JPS59180519A - Vapor-phase film forming device of coherence reduced laser - Google Patents

Vapor-phase film forming device of coherence reduced laser

Info

Publication number
JPS59180519A
JPS59180519A JP5382983A JP5382983A JPS59180519A JP S59180519 A JPS59180519 A JP S59180519A JP 5382983 A JP5382983 A JP 5382983A JP 5382983 A JP5382983 A JP 5382983A JP S59180519 A JPS59180519 A JP S59180519A
Authority
JP
Japan
Prior art keywords
coherence
laser
reducing
laser light
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5382983A
Other languages
Japanese (ja)
Other versions
JPH0377275B2 (en
Inventor
Takeoki Miyauchi
宮内 建興
Mikio Hongo
幹雄 本郷
Katsuro Mizukoshi
克郎 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5382983A priority Critical patent/JPS59180519A/en
Publication of JPS59180519A publication Critical patent/JPS59180519A/en
Publication of JPH0377275B2 publication Critical patent/JPH0377275B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for

Abstract

PURPOSE:To perform a uniform film formation processing by providing a means, which reduces the coherence of a laser light, in the laser optical path between a laser light source and a reaction chamber to prevent the generation of an interference pattern. CONSTITUTION:The device is so constituted that a laser light 2 emitted from a laser oscillator in the direction of an arrow A is condensed by a matching lens 13 and is led to an optical fiber 14 consisting of quartz, and the optical fiber 14 is wound spirally. The light emitted from the optical fiber 14 is made parallel by a collimating lens 15 and is led toward a quartz lens in the direction of an arrow B. Since the laser light 2 is reflected repeatedly irregularly in the optical fiber 14, it becomes irregular in phase gradually to lose coherence.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、レーザ光を用いて被処理物の表面に成膜を施
す装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an apparatus for forming a film on the surface of a workpiece using laser light.

〔発明の背景〕[Background of the invention]

第1図は従来のレーザ気層成膜装置の原理的な説明図で
ある。
FIG. 1 is an explanatory diagram of the principle of a conventional laser vapor deposition apparatus.

lidレーザ発振器で、エマキシレーザ又はアルゴンレ
ーザが用いられ、紫外レーザ光2を発する。
The lid laser oscillator uses an emxi laser or an argon laser to emit ultraviolet laser light 2.

その波長は、193 nm 、 249 nm 、 2
57 nmである。
The wavelengths are 193 nm, 249 nm, 2
57 nm.

上記の紫外レーザ光2は石英レンズ3で集光されてセル
4の中に置かれた被処理物(例えば半導体基板)5に照
射される。
The above-mentioned ultraviolet laser beam 2 is focused by a quartz lens 3 and irradiated onto an object to be processed (for example, a semiconductor substrate) 5 placed in a cell 4 .

上記のセル4はステンレス製で、紫外レーザ光2が入射
し得るように石英板を嵌めこんだ窓6が設けられて反応
室を形成している。8はガスボンベ、7はガス導入管で
ある。
The cell 4 described above is made of stainless steel, and has a window 6 fitted with a quartz plate so that the ultraviolet laser beam 2 can enter, forming a reaction chamber. 8 is a gas cylinder, and 7 is a gas introduction pipe.

セル4内のガスは排気管9、及びガス処理装置10ヲ介
して排気装置11で吸引される。
Gas in the cell 4 is sucked in by an exhaust device 11 via an exhaust pipe 9 and a gas treatment device 10.

前S己のガスとしては、ジメチルカドミュウムcd(C
H3) 2や、トリメチルブルミニュウムAz(CH5
)5が用いられる。
As the gas for the previous S, dimethyl cadmium cd (C
H3) 2, trimethylbluminium Az (CH5
)5 is used.

被処理物(基板)5のレーザ照射を受けた部分にcd又
はAtが薄膜状に析出する。
CD or At is deposited in a thin film on the portion of the object (substrate) 5 that has been irradiated with the laser.

石英レンズ3でレーザ光を微細に絞ることができるので
、cd又はAtの微細なパターンを形成することが可能
である。
Since the laser beam can be finely focused by the quartz lens 3, it is possible to form a fine CD or At pattern.

