JP3189126B2 - Multi-layer X-ray slit - Google Patents

Multi-layer X-ray slit

Info

Publication number
JP3189126B2
JP3189126B2 JP26435891A JP26435891A JP3189126B2 JP 3189126 B2 JP3189126 B2 JP 3189126B2 JP 26435891 A JP26435891 A JP 26435891A JP 26435891 A JP26435891 A JP 26435891A JP 3189126 B2 JP3189126 B2 JP 3189126B2
Authority
JP
Japan
Prior art keywords
ray
slit
multilayer
rays
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26435891A
Other languages
Japanese (ja)
Other versions
JPH05100092A (en
Inventor
村 朋 晃 川
中 久 貴 竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26435891A priority Critical patent/JP3189126B2/en
Publication of JPH05100092A publication Critical patent/JPH05100092A/en
Application granted granted Critical
Publication of JP3189126B2 publication Critical patent/JP3189126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、X線発生源の前面に
配置し、非常に細かいX線ビームを作り出すことが可能
な多層膜X線スリットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer X-ray slit which is arranged in front of an X-ray source and is capable of producing a very fine X-ray beam.

【0002】[0002]

【従来の技術】近年、X線装置は種々の分野で利用され
ており、利用するX線ビームも微細なX線ビームを被加
工物に照射するものが増加しつつある。特に、干渉性軌
道放射光等従来より数桁大きい強度を持つ光源が開発さ
れるに伴い、数nmから数十nm領域の波長のX線を使用し
たX線光学の産業分野が開発されてきている。この分野
での応用としては軟X線を利用したX線顕微鏡・X線望
遠鏡等が既に開発され、また、一部ではX線ホログラフ
ィの利用分野も検討されている。このような特殊分野の
X線の干渉・回折効果を利用した種々の装置を製作する
に際して、X線発生源の前に開口スリットを配置して数
μ以下の空間的に非常に細かいX線ビームを作り出す必
要がある。ところがこのようなX線ビームを作り出すた
めの開口スリットとしては、従来は図3に示されるよう
なX線の吸収係数の大きいタングステン等の重金属元素
で構成されたスリット刃(5、6)を二枚上下に所定間
隔を設けて対向配設し、この両スリット刃5、6の間隙
を通してX線4が照射され、このスリット刃5,6のス
リット幅である間隔を制御することによりX線ビームの
太さが絞られていた。この両スリット刃5、6のスリッ
ト幅の調整は通常各スリット刃5、6を機械的に移動さ
せていた。また、小孔を穿設した一枚の鉛、タングステ
ン等の重金属の板をX線発生源のスリットとして用いら
れている。
2. Description of the Related Art In recent years, X-ray apparatuses have been used in various fields, and the number of X-ray beams used for irradiating a workpiece with a fine X-ray beam is increasing. In particular, with the development of light sources having intensities several orders of magnitude higher than conventional light sources such as coherent orbital synchrotron radiation, the industrial field of X-ray optics using X-rays having wavelengths in the range of several nm to several tens of nm has been developed. I have. As applications in this field, X-ray microscopes, X-ray telescopes, and the like utilizing soft X-rays have already been developed, and applications of X-ray holography have been studied in some parts. When manufacturing various devices utilizing such X-ray interference / diffraction effects in a special field, an aperture slit is arranged in front of an X-ray source, and a spatially very fine X-ray beam of several μ or less is provided. Needs to be created. However, conventionally, as an opening slit for producing such an X-ray beam, a slit blade (5, 6) made of a heavy metal element such as tungsten having a large X-ray absorption coefficient as shown in FIG. 3 is used. X-rays 4 are radiated through the gap between the slit blades 5 and 6 at predetermined intervals above and below the sheets, and the X-ray beam is controlled by controlling the interval that is the slit width of the slit blades 5 and 6. Was narrowed down. Adjustment of the slit width of both slit blades 5 and 6 usually involves mechanically moving each slit blade 5 and 6. In addition, one sheet of heavy metal such as lead or tungsten having a small hole is used as a slit of an X-ray generation source.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記のように
スリット刃5、6間の間隔の調整移動は機械的に行うた
め、このスリット幅Lを50μ以下にすることは困難で
あった。従って、50μ以下のX線ビームを作ることが
できなかった。また、そのスリット幅の精度もせいぜい
10μ程度にしかできなかった。そのためX線ビームの
太さに対する誤差が大きい結果となった。また、X線ビ
ームの波長が400〜700nmの範囲にある可視光線領
域内での使用の場合は問題とならないが、波長が数nm程
度のX線領域での利用は無理であり、また、小孔のスリ
ットの場合も微細なX線ビームを作製することは困難で
あった。この発明の目的は従来のスリット幅を数十nmの
非常に細いX線ビームを発生するX線スリットを提供す
ることである。特に、この発明の目的は簡単な方法によ
り非常に微細なX線ビームを照射できる多層膜X線スリ
ットを提供することである。
However, since the adjustment movement of the interval between the slit blades 5 and 6 is performed mechanically as described above, it has been difficult to reduce the slit width L to 50 μm or less. Therefore, an X-ray beam of 50 μm or less could not be produced. Further, the accuracy of the slit width could be at most about 10 μm. As a result, an error with respect to the thickness of the X-ray beam was large. In addition, there is no problem in the case where the X-ray beam is used in the visible light region where the wavelength is in the range of 400 to 700 nm, but it is impossible to use the X-ray beam in the X-ray region where the wavelength is about several nm. It is difficult to produce a fine X-ray beam even in the case of a slit in a hole. SUMMARY OF THE INVENTION An object of the present invention is to provide a conventional X-ray slit which generates a very narrow X-ray beam having a slit width of several tens of nm. In particular, an object of the present invention is to provide a multilayer X-ray slit capable of irradiating a very fine X-ray beam by a simple method.

