JPS59178749A - Wiring structure - Google Patents

Wiring structure

Info

Publication number
JPS59178749A
JPS59178749A JP5252983A JP5252983A JPS59178749A JP S59178749 A JPS59178749 A JP S59178749A JP 5252983 A JP5252983 A JP 5252983A JP 5252983 A JP5252983 A JP 5252983A JP S59178749 A JPS59178749 A JP S59178749A
Authority
JP
Japan
Prior art keywords
resin
layer
h3sio
film
insulation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5252983A
Other languages
Japanese (ja)
Other versions
JPH0230572B2 (en
Inventor
Shiro Takeda
武田 志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5252983A priority Critical patent/JPS59178749A/en
Publication of JPS59178749A publication Critical patent/JPS59178749A/en
Publication of JPH0230572B2 publication Critical patent/JPH0230572B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a multilayer interconnection which is excellent in heat resistance and has a flat surface by a method wherein an interlayer insulation film constituting a multilayer interconnection structure is made of Si resin having a specific composition. CONSTITUTION:When an insulation layer and a conductive wiring layer are laminated on a semiconductor substrate in one or multilayer into the wiring structure, the material having the following composition is used for the whole or a part of the insulation layer. That is, using the Si resin wherein the terminal of polysiloxysane expressed by the formula (H2-aRaSiO)n whose R is H3SiO, H2 CH3SiO, H(CH3)2SiO, (CH3)3SiO and mean value of (a) in a molecule is 0-1 is blocked with H3SiO, H2CH3SiO, H(CH3)2SiO or (CH3)3SiO, said resin is coat- hardened into the insulation layer. In other words, when SiOx is used by means of the Si resin made of H3SiO-(H2SiO)n-SiH3, it becomes based on the view- point that volume contraction strain is small and that a pin hole is fine.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は多層構造体に係シ、特に例えば半導体装置、バ
ブルメモリ装置などの微細パターンを有する電子デバイ
スに関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to multilayer structures, and particularly to electronic devices having fine patterns, such as semiconductor devices and bubble memory devices.

(2)技術の背景 電子回路の機能が増大しそわに用いられる電子部品も次
第に個別部品からIC及びLSIへと集積度が増大する
につれて素子間の配線が複雑に々シ多くの交差を必要と
するようになってきた。これによ少多層配線が必要にな
った。我々は先に基板上に一般式(H2−、QRaSi
O)nCRはH3S i O。
(2) Background of the technology As the functions of electronic circuits increase and the degree of integration of the electronic components used gradually increases from individual components to ICs and LSIs, the wiring between elements becomes more complex and requires many intersections. I've come to do it. This required some multilayer wiring. We first deposited the general formula (H2-, QRaSi
O) nCR is H3S i O.

H2CH3SiO、H(CH3)2S10もしく ?i
:(CH5) s s ioでsb、auOもしくは1
で、分子中の平均値は0?、  と1の範囲にある。〕
で表わされる樹脂を塗布し、熱分解して酸化珪素膜を形
成させる方法に関する特許を出願しているが、本発明は
この樹脂を配線構造体の絶縁層に適用したものである。
H2CH3SiO, H(CH3)2S10 or ? i
:(CH5) s s io with sb, auO or 1
So, the average value in the molecule is 0? , is in the range of 1. ]
A patent has been filed for a method of coating a resin represented by the formula and thermally decomposing it to form a silicon oxide film.The present invention applies this resin to an insulating layer of a wiring structure.