しかし、レーザ光は可干渉性が非常に高いため、一様な
成膜処理を施したい場合にも干渉パターンが生じるとい
う不具合がある。
However, since laser light has very high coherence, there is a problem in that an interference pattern occurs even when uniform film formation processing is desired.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為され、干渉パターンを生
じることなく一様な成膜処理を行ない得るレーザ気層成
膜装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a laser vapor layer deposition apparatus that can perform uniform film deposition without producing an interference pattern.

〔発明の概要〕[Summary of the invention]

本発明の基本的原理は、レーザ光束の揃った位相を乱し
、レーザ光が有している可干渉性を低減させて干渉パタ
ーンの発生を防止するものである。
The basic principle of the present invention is to disturb the aligned phase of the laser beam and reduce the coherence of the laser beam, thereby preventing the generation of an interference pattern.

上記の原理に基づいて前記の目的全達成するため、本発
明は、レーザ光源と反応室との間のレーザ光路中に、レ
ーザ光の可干渉性を低減せしめる手段を設けたことを特
徴とする。
In order to achieve all of the above objects based on the above principle, the present invention is characterized in that means for reducing the coherence of laser light is provided in the laser light path between the laser light source and the reaction chamber. .

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の1実施例を第2図および第3図について
説明する。
Next, one embodiment of the present invention will be described with reference to FIGS. 2 and 3.

第2図は本発明装置の原理的説明図である。第1図に示
した従来装置に比して異なるところは、紫外レーザ光2
の経路中にレーザ光の可干渉性低減手段12を設けたこ
とである。
FIG. 2 is a diagram illustrating the principle of the apparatus of the present invention. The difference from the conventional device shown in Figure 1 is that the ultraviolet laser beam
This is because a laser beam coherence reducing means 12 is provided in the path of the laser beam.

レーザ発信器1から出たレーザ光2は可干渉性低減手段
12において位相を乱された後に石英レンズ3で集光さ
れ、セル4内の被処理物(基板)5の表面に薄膜を析出
せしめる。レーザ光は被処理物(基板)5に到達したと
きに位相が揃っていないので干渉パターンを生じない。
The laser beam 2 emitted from the laser transmitter 1 has its phase disturbed by the coherence reducing means 12 and is then focused by the quartz lens 3 to deposit a thin film on the surface of the object (substrate) 5 in the cell 4. . When the laser beams reach the object to be processed (substrate) 5, the phases are not aligned, so no interference pattern is generated.

従って一様な薄膜を付着させることができる。Therefore, a uniform thin film can be deposited.

第3図は、前記の可干渉性低減手段12の具体的な構成
の1例を示す。
FIG. 3 shows an example of a specific configuration of the coherence reducing means 12 described above.

レーザ発振器(図示せず)から矢印A方向に送られたレ
ーザ光2をマツチングレンズ13で集光して石英製の光
ファイバ14に導入するように構成してあり、本例にお
いては上記の光ファイバ14を螺旋状に巻いである。こ
の光ファイバ14から出た光tiコ’Jメ−)レンズ1
5によシ平行化され、矢印Bのごとく石英レンズ(図示
せず)に向けて導かれる。レーザ光2は光フアイバ14
内で何度も不規則に反射を繰返えすので、次第に位相が
不揃いになって可干渉性を失う。
The laser beam 2 sent from a laser oscillator (not shown) in the direction of arrow A is condensed by a matching lens 13 and introduced into an optical fiber 14 made of quartz. The optical fiber 14 is spirally wound. The light emitted from this optical fiber 14 is reflected by the lens 1.
5 and guided toward a quartz lens (not shown) as shown by arrow B. Laser light 2 is transmitted through optical fiber 14
As the light repeats irregular reflections over and over again, the phases gradually become misaligned and coherence is lost.

本例のように光ファイバを用いて可干渉性低減手段を構
成すると、簡単な構成で良好な可干渉性低減効果が得ら
れる。
When the coherence reduction means is configured using an optical fiber as in this example, a good coherence reduction effect can be obtained with a simple configuration.

第4図は上記と異なる可干渉性低減手段の1例である。FIG. 4 shows an example of a coherence reducing means different from the above.