【0004】[0004]

【課題を解決するための手段】この発明は前記目的を達
成するためになされたもので、線吸収係数の異なる二
種類の材料を用い、X線吸収係数の小さい材料からなる
X線を通過させる透過層の両面にX線吸収係数の大き
い材料の吸収層を被覆した多層膜からなり、前記多層膜
の側端面にX線を入射する入射面およびX線を出射する
出射面を備える多層膜X線スリットとして構成した。
た、前記入射面が前記多層膜の表面に対して傾斜した面
である前記多層膜X線スリットの構成とした。
The present invention achieves the above object.
It was made to forming, using two different kinds of materials X Sen吸 yield coefficients, consisting of a material having a small X-ray absorption coefficient
On both surfaces of the transparent layer that passes X-rays, Ri Do multilayer film coated with absorbent layer of material having a large X-ray absorption coefficients, the multilayer film
X-ray incident surface and X-ray exit to side end face of
Configured as a multilayer film X-ray slit Ru with the emission surface. Further, a plane in which the incident surface is inclined with respect to the surface of the multilayer film.
, The configuration of the multilayer X-ray slit.

【0005】[0005]

【作用】この発明における多層膜X線スリットは、X線
光の吸収係数の大きい材料の吸収層の二層間にX線光吸
収係数の小さい、すなわち、X線を透過し易い材料から
なる透過層を配置して構成してあるから、この多層膜X
線スリットの端面側から照射されたX線は挟まれた透過
層内を通過して被加工物に照射される。このときこの透
過層の厚さはX線吸収係数の小さい材料(元素)を蒸着
などによって非常に薄く形成することができるから、微
細なX線ビームが作り出され、このX線を被加工物に照
射することができる。この発明の多層膜X線スリットを
構成するX線吸収係数の大きい物質としては、一般に知
られるタングステン、鉛、ビスマス金属、ガリウム、ま
たはこれらの合金等の重金属類が用いられる。また、X
線吸収係数の小さい物質としてはカーボン等軽金属類な
ど普通に知られる物質が用いられる。この発明の多層膜
X線スリットについて、図面に示す実施例に基づいて以
下に説明するが、この発明はこれに限定されるものでは
ない。
The X-ray slit of the multilayer film according to the present invention is a transmission layer made of a material having a small X-ray absorption coefficient, that is, a material which easily transmits X-rays, between two absorption layers made of a material having a large X-ray absorption coefficient. Are arranged, so that the multilayer film X
The X-rays emitted from the end face side of the line slit pass through the interposed transmission layer and are applied to the workpiece. At this time, a material (element) having a small X-ray absorption coefficient can be formed very thin by vapor deposition or the like, so that a fine X-ray beam is produced, and this X-ray is applied to the workpiece. Can be irradiated. As the substance having a large X-ray absorption coefficient constituting the multilayer X-ray slit of the present invention, generally known heavy metals such as tungsten, lead, bismuth metal, gallium, and alloys thereof are used. Also, X
As the substance having a small linear absorption coefficient, a commonly known substance such as light metals such as carbon is used. The multilayer X-ray slit of the present invention will be described below based on an embodiment shown in the drawings, but the present invention is not limited to this.