(3)従来技術と問題点 従来、LSI、ノヨセ7ソ/素子J、J及びバブルメモ
リーiど微細/?ターンを有するデバイスの層間絶縁は
シリコン基板の熱酸化による酸化珪素(8102)膜、
シラン系ガスを用いた気相成長による5io2系絶縁材
料、あるいはポリイミド、シリコーン樹脂などの有機系
絶縁材料などを用いて行なわれているが、微細化、信頼
性などに一長一短がある。即ち層間絶縁において平担化
機能、空気中400〜1000″’GK耐える耐熱性、
及び例えば密着性、耐電食性、厚膜形成性などの信頼性
のすべてを満足する材料が存在しないのが現状である。
(3) Conventional technology and problems Conventionally, LSI, Noyose 7 so/element J, J and bubble memory i are fine/? The interlayer insulation of the device with turns is a silicon oxide (8102) film formed by thermal oxidation of the silicon substrate.
This is done using a 5io2 type insulating material by vapor phase growth using a silane type gas, or an organic type insulating material such as polyimide or silicone resin, but these have advantages and disadvantages in terms of miniaturization, reliability, etc. In other words, it has a flattening function in interlayer insulation, heat resistance that can withstand 400 to 1000''GK in air,
Currently, there is no material that satisfies all of the reliability requirements such as adhesion, electrolytic corrosion resistance, and ability to form a thick film.

今、平担化機能及び耐熱性という点で優れているシリコ
ーン樹脂の塗布及び熱処理による5tyx膜形成に着目
すると、ポリジアルコキシシランROf (RO) 2
S 10 ;1)nRC式中、Rは一価の炭化水素、例
えばCH3,C2H5又は水素であシ、ORの少々くと
も]/3はアルコキシ基である。〕を熱分解して510
2にする方法が知られている。分子中にアルコキシ基を
残す理由はすべてをOHにすると保存安定性が非常に悪
くなるからである。このポリジアルコキシシランを塗布
後熱分解するとアルコキシ基が飛散する際に塗膜に歪と
ピンホールを残すので、材料の種類によるけれども、0
2〜05μm以上の膜厚に塗布した場合は塗膜にクラッ
ク−が入シ、それ以下の膜厚に塗布した場合は電食不良
の原因になる。従って熱分解時に飛散する原子又は原子
団が極めて小さく、少ないシリコーン樹脂が存在すれば
、平担化機能、耐熱性に加えて前記信頼性も優れた絶縁
膜を形成することができるはずである。
Now, when we focus on the formation of a 5tyx film by coating and heat treatment of silicone resin, which has excellent flattening function and heat resistance, polydialkoxysilane ROf (RO) 2
S 10 ;1) In the nRC formula, R is a monovalent hydrocarbon, such as CH3, C2H5, or hydrogen, and at least one of OR]/3 is an alkoxy group. ] by pyrolysis to 510
There is a known method to make it 2. The reason why alkoxy groups are left in the molecule is that if all OH groups are used, the storage stability will be very poor. When this polydialkoxysilane is thermally decomposed after coating, distortion and pinholes are left in the coating film as the alkoxy groups scatter, so depending on the type of material,
If it is applied to a thickness of 2 to 05 μm or more, cracks will appear in the coating, and if it is applied to a thickness less than that, it will cause poor electrolytic corrosion. Therefore, if there is a silicone resin with extremely small atoms or atomic groups that scatter during thermal decomposition, it should be possible to form an insulating film that has excellent flattening function, heat resistance, and the above-mentioned reliability.

(4)発明の目的 本発明の目的は多層配線構造体において、平担化機能、
耐熱性に加えて信頼性のある優れた絶縁膜を提供するこ
とである。
(4) Purpose of the invention The purpose of the present invention is to provide a multilayer wiring structure with a flattening function,
The objective is to provide an excellent insulating film that is not only heat resistant but also reliable.

(5)発明の構成 本発明は一般式; %式% 〔式中、R1は全部がHであるか又は少なくとも半数が
Hであシ、かつ残シが一03iH3,−08iH2CH
3゜−O8IH(CH3)、もしくは−08I(C’H
3)3であシ;R2は一8iH3,−3iH2CH3,
−5iH(CH3)2もしくは−S r (CHs )
 5であシ;nは1〜100の整数である。〕 で表わされるシリコーン樹脂を、必要に応じて溶剤を用
いて、塗布し次いで加熱することによって、前記良好な
平担化機能、耐熱性、信頼性を有する酸化珪素膜が形成
されることを利用して、前記膜を配線構造体における絶
縁層として適用するようにしたものである。
(5) Structure of the Invention The present invention is based on the general formula;
3゜-O8IH (CH3) or -08I (C'H
3) 3; R2 is -8iH3, -3iH2CH3,
-5iH(CH3)2 or -S r (CHs )
5; n is an integer from 1 to 100. ] Utilizes the fact that a silicon oxide film having the above-mentioned good flattening function, heat resistance, and reliability is formed by coating and then heating the silicone resin represented by using a solvent as necessary. Accordingly, the film is applied as an insulating layer in a wiring structure.