前例(第3図)と異なるところは、容器16の中に光フ
ァイバ14と比重の等しい液体17を満たし、光ファイ
バ14を上記の液体17の中に、乱雑な形にして浸すと
ともに、該液体17ヲ攪葎する手段18を設けたことで
ある。
The difference from the previous example (FIG. 3) is that a container 16 is filled with a liquid 17 that has the same specific gravity as the optical fiber 14, and the optical fiber 14 is immersed in the liquid 17 in a random manner, and the liquid is The reason is that a means 18 for stirring the seeds 17 is provided.

本例のように構成すると、光ファイツク14が常に漂い
揺れている状態となるため、この中を通過するレーザ光
の光路が絶えず不規則に変化し、可干渉性の低減効果が
いっそう良くなる。
With the configuration of this example, the optical fiber 14 is constantly floating and shaking, so the optical path of the laser beam passing through it changes constantly and irregularly, making the coherence reduction effect even better.

本発明者の実験によれば、上記の液体17として不活性
なシリコーン油を用いて好結果が得られた。
According to experiments conducted by the present inventor, good results were obtained using inert silicone oil as the liquid 17.

第5図は、更に異なる可干渉性低減手段の1例である。FIG. 5 is an example of a further different coherence reducing means.

矢印人のごとく導入したレーザ光2を拡散する凹レンズ
19ヲ設け、凸レンズ加で集光し、凹レンズ19′で平
行化して矢印Bのごとく送シ出す。上記の凹レンズ19
と凸レンズ20との間にスリガラス21を設置しである
。本例におけるスリガラス21のように散乱面を有する
板状部材を光路中に設置するとレーザ光が不規則に散乱
される。散乱したレーザ光は再び凸レンズ加で集光され
、コリメート用の凹レンズ19′で平行光束になるが、
スリガラス21から凹レンズ19′まで不規則な光路に
散乱している間に位相の揃い方が乱れて可干渉性を失う
。本例のごとく、散乱面を有する板状部材で可干渉性低
減手段を構成すると製造コストが安価で済み、可干渉性
低減手段を小形、軽量にすることができ、その上、高パ
ワーのレーザ光を処理し得る。
A concave lens 19 is provided to diffuse the introduced laser beam 2 as shown by the arrow B, the laser beam 2 is condensed by a convex lens, collimated by a concave lens 19', and sent out as shown by an arrow B. Concave lens 19 above
A ground glass 21 is installed between the lens and the convex lens 20. If a plate member having a scattering surface, such as the ground glass 21 in this example, is placed in the optical path, the laser light will be scattered irregularly. The scattered laser beam is again focused by the convex lens and becomes a parallel beam by the concave collimating lens 19'.
While being scattered along an irregular optical path from the ground glass 21 to the concave lens 19', the alignment of the phases is disturbed and coherence is lost. As in this example, if the coherence reducing means is constructed of a plate-like member having a scattering surface, the manufacturing cost is low, the coherence reducing means can be made small and lightweight, and moreover, it is possible to make the coherence reducing means small and lightweight. Can process light.

第6図は、第5図に示したスリガラスによる可干渉性低
減手段を改良した1例である。本例においてはスリガラ
スによって回転円板22’i構成し、この回転円板状ス
リガラス22ヲ凸レンズ%の焦点Fl付近に設置する。
FIG. 6 is an example of an improved coherence reducing means using ground glass shown in FIG. 5. In this example, a rotating disk 22'i is made of ground glass, and the rotating disk-shaped ground glass 22 is installed near the focal point Fl of the convex lens.

乙は駆動用のモータ、冴は伝動用のベルト、δは回転軸
である。
B is the driving motor, Sae is the transmission belt, and δ is the rotating shaft.

本例のごとく、散乱面を有する板状部材を運動せしめる
ように構成すると、散乱面によるレーザーザ光路の変化
とが重なるため、前例(第5図)に比して可干渉性低減
効果が更に向上し、しかも前例と同様に高いパワーのレ
ーザ光全処理するに適している。
As in this example, when the plate-like member having the scattering surface is configured to move, the change in the laser beam path due to the scattering surface overlaps, so the coherence reduction effect is even greater than in the previous example (Figure 5). Moreover, like the previous example, it is suitable for all processing with high power laser light.