【0006】[0006]

【実施例】図1はこの発明に係る多層膜X線スリットの
一実施例を示す拡大斜視図、図2は図1の実施例の拡大
部分断面図、図3は従来のX線スリットの説明概略図、
図4はこの発明の多層膜X線スリットの第2の実施例の
拡大部分断面図である。 実施例1 図1において比較的X線を透過しにくいガリウム砒素合
金からなる基板9の表面にタングステンを0.1μの厚
さに蒸着した後、その表面にカーボンを0.1μ蒸着
し、その表面に再びタングステンを1μの厚さに蒸着し
て多層膜X線スリットを製造した。このタングステンは
X線を殆んど通過しないX線吸収係数の大きい重金属で
あり、吸収層2、3を形成する。カーボンはX線を良く
透過し、X線の吸収係数の小さい物質であり、透過層1
とする。実施例1の多層膜X線スリットの図2右側より
入射X線7を照射すると、タングステンから構成される
吸収層2、3においてはX線は殆ど吸収され、中間のカ
ーボンからなる透過層1内では通過して、微細な0.1
μのX線ビームが出射X線8となって対象物に照射する
ことになる。また、入射X線7のうち入射角αとなって
入射されるX線はX線臨界角以下に設定すると透過層1
と吸収層2および吸収層3との境界面で反射されて透過
層1内を通過することになるから、透過層1に入射した
X線は大部分透過して出射X線となるからX線の強度が
大きくなる。
FIG. 1 is an enlarged perspective view showing one embodiment of a multilayer X-ray slit according to the present invention, FIG. 2 is an enlarged partial sectional view of the embodiment of FIG. 1, and FIG. Schematic,
FIG. 4 is an enlarged partial sectional view of a second embodiment of the multilayer X-ray slit of the present invention. Example 1 In FIG. 1, after depositing tungsten to a thickness of 0.1 μm on the surface of a substrate 9 made of a gallium arsenide alloy which is relatively hard to transmit X-rays, 0.1 μm of carbon was deposited on the surface, and Was again evaporated to a thickness of 1 μm to produce a multilayer X-ray slit. This tungsten is a heavy metal having a large X-ray absorption coefficient that hardly transmits X-rays, and forms the absorption layers 2 and 3. Carbon is a substance that transmits X-rays well and has a small X-ray absorption coefficient.
And When the incident X-ray 7 is irradiated from the right side in FIG. 2 of the multilayer X-ray slit of the first embodiment, the X-rays are almost absorbed in the absorption layers 2 and 3 made of tungsten, and the transmission layer 1 made of carbon in the middle is absorbed. Let's go through the fine 0.1
The X-ray beam of μ becomes the output X-ray 8 and irradiates the object. When the incident X-ray 7 out of the incident X-rays 7 is set at an X-ray critical angle or less, the transmission layer 1
X-rays that are reflected at the boundary between the light-absorbing layer 2 and the absorbing layer 3 and pass through the transmission layer 1 are transmitted through the transmission layer 1 and are mostly transmitted to become output X-rays. The strength of is increased.

【0007】この発明の多層膜X線スリットの吸収層
2、3にタングステン重金属を使用し、透過層1にカー
ボンを使用した多層膜X線スリットの長さLと各層の厚
さとの相対関係について表1に示す。この場合、波長
0.07nmのX線を使用したときの透過率である。この
表から明らかなように、この多層膜X線スリットでは入
射X線7はカーボンからなる透過層1のみを通過し、吸
収層2.3では殆ど通過していない。ガリウム砒素を用
いた基板9においては長さが0.1mmであれば数%は透
過しているが、それ以上長い多層膜X線スリットでは基
板9においても殆ど透過しない。また、透過層1の長さ
が1mm程度であればほぼ90%近い透過率を得ることが
できる。しかしこの発明の多層膜X線スリットの長さを
この程度加工することは容易である。
The relative relationship between the length L of the multilayer X-ray slit and the thickness of each layer using tungsten heavy metal for the absorption layers 2 and 3 of the multilayer X-ray slit and carbon for the transmission layer 1 of the present invention. It is shown in Table 1. In this case, it is the transmittance when X-rays having a wavelength of 0.07 nm are used. As is clear from this table, in this multilayer X-ray slit, the incident X-ray 7 passes only through the transmission layer 1 made of carbon, and hardly passes through the absorption layer 2.3. In the case of the substrate 9 using gallium arsenide, if the length is 0.1 mm, several percent of the light is transmitted, but if the multilayer X-ray slit is longer than that, almost no light is transmitted through the substrate 9. If the length of the transmission layer 1 is about 1 mm, a transmittance of almost 90% can be obtained. However, it is easy to process the length of the multilayer X-ray slit of the present invention to this extent.