即ち本発明は基板上に絶縁層及び導電性配線を一層もし
くはそれ以上に構成した配線構造体において、前記絶縁
層の全部もしくは一部が一般式:%式%) 〔式中、RはI(、SiO、H2CH,SiO、H(C
H,)2SiOもしくけ(CH3)3SfOであシ、&
け0もしくは1で、分子中の平均値はOと1の範囲にあ
る。〕で表わされるポリシロキサンの末端をH3SjO
That is, the present invention provides a wiring structure in which an insulating layer and conductive wiring are formed in one or more layers on a substrate, in which all or part of the insulating layer has a general formula: % formula %) [wherein R is I ( , SiO, H2CH, SiO, H(C
H,) 2SiO also works (CH3) 3SfO, &
The average value in the molecule is between O and 1. ] H3SjO
.

H2CI(3SiO、H(CH3)2SiOもしくは(
CH3)3S 10で封鎖しであるシリコーン樹脂を塗
布硬化させた層で形成されていることを特徴とする配線
構造体を提供する。
H2CI(3SiO, H(CH3)2SiO or (
Provided is a wiring structure characterized in that it is formed of a layer formed by coating and curing a silicone resin which is a sealant with CH3)3S10.

本発明の基本的な原理は式H3S rO−e(2S 1
0 )、 S +H3からなるシリコーン樹脂を用いて
SiOxを形成すれば、熱分解時にHは容易に分解され
るので510x膜中の不純物量は少なく、Hは体積が小
さいのでH飛散後の体積収縮歪は小さく、ピンホールも
微細であシ、かつS10の酸化による体積増加が歪を緩
和し、ピンホールを埋めふので、最終的に歪が小さくか
つ緻密で純粋な5iOx(x=1〜2)膜を有する配線
構造体が得られるということにある。
The basic principle of the invention is the formula H3S rO-e (2S 1
0), if SiOx is formed using a silicone resin consisting of S + H3, H will be easily decomposed during thermal decomposition, so the amount of impurities in the 510x film will be small, and since H has a small volume, the volume will shrink after H scatters. The strain is small and the pinholes are fine, and the volume increase due to oxidation of S10 alleviates the strain and fills the pinholes, so the final result is a dense and pure 5iOx (x = 1 to 2) with small strain. ) A wiring structure having a film can be obtained.

前記のようにHO(−H2SiO9−Hは不安定である
が、末端をシリル化すると安定であり、これによって本
発明によって得られる装置は実際的なものになった。そ
してこの基本原理の利点は分子中にSt。
As mentioned above, HO (-H2SiO9-H) is unstable, but it becomes stable when the terminal is silylated, which makes the device obtained by the present invention practical.The advantages of this basic principle are St in the molecule.

0、Hの他に多少のCH3が含まれても失なわれること
はない。但し本発明に用いる前記シリコーン樹脂の分子
中のR1は実質的に全部がHであることが好ましく、H
以外の置換基の割合は通常10チ程度まで、多くても5
0%未満であるべきである。
Even if some CH3 is included in addition to 0 and H, it will not be lost. However, it is preferable that substantially all of R1 in the molecule of the silicone resin used in the present invention is H;
The proportion of other substituents is usually up to about 10, at most 5.
Should be less than 0%.