第7図は前記(第6図)の実施例全史に改良し、凸レン
ズ20を2段に設置するとともに、前記の回転円板22
を2個設け、その1個を凸レンズ扉の焦点F1に、他の
1個を凸レンズ加の焦点F2に、それぞれ設置しである
。このように、散乱面を有する板状部材を2段に重ねて
用いるとレーザ光の可干渉性がいっそう低減されるが、
上記2個の回転円板四の回転方向を逆にすると更に可干
渉性を低減し得る。
FIG. 7 shows an improvement over the entire embodiment shown in FIG.
One of them is installed at the focal point F1 of the convex lens door, and the other one is installed at the focal point F2 of the convex lens door. In this way, when plate-like members having scattering surfaces are stacked in two stages, the coherence of laser light is further reduced.
If the rotation directions of the two rotating disks 4 are reversed, the coherence can be further reduced.

第8図囚、 (B) l (C)は、前記と更に異なる
可干渉性低減手段を示す。
FIG. 8 (B) l (C) shows a coherence reduction means that is different from the above.

容器nの、対向する2面にそれぞれ石英ガラス四によシ
レーザ光の入射窓、出射窓を設け、この容器n内に、例
えば煙草の煙のごとく空中に、こ濁し得る微粒子を入゛
れる。
An entrance window and an exit window for laser light are provided on two opposing sides of the container n, respectively, using quartz glass 4, and fine particles that can become cloudy in the air, such as cigarette smoke, are introduced into the container n.

第8図体のように容器rの中に懸濁微粒子29¥il−
封入しておくと、該微粒子はブラウン運動を行ないつつ
浮遊し、これにレーザ光が尚たってト°ツフ゛ラーシフ
トを受け、周波数範囲が広〃する。この六めレーザ光の
可干渉性が低減する。このようなシフトは非常に高速な
ノくルスにも起こるため、本陳施例は高速パルスレーザ
光の可干渉性低減に好涜である。
As shown in Figure 8, 29 yen of fine particles are suspended in container r.
When encapsulated, the fine particles float while performing Brownian motion, and the laser light is further subjected to a turf shift, widening the frequency range. The coherence of this sixth laser beam is reduced. Since such a shift occurs even in a very fast laser beam, the present embodiment is not suitable for reducing the coherence of high-speed pulsed laser light.

また、第8図(B)に示すように、微粒子29を懸栖さ
せた粒体を矢印りのように循環させると、懸8微粒子の
沈降が妨けられるのて長時間にわたつ1可干渉性低減機
能が維持される。
In addition, as shown in FIG. 8(B), if the granules with suspended fine particles 29 are circulated in the direction of the arrow, sedimentation of the suspended fine particles 29 will be prevented, so Coherence reduction functionality is maintained.

更に、第8口切に示すように微粒子の補給源2を備えて
おくと一層長時間の機能保持が可能にνる、 〔発明の効果〕 以上詳述したように、本1発明のレーザ気層成バ装置は
干渉パターンの発生を防止して一様な成月処理を行ない
得る。
Furthermore, if a supply source 2 of fine particles is provided as shown in the eighth section, it is possible to maintain the function for an even longer period of time. [Effects of the Invention] As detailed above, the laser gas of the first invention The stratification device can prevent the occurrence of interference patterns and perform uniform maturation processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザ気層成膜装置の説明図、第2図は
本発明のレーザ気層成膜装置の説明図である。第3図乃
至第8図体)、ω)、C)はそれぞれ本発明における可
干渉性低減9段の1実施例の説明図でおる。 ;    1・・・レーザ発振器、2・・・紫外レーザ
光、3・・・石i  英レンズ、4・・・セル、5・・
・被処理物としての基板、12・・・可干渉性低減手段
、13・・・マツチングレンズ、tl   14・・・
光ファイバ、15・・・コリメートレンズ、17・・・
液8  体、18・・・攪拌手段、19.19’・・・
凹レンズ、加・・・凸レンズ、21・・・散乱面全盲す
る板状部材としてのスリガラス、乙・・・回転円板状の
スリガラス、が・・・凸し9  ンズ。 ! 集    代理人 弁理士 秋 本 正 実莫 第3図 第4図 第5図 第6図 第8図(A)
FIG. 1 is an explanatory diagram of a conventional laser vapor layer deposition apparatus, and FIG. 2 is an explanatory diagram of a laser vapor deposition apparatus of the present invention. Figures 3 to 8 (body), ω), and C) are explanatory diagrams of one embodiment of nine stages of coherence reduction in the present invention, respectively. 1... Laser oscillator, 2... Ultraviolet laser light, 3... Quartz lens, 4... Cell, 5...
- Substrate as a processing object, 12... Coherence reducing means, 13... Matching lens, tl 14...
Optical fiber, 15...Collimating lens, 17...
Liquid 8 body, 18... stirring means, 19.19'...
Concave lens, addition... convex lens, 21... ground glass as a plate-like member with a completely blind scattering surface, B... ground glass in the shape of a rotating disk, but... convex 9 lenses. ! Collection Agent Patent Attorney Tadashi Akimoto Mimo Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 (A)