【0008】[0008]

【表1】 [Table 1]

【0009】この発明の多層膜X線スリットのスリット
幅は吸収層2と吸収層3とで挟まれた透過層1の厚さで
決定され、この程度の厚さのものはそれほど困難なく、
現在の多層膜製作技術によって透過層1の膜厚を1μか
ら100μの範囲で、0.1μ程度の精度で調整しなが
ら製造することができる。従って、透過層1の膜厚を1
0μに設定すれば10μ幅のスリットを備えた多層膜X
線スリットを作製することができる。この多層膜X線ス
リットを使用してX線ホログラフィ等の実験に十分使用
することができる微細なX線ビームを作ることができ
る。従来の機械的なスリットと比較すると数桁以上の細
かいX線ビームを取り出すことが可能である。
[0009] The slit width of the multilayer X-ray slit of the present invention is determined by the thickness of the transmission layer 1 sandwiched between the absorption layer 2 and the absorption layer 3.
According to the current multilayer film manufacturing technology, the transmission layer 1 can be manufactured in a range of 1 μm to 100 μm while adjusting with an accuracy of about 0.1 μm. Therefore, the thickness of the transmission layer 1 is set to 1
If set to 0μ, multilayer film X with 10μ slits
Line slits can be made. Using this multilayer X-ray slit, a fine X-ray beam that can be used sufficiently for experiments such as X-ray holography can be produced. Compared to a conventional mechanical slit, it is possible to extract a fine X-ray beam of several orders of magnitude or more.

【0010】実施例2 この発明の多層膜X線スリットの第2の実施例を図4に
示す。吸収層2,3および透過層1は前記実施例1と同
様にタングステンおよびカーボンで構成する。この多層
膜X線スリットのX線の入射側を斜めに切削して研磨面
を形成する。斜めに傾斜面を形成してあるから入射面の
表面積は拡大されることになる。図4に点線で示したよ
うな端面処理を施した多層膜X線スリットの場合、入射
X線7は領域Aのみに入射したX線のみが透過層1を通
過して、吸収層2,3に入射したX線は完全に吸収され
る。これに対して表面が斜めに切削された透過層1に入
射すると、領域Aおよび領域Bに入射したX線の両方が
透過層1に入射することになる。ここで領域Bに入射し
たX線の一部は吸収層2と透過層1との界面で反射さ
れ、透過層1内を進行して透過する。この結果多層膜X
線スリットを斜めに切削して傾斜角Θを有する実施例2
の多層膜X線スリットは実施例1の多層膜X線スリット
に比較して領域Bの部分から入射するX線成分をも透過
することができるから、出射X線8は領域Aと領域Bと
から入射するX線であるから、実施例1の多層膜X線ス
リットに比較してX線強度が増加することになる。
Embodiment 2 FIG. 4 shows a second embodiment of the multilayer X-ray slit of the present invention. The absorption layers 2 and 3 and the transmission layer 1 are made of tungsten and carbon as in the first embodiment. The X-ray incidence side of the multilayer X-ray slit is cut obliquely to form a polished surface. Since the inclined surface is formed obliquely, the surface area of the incident surface is enlarged. In the case of the multilayer X-ray slit subjected to the end surface treatment as shown by the dotted line in FIG. 4, only the X-rays incident on the region A pass through the transmission layer 1 and the absorption layers 2 and 3 are incident X-rays 7. X-rays incident on are completely absorbed. On the other hand, when the light enters the transmission layer 1 whose surface is obliquely cut, both the X-rays incident on the region A and the region B enter the transmission layer 1. Here, a part of the X-rays incident on the region B is reflected at the interface between the absorption layer 2 and the transmission layer 1 and travels through the transmission layer 1 to be transmitted. As a result, the multilayer film X
Example 2 in which a line slit is cut obliquely and has an inclination angle Θ
Since the multilayer X-ray slit of the first embodiment can transmit the X-ray component incident from the portion of the region B as compared with the multilayer X-ray slit of the first embodiment, the output X-rays 8 Since the X-rays are incident from above, the X-ray intensity increases as compared with the multilayer X-ray slit of the first embodiment.