本発明ヤ用いるシリコーン樹脂 R20(弓SlO+nR2は比重は1.6〜1.7であ
シ、常温でn (3の場合は液体であシ、n≧3の場合
は粉末であシ、液体の場合はそのまま塗布可能であるが
、粉末の場合又は例えば回転塗布(スピンコード)で基
板に塗布する場合などはトルエンなどの有機溶剤に溶解
してから塗布する。回転塗布の場合の膜厚調整は分子量
、溶剤の種類、樹脂濃度、回転数によって行なうことが
できる。適当な膜厚ば0,5μ〜1.5μの範囲にあシ
、それよシ大きい場合は耐クラツク性を低下させ、それ
よシ小さい場合は絶縁効果を低下させるが他の絶縁材料
と組合せることで使用可能である。
The silicone resin R20 (bow SlO + nR2) used in the present invention has a specific gravity of 1.6 to 1.7, and at room temperature n (3, it is a liquid, and when n≧3, it is a powder. If it is a powder, it can be applied as is, but if it is a powder or if it is to be applied to a substrate by spin coating (spin code), it should be applied after dissolving it in an organic solvent such as toluene. This can be done depending on the molecular weight, type of solvent, resin concentration, and rotation speed.If the film thickness is appropriate, it should be in the range of 0.5μ to 1.5μ; If the resistance is small, the insulation effect will be reduced, but it can be used in combination with other insulating materials.

シリコーン樹脂R20−(R,i S i O)−nR
2は回転塗布、スプレーなどの方法によるコーティング
が可能であるので、凹凸のある基板に塗布し、その表面
を平担化する機能を持っている。従って微細配線を設け
た半導体装置あるいはバブルメモリなどの配線層間絶縁
材料として、60〜300℃で予熱、そして300〜5
00℃で熱処理してSiOx化して用いるのに好適であ
る。尚末端にCH5基をもつものは400℃以下あるい
は場合によって470℃以下では完全な5lOxには変
化し々いのであるが、層間絶縁に用いる場合には完全を
期さなくても使用できる。5l−CH5結合の熱分解は
300〜350℃以上で起きるが、例えば赤外吸収測定
でCH5基あるいは5i−c結合の含有量を追跡するこ
とによって反応を確認できる。塗布と熱処理による51
0x化を繰シ返すことによって厚膜を得たυ、深い穴や
溝を埋めるようにすれば平担化機能が強調され、かつ緻
密な膜を得ることができる。
Silicone resin R20-(R,iSiO)-nR
Since Coating No. 2 can be coated by spin coating, spraying, or other methods, it has the function of coating on an uneven substrate and flattening the surface. Therefore, as an interlayer insulating material for semiconductor devices with fine wiring or bubble memories, etc., it is necessary to preheat at 60 to 300°C and to
It is suitable for use after heat treatment at 00° C. to form SiOx. Note that those having a CH5 group at the end tend to change to complete 5lOx at temperatures below 400°C or, in some cases, below 470°C, but when used for interlayer insulation, they can be used without requiring perfection. Thermal decomposition of the 5l-CH5 bond occurs at temperatures above 300 to 350°C, and the reaction can be confirmed by tracking the content of CH5 groups or 5i-c bonds, for example, by infrared absorption measurement. 51 by coating and heat treatment
A thick film υ is obtained by repeating the 0x conversion process, and by filling in deep holes and grooves, the flattening function is emphasized and a dense film can be obtained.

本発明において体積収縮による膜厚の減少は通常の50
%程度に対してわずか3〜10%の減少であシ、はとん
ど収縮は見られない。
In the present invention, the reduction in film thickness due to volumetric shrinkage is the usual 50%.
%, the decrease is only 3 to 10%, and almost no shrinkage is observed.

本発明の多層配線構造体における絶縁樹脂硬化層は気相
成長法による5I02力とと組合せられた層であっても
よい。
The insulating resin cured layer in the multilayer wiring structure of the present invention may be a layer combined with 5I02 layer formed by vapor phase growth.

