical direction of the ()ap single crystal wafer obtained by the conventional method, and Figure 5 shows the distribution of the dislocation density in the diametrical direction near the interface.
FIG. 2 is a diametrical distribution diagram of residual stress and dislocation density of an ap single crystal wafer. 1 Pressure vessel, 2. Quartz crucible, 3- Carbon heater 4- Gap melt, 5. B2O3 layer (capsule material), 6 Seed crystal, 7... Pulled crystal, 8- Gap
Solid-liquid interface at the center of the single crystal, 9.Solid-liquid interface near the periphery, 1
0...Outer peripheral solid-liquid interface, 11 - Outer peripheral solid-liquid interface,
12..Essential pounding in the diametrical direction, 13..Pulling crystal, 14.
・Isothermal line in the central region, 15. External position of the crystal, 16.
・The part where the isothermal line crosses the outer circumferential position, 17.Residual stress distribution of conventional Unino--118.Conventional Unino--, 19.
・Dislocation density distribution of conventional wafer, 20...Unino according to the present invention 21 Residual stress distribution of Unino according to the present invention, 22... Dislocation density distribution of Wafer according to the present invention Fig. 1 Fig. 2 Fig. 8 Hardness Melt 4
Figure 5, I and

Claims (2)

【特許請求の範囲】[Claims] (1)LEC法において、るつぼ中に収容された化合物
半導体原料融液内の固液界面近傍の直径方向の温度勾配
を、少なくとも引上結晶の外周を横切る領域で4℃/c
m〜30℃/cmで外方向に高く設定することを特徴と
する化合物半導体単結晶の製造方法。
(1) In the LEC method, the temperature gradient in the diametrical direction near the solid-liquid interface in the compound semiconductor raw material melt housed in the crucible is set to 4°C/c at least in the region crossing the outer periphery of the pulled crystal.
A method for manufacturing a compound semiconductor single crystal, characterized in that the temperature is set higher in the outward direction at m~30°C/cm.
(2)引−ト結晶周辺部の液面における直径方向の2点
間の温度差の変化に応じて、結晶成長灸件を変化させる
ことにより、温度勾配を制御”41することを特徴とす
る特許請求の範囲第1項記載の化合物半導体単結晶の製
造方法。
(2) The temperature gradient is controlled by changing the crystal growth moxibustion conditions in accordance with the change in the temperature difference between two points in the diametrical direction on the liquid surface around the drawn crystal. A method for manufacturing a compound semiconductor single crystal according to claim 1.
JP58052734A 1983-03-30 1983-03-30 Production of single crystal of compound semiconductor Pending JPS59182298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58052734A JPS59182298A (en) 1983-03-30 1983-03-30 Production of single crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58052734A JPS59182298A (en) 1983-03-30 1983-03-30 Production of single crystal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPS59182298A true JPS59182298A (en) 1984-10-17

Family

ID=12923155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58052734A Pending JPS59182298A (en) 1983-03-30 1983-03-30 Production of single crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS59182298A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383889A (en) * 1989-08-24 1991-04-09 Natl Inst For Res In Inorg Mater Liquid surface temperature control type single crystal rearing method and apparatus therefor
US5162072A (en) * 1990-12-11 1992-11-10 General Electric Company Apparatus and method for control of melt flow pattern in a crystal growth process
WO2020031273A1 (en) * 2018-08-07 2020-02-13 住友電気工業株式会社 Gallium arsenide single crystal, and gallium arsenide single crystal substrate
WO2020031274A1 (en) * 2018-08-07 2020-02-13 住友電気工業株式会社 Indium phosphide single crystal, and indium phosphide single crystal substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921063A (en) * 1972-06-15 1974-02-25
JPS4993281A (en) * 1973-01-10 1974-09-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921063A (en) * 1972-06-15 1974-02-25
JPS4993281A (en) * 1973-01-10 1974-09-05

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383889A (en) * 1989-08-24 1991-04-09 Natl Inst For Res In Inorg Mater Liquid surface temperature control type single crystal rearing method and apparatus therefor
US5162072A (en) * 1990-12-11 1992-11-10 General Electric Company Apparatus and method for control of melt flow pattern in a crystal growth process
WO2020031273A1 (en) * 2018-08-07 2020-02-13 住友電気工業株式会社 Gallium arsenide single crystal, and gallium arsenide single crystal substrate
WO2020031274A1 (en) * 2018-08-07 2020-02-13 住友電気工業株式会社 Indium phosphide single crystal, and indium phosphide single crystal substrate
CN111902573A (en) * 2018-08-07 2020-11-06 住友电气工业株式会社 Gallium arsenide single crystal and gallium arsenide single crystal substrate
CN112204175A (en) * 2018-08-07 2021-01-08 住友电气工业株式会社 Indium phosphide single crystal and indium phosphide single crystal substrate
EP3835464A4 (en) * 2018-08-07 2022-03-23 Sumitomo Electric Industries, Ltd. Indium phosphide single crystal, and indium phosphide single crystal substrate
CN111902573B (en) * 2018-08-07 2024-03-08 住友电气工业株式会社 Gallium arsenide single crystal and gallium arsenide single crystal substrate
US11926923B2 (en) 2018-08-07 2024-03-12 Sumitomo Electric Industries, Ltd. Indium phosphide single crystal and indium phosphide single crystal substrate
CN112204175B (en) * 2018-08-07 2024-03-26 住友电气工业株式会社 Indium phosphide single crystal and indium phosphide single crystal substrate

Similar Documents

Publication Publication Date Title
US4378269A (en) Method of manufacturing a single crystal silicon rod
JPH092891A (en) Production of silicon single crystal having uniform crystal defect and apparatus therefor
JPS59182298A (en) Production of single crystal of compound semiconductor
US20090038537A1 (en) Method of pulling up silicon single crystal
JP5545265B2 (en) GaAs single crystal wafer and method for producing GaAs single crystal
JPS6117798B2 (en)
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0312397A (en) Production of rutile single crystal
JP4200690B2 (en) GaAs wafer manufacturing method
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPH11349398A (en) Production of silicon single crystal
JPH06279175A (en) Method for growing bar-shaped single crystal of oxide
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JP2781857B2 (en) Single crystal manufacturing method
JPH0124760B2 (en)
JPS59164698A (en) Preparation of single crystal
JPS63107887A (en) Crucible for pulling up single crystal
JPH04321590A (en) Growing method of single crystal
KR101494527B1 (en) Method for optimizing crucible rotation for high quality silicon single crystal growing and high durability crucible
JPS6033287A (en) Preparation of single crystal semiconductor
JPS6346038B2 (en)
JPS62167213A (en) Production of silicon polycrystalline ingot
JPS60122791A (en) Pulling up method of crystal under liquid sealing