【0011】実施例2の切削面の傾斜角Θと透過率の関
係を、入射角1.0度でCrK特性X線を入射した場合
について、透過X線強度をX線反射率比で表2に示す。
多層膜X線スリットの膜厚は実施例1と同様にして製造
した。また、この時の切削面の角度Θが0度のときの反
射率比を1としている。この表から明らかなように、実
施例2の多層膜X線スリットのように入射側の端面を処
理することにより、実施例1の多層膜X線スリットに比
較して数倍のビーム強度を図ることが出来る。
Table 2 shows the relationship between the transmission angle and the inclination angle Θ of the cut surface in Example 2 when the X-rays with CrK characteristics were incident at an incident angle of 1.0 °. Shown in
The film thickness of the multilayer X-ray slit was manufactured in the same manner as in Example 1. In addition, the reflectance ratio when the angle の of the cut surface at this time is 0 degrees is 1. As is clear from this table, by treating the end face on the incident side like the multilayer X-ray slit of the second embodiment, the beam intensity is several times higher than that of the multilayer X-ray slit of the first embodiment. I can do it.

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【発明の効果】この発明の多層膜X線スリットは従来
と比較すると一桁以上細かいX線ビームを作り出すこと
ができる。またこの発明の多層膜X線スリットは、X
線の入射面が多層膜の表面に対して傾斜した面を備える
ことにより対象物に照射するX線ビームの強度を増大
させることが可能であるばかりでなく、従来のX線発生
装置に用いることにより、微細なX線ビームを作り出す
ことができるから、従来に比較して数桁小さな試料や
試料の微小部等の分析や構造評価が可能になる。従っ
て、X線を利用した光学系の精密な構築を簡便に行うこ
とができるという産業上の優れた効果がある。また、こ
のような多層膜X線スリットを二個使用することにより
X線ホログラフィが可能である。
The multilayer X-ray slit of the present invention can produce an X-ray beam finer by one digit or more as compared with the conventional one. In addition , the multilayer X-ray slit of the invention
By <br/> the incident surface of the line comprises an inclined surface with respect to the surface of the multilayer film, not only it is possible to increase the intensity of the X-ray beam for irradiating the object, a conventional X-ray By using it for a generator, a fine X-ray beam can be created .
It becomes possible to analyze and evaluate the structure of the minute part of the sample. Therefore, there is an industrially superior effect that the precise construction of the optical system using X-rays can be easily performed. X-ray holography is possible by using two such multilayer X-ray slits.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る多層膜X線スリットの第1の実
施例を示す拡大斜視図である。
FIG. 1 is an enlarged perspective view showing a first embodiment of a multilayer X-ray slit according to the present invention.

【図2】第1の実施例の拡大断面図である。FIG. 2 is an enlarged sectional view of the first embodiment.

【図3】従来のX線スリットの説明概略図である。FIG. 3 is an explanatory schematic view of a conventional X-ray slit.

【図4】この発明の多層膜X線スリットの第2の実施例
の拡大断面図である。
FIG. 4 is an enlarged sectional view of a second embodiment of the multilayer X-ray slit of the present invention.

【符号の説明】[Explanation of symbols]