(6)発明の実施例 1)樹脂の調製 ジェトキシシランをメチルイソブチルケトン(MIBK
)に溶かし水を加えてシラノール化し、35℃で20時
間縮合重合させた後、ジメチルクロルシランを加えて得
た粉末状のポリシロキサン(CHs )2H810+H
2S t O)nS IH(CH3) 2、〔nの平均
値は8であった。〕を樹脂−■とする。
(6) Example 1) Preparation of resin Jetoxysilane was mixed with methyl isobutyl ketone (MIBK).
), water was added to silanolize it, condensation polymerized at 35°C for 20 hours, and then dimethylchlorosilane was added to obtain a powdered polysiloxane (CHs)2H810+H.
2S t O)nS IH(CH3) 2, [average value of n was 8. ] is designated as resin -■.

水を2%含むMIBK中にジクロルシランガスを導入し
さらにクロルシランでシリル化して得た粉末状のポリシ
ロキサンI(3810(H2810)nSi)(3[T
Iの平均値は19であった〕を樹脂■とする。
Powdered polysiloxane I (3810 (H2810) nSi) (3[T
The average value of I was 19] was designated as resin ■.

樹脂−11樹脂−■をトルエンに溶解した液をそれぞれ
樹脂液−11樹脂液−■とする。
The solutions obtained by dissolving Resin-11 and Resin-■ in toluene are referred to as Resin Liquid-11 and Resin Liquid-■, respectively.

2)実施例1 前記のようにして25重量%の樹脂液Iを作成した。次
にシリコン基板内にバイポーラ素子を形成し、その上に
1層目のアルミニウム配線を行なった。前記アルミニウ
ム配線の厚さは0.9μm1最小線幅は3μm、最小線
間隔は2μmである。前記樹脂液を6000 rpm、
  20秒の条件で回転塗布し、80℃、30分の溶剤
乾燥及び450℃、60分の熱処理を行なった。同一条
件で平板上に塗布して得られる膜厚は0.8μmであっ
たが、前記アルミニウム配線上では0.4μm1スペ一
ス部では1.1μ?nであシ、段差は0.2μmであっ
た。次に1.0μmのPSGを公知の方法で形成し、ス
ルーホールの形成、2層目のアルミニウム配線の形成、
さらに保護層として1.3μmのPSG層を形成し、電
極取出し用窓あけを行なってバイポーラ素子装置を得た
。この装置は空気中500℃、1時間の加熱試験、−6
5℃←150’Cの10回の熱衝撃試験、85°C29
0q6RH下での6■印加、1000時間の試験及びこ
れらの試験を組合せた試験後においても異常及び不良は
見られkかった。
2) Example 1 A 25% by weight resin liquid I was prepared as described above. Next, a bipolar element was formed in the silicon substrate, and a first layer of aluminum wiring was formed thereon. The aluminum wiring has a thickness of 0.9 μm, a minimum line width of 3 μm, and a minimum line spacing of 2 μm. The resin liquid was heated at 6000 rpm,
Spin coating was performed for 20 seconds, followed by solvent drying at 80° C. for 30 minutes and heat treatment at 450° C. for 60 minutes. The film thickness obtained by coating on a flat plate under the same conditions was 0.8 μm, but on the aluminum wiring, it was 1.1 μm on a 0.4 μm space. The height difference was 0.2 μm. Next, 1.0 μm PSG is formed by a known method, through holes are formed, second layer aluminum wiring is formed,
Furthermore, a 1.3 μm PSG layer was formed as a protective layer, and a window for taking out the electrodes was opened to obtain a bipolar element device. This device was tested in air at 500℃ for 1 hour, -6
Thermal shock test 10 times at 5℃←150'C, 85℃29
No abnormalities or defects were observed even after a 6-hour application under 0q6RH, a 1000-hour test, and a combination of these tests.

以下示S 3)比較例1 実施例1と同様に、但し前記樹脂液Iの代シにポリイミ
ドを同一膜厚に塗布し、350℃、30分の硬化を行な
って、バイポーラ素子装置を得ようとしたが、ポリイミ
ド膜上にPSG膜を形成した段階でPSG膜は剥離した
S3) Comparative Example 1 In the same manner as in Example 1, except that polyimide is applied to the same thickness in place of the resin liquid I and cured at 350°C for 30 minutes to obtain a bipolar element device. However, at the stage when the PSG film was formed on the polyimide film, the PSG film peeled off.