Claims (1)

【特許請求の範囲】 1、 レーザ光源と、反応室と、ガス供給部とからなる
レーザ気層成膜装置において、レーザ光源と反応室との
間のレーザ光路中に、レーザ光の可干渉性を低減せしめ
る手段を設けたことを特徴とする可干渉性低減レーザ気
層成膜装置。 2、 前記の可干渉性を低減せしめる手段は、光ファイ
バを用いたものであることを特徴とする特許請求の範囲
第1項に記載の可干渉性低減レーザ気層成膜装置。 3、前記の光ファイバは、液体中に浸したものであシ、
かつ、該液体を攪拌する手段を備えたことを特徴とする
特許請求の範囲第2項に記載の可干渉性低減レーザ気層
成膜装置。 4、 前記の可干渉性を低減せしめる手段は、散乱面を
有する板状部材であることを特徴とする特許請求の範囲
第1項に記載の可干渉性低減レーザ気層成膜装置。 5、前記の板状部材は、これを運動せしめるように構成
したものであることを特徴とする特許請求の範囲第4項
に記載の可干渉性低減レーザ気層成膜装置。 6、 前記の板状部材は、複数個設けたものであること
を特徴とする特許請求の範囲第5項に記載の可干渉性低
減レーザ気層成膜装置。 7、前記の可干渉性を低減せしめる手段は、微粒子を懸
濁した流体を用いたものであることを特徴とする特許請
求の範囲第1項に記載の可干渉性低減レーザ気層成膜装
置。
[Claims] 1. In a laser vapor layer deposition apparatus consisting of a laser light source, a reaction chamber, and a gas supply section, the laser beam has coherence in the laser light path between the laser light source and the reaction chamber. 1. A laser vapor deposition apparatus for reducing coherence, characterized in that it is provided with means for reducing. 2. The coherence-reducing laser vapor deposition apparatus according to claim 1, wherein the means for reducing the coherence uses an optical fiber. 3. The optical fiber is immersed in a liquid;
The coherence-reducing laser vapor deposition apparatus according to claim 2, further comprising means for stirring the liquid. 4. The coherence-reducing laser vapor layer deposition apparatus according to claim 1, wherein the means for reducing the coherence is a plate-like member having a scattering surface. 5. The coherency-reducing laser vapor layer deposition apparatus according to claim 4, wherein the plate member is configured to move. 6. The coherence-reducing laser vapor layer deposition apparatus according to claim 5, wherein a plurality of the plate-like members are provided. 7. The coherency-reducing laser vapor deposition apparatus according to claim 1, wherein the means for reducing the coherence uses a fluid in which fine particles are suspended. .
JP5382983A 1983-03-31 1983-03-31 Vapor-phase film forming device of coherence reduced laser Granted JPS59180519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5382983A JPS59180519A (en) 1983-03-31 1983-03-31 Vapor-phase film forming device of coherence reduced laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5382983A JPS59180519A (en) 1983-03-31 1983-03-31 Vapor-phase film forming device of coherence reduced laser

Publications (2)

Publication Number Publication Date
JPS59180519A true JPS59180519A (en) 1984-10-13
JPH0377275B2 JPH0377275B2 (en) 1991-12-10

Family

ID=12953677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5382983A Granted JPS59180519A (en) 1983-03-31 1983-03-31 Vapor-phase film forming device of coherence reduced laser

Country Status (1)