1 …透過層 2 …吸収層 3 …吸収層 4 …X線 5 …スリット刃 6 …スリット刃 7 …入射X線 8 …出射X線 9 …基板 DESCRIPTION OF SYMBOLS 1 ... Transmissive layer 2 ... Absorbing layer 3 ... Absorbing layer 4 ... X-ray 5 ... Slit blade 6 ... Slit blade 7 ... Incoming X-ray 8 ... Outgoing X-ray 9 ... Substrate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−36534(JP,A) 特開 昭62−115400(JP,A) 実開 平2−48897(JP,U) 特表 平2−501338(JP,A) 国際公開92/8235(WO,A1) (58)調査した分野(Int.Cl.7,DB名) G21K 1/06 G21K 1/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-36534 (JP, A) JP-A-62-115400 (JP, A) JP-A-2-48897 (JP, U) 501338 (JP, A) International publication 92/8235 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) G21K 1/06 G21K 1/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 X線吸収係数の異なる二種類の材料を用
い、X線吸収係数の小さい材料からなるX線を通過させ
透過層の両面にX線吸収係数の大きい材料の吸収層
を被覆した多層膜からなり、前記多層膜の側端面にX線
を入射する入射面およびX線を出射する出射面を備え
ことを特徴とする多層膜X線スリット。
[Claim 1] with X Sen吸 yield coefficient of two kinds of materials, is passed through the X-ray formed of a material having a small X-ray absorption coefficient
That on both sides of the transparent layer, Ri Do multilayer film coated with absorbent layer of material having a large X-ray absorption coefficient, X-ray to a side end surface of the multilayer film
Multilayer film X-ray slit, wherein Rukoto with an emission surface that emits the incident surface and the X-rays incident.
【請求項2】 前記入射面が前記多層膜の表面に対して
傾斜した面であることを特徴とする請求項1に記載の多
層膜X線スリット。
2. The method according to claim 1, wherein the light incident surface is located on a surface of the multilayer film.
2. The multilayer X-ray slit according to claim 1 , wherein the slit is an inclined surface .
JP26435891A 1991-10-14 1991-10-14 Multi-layer X-ray slit Expired - Lifetime JP3189126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26435891A JP3189126B2 (en) 1991-10-14 1991-10-14 Multi-layer X-ray slit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26435891A JP3189126B2 (en) 1991-10-14 1991-10-14 Multi-layer X-ray slit

Publications (2)

Publication Number Publication Date
JPH05100092A JPH05100092A (en) 1993-04-23
JP3189126B2 true JP3189126B2 (en) 2001-07-16

Family

ID=17402050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26435891A Expired - Lifetime JP3189126B2 (en) 1991-10-14 1991-10-14 Multi-layer X-ray slit

Country Status (1)

Country Link
JP (1) JP3189126B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731501B2 (en) * 1993-04-07 1998-03-25 理学電機工業株式会社 X-ray focusing element
JP5440481B2 (en) * 2010-12-03 2014-03-12 株式会社島津製作所 Slitting device

Also Published As

Publication number Publication date
JPH05100092A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
US4360586A (en) Spatial period division exposing
US4028547A (en) X-ray photolithography
DE69121972T2 (en) X-ray microscope
US4890309A (en) Lithography mask with a π-phase shifting attenuator
JP3078163B2 (en) Lithographic reflective mask and reduction projection exposure apparatus
DE112009000120T5 (en) Grazing incidence collector for laser-generating plasma sources
EP0083394B1 (en) A method and apparatus for providing a uniform illumination of an area
US20060002512A1 (en) X-ray reflector exhibiting taper, method of making same, narrow band x-ray filters including same, devices including such filters, multispectral x-ray production via unispectral filter, and multispectral x-ray production via multispectral filter
Beigman et al. Reflection of few-cycle x-ray pulses by aperiodic multilayer structures
JP3189126B2 (en) Multi-layer X-ray slit
US20070165782A1 (en) Soft x-ray processing device and soft x-ray processing method
JP2001027700A (en) Multi-layer film reflecting mirror, manufacture of it, control method for stress of multi-layer film reflecting mirror, and exposure device
Sarkar et al. Interface evolution of Co/Ti multilayers with ultra-short period
US20050094271A1 (en) Hybrid optical component for x ray applications and method associated therewith
US6686290B2 (en) Method of forming a fine pattern
FR2733854A1 (en) X-RAY FOCUSING / DISPERSION DEVICE AND METHOD FOR PRODUCING THE SAME
Berrouane et al. Soft-x-ray multilayer gratings with subhalfmicron period
JP2021089218A (en) Multilayer film diffraction grating
Chernov et al. Fabrication and performance characteristics of a NiC multilayer grating for hard X-rays
JPS63316434A (en) X-ray exposure
Martynov et al. Deep multilayer gratings with adjustable bandpass for spectroscopy and monochromatization
Ishino et al. Surface Modifications of Metals Induced by Soft X-Ray Laser Pulse Irradiations.
JPH10208998A (en) Laser plasma x-ray generator and method and device for transferring fine pattern using it
Erko et al. Bragg-Fresnel optics and supermirrors
JPS63111500A (en) Multilayer film reflecting mirror for x-ray and device using said reflectign mirror

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11