4)比較例2 実施例1と同様に、但し層間絶縁層及び保護層をポリイ
ミドで形成して・々イポーラ素子装置を得た。これを窒
素中500℃、1時間の耐熱試験をした所、ポリイミド
層は茶褐色に変色した。さらに85℃、90SRH下で
6■印加試験を行なった所、太きなリーク電流が流れ、
またポリイミド層が一部剥離した。
4) Comparative Example 2 An Ipolar element device was obtained in the same manner as in Example 1, except that the interlayer insulating layer and the protective layer were formed of polyimide. When this was subjected to a heat resistance test in nitrogen at 500° C. for 1 hour, the polyimide layer turned brown. Furthermore, when we conducted a 6-volt application test at 85°C and 90SRH, a large leakage current flowed.
Also, part of the polyimide layer peeled off.

5)比較例3 実施例1と同様に、但し前記樹脂液lの代りにラダー型
のメチルポリシルセスキオキサンを塗布し、窒素中45
0℃、1時間の硬化を行な−ってバイポーラ素子を得た
。これを窒素中500℃、1時間の耐熱試験及び、85
℃、90SRH下での6v印加試験をしたが、不良はな
かった。しかし空気中500℃、1時間の耐熱試験をし
た所、電極窓あけ部の一部にクラックが発生した。
5) Comparative Example 3 Same as Example 1, except that ladder-type methylpolysilsesquioxane was applied instead of the resin liquid 1, and
A bipolar device was obtained by curing at 0° C. for 1 hour. This was subjected to a heat resistance test at 500°C for 1 hour in nitrogen, and
A 6V application test was conducted at 90SRH at 90°C, but no defects were found. However, when a heat resistance test was conducted in air at 500°C for 1 hour, cracks occurred in a part of the electrode window opening.

6)実施例2 実施例1と同様に、但し1層目のアルミニウム配線上に
18チの樹脂液■を塗布し硬化した後、もう一度樹脂液
■を塗布し硬化し、それがらスルーホール形成後、2層
目のアルミニウム配線を行なった。その上の保護層も樹
脂液を用いて形成し、電極域シ出し窓を形成し、バイポ
ーラ素子を得た。
6) Example 2 Same as Example 1, but after applying 18 inches of resin liquid ■ on the first layer of aluminum wiring and hardening, apply resin liquid ■ again and hardening, and then after forming through holes. , the second layer of aluminum wiring was performed. A protective layer was also formed on the protective layer using a resin liquid, and a window for exposing the electrode area was formed to obtain a bipolar element.

この半導体装置を実施例1で述べた試験を行なったが異
常及び不良は見られなかった。
This semiconductor device was subjected to the test described in Example 1, but no abnormalities or defects were found.

7)実施例3 バブル発生のためのLPE(リキッドフェイズエピタキ
シャル)層の形成されたGGG (ガリウムガドリニウ
ムガーネット)基板上に1ooo1 のS iO2層を
形成した。その上に厚さ4000A のA1層からなる
コンダクタパターンを形成した。
7) Example 3 A 1001 SiO2 layer was formed on a GGG (gallium gadolinium garnet) substrate on which an LPE (liquid phase epitaxial) layer for bubble generation was formed. A conductor pattern consisting of an A1 layer having a thickness of 4000 Å was formed thereon.

コンダクタパターンの線幅は、1〜50μm、スペース
は1〜100μmであった。
The line width of the conductor pattern was 1 to 50 μm, and the space was 1 to 100 μm.

次に濃度15チの樹脂液−1を用い、4000rpm、
30秒の条件で回転塗布し、60℃、30分間の溶剤乾
燥を行なった。この段階では樹脂は溶剤に可溶でおる。
Next, using resin liquid-1 with a concentration of 15 cm, 4000 rpm,