Country Link
JP (1) JPS59180519A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997762A3 (en) * 1998-10-30 2000-09-27 Kabushiki Kaisha Toshiba Laser transmission system
WO2002000963A1 (en) * 2000-06-23 2002-01-03 Steven John Ouderkirk Selective beam deposition
JP2004341299A (en) * 2003-05-16 2004-12-02 Ishikawajima Harima Heavy Ind Co Ltd Device and method to reduce strength of laser beam interference pattern
WO2005057271A1 (en) * 2003-12-10 2005-06-23 Matsushita Electric Industrial Co., Ltd. Optical element, laser beam source, and 2-d image forming device
US7763231B2 (en) 2003-06-05 2010-07-27 Lockheed Martin Corporation System and method of synthesizing carbon nanotubes
US20130028274A1 (en) * 2011-07-29 2013-01-31 Ipg Photonics Corporation Method for Assembling High Power Fiber Laser System and Module Realizing the Method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0997762A3 (en) * 1998-10-30 2000-09-27 Kabushiki Kaisha Toshiba Laser transmission system
WO2002000963A1 (en) * 2000-06-23 2002-01-03 Steven John Ouderkirk Selective beam deposition
JP2004341299A (en) * 2003-05-16 2004-12-02 Ishikawajima Harima Heavy Ind Co Ltd Device and method to reduce strength of laser beam interference pattern
US7763231B2 (en) 2003-06-05 2010-07-27 Lockheed Martin Corporation System and method of synthesizing carbon nanotubes
WO2005057271A1 (en) * 2003-12-10 2005-06-23 Matsushita Electric Industrial Co., Ltd. Optical element, laser beam source, and 2-d image forming device
JPWO2005057271A1 (en) * 2003-12-10 2007-12-13 松下電器産業株式会社 Optical element, laser light source, and two-dimensional image forming apparatus
US7522792B2 (en) 2003-12-10 2009-04-21 Panasonic Corporation Optical element, laser light source, and two-dimensional image forming apparatus
US20130028274A1 (en) * 2011-07-29 2013-01-31 Ipg Photonics Corporation Method for Assembling High Power Fiber Laser System and Module Realizing the Method
US8682126B2 (en) * 2011-07-29 2014-03-25 Ipg Photonics Corporation Method for assembling high power fiber laser system and module realizing the method

Also Published As

Publication number Publication date
JPH0377275B2 (en) 1991-12-10

Similar Documents

Publication Publication Date Title
US5458084A (en) X-ray wave diffraction optics constructed by atomic layer epitaxy
JPS59180519A (en) Vapor-phase film forming device of coherence reduced laser
EP0050545B1 (en) Integrated fresnel lens and method for its manufacture
Barr The production of low scattering dielectric mirrors using rotating vane particle filtration
EP0095960A1 (en) Device for storing a coherent image in a multimode optical cavity
JP2001004827A (en) Stepped etalon
Yamamura et al. The bombarding-angle dependence of sputtering yields under various surface conditions
JPH03188272A (en) Laser sputtering device
EP3803907B1 (en) Cooling system for a cold atoms sensor and associated cooling method
JP3316513B2 (en) Method of forming fine pattern
EP0974853B1 (en) Method for producing chirped in-fibre bragg grating
FR2733854A1 (en) X-RAY FOCUSING / DISPERSION DEVICE AND METHOD FOR PRODUCING THE SAME
EP0029914B1 (en) Method of decreasing the optical reflectiveness of surfaces
EP3655821A1 (en) Interference lithography process
Ewen et al. A Raman study of photochemical reactions in amorphous As2S3 on polycrystalline Ag2S substrates
JPH0346386A (en) Thickness controlling method and device for reflection preventive film
JP3015193B2 (en) Optical element
West et al. Backscattering enhancement from plasmon polaritons on a deterministic metal surface
Madden et al. Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As₂S₃) films and its effect on plasma etching
Kulchin et al. Diffraction of light waves by dynamic gratings in waveguides made of semiconductor materials
JPH01179908A (en) Method for uniformizing intensity distribution of laser beam
JP3189126B2 (en) Multi-layer X-ray slit
JPS61213376A (en) Photochemical film forming device
SU1103049A1 (en) Method of manufacturing light radiation concentrator by means of holographic technique
Miloslavsky et al. Self-organization of spontaneous structures in photosensitive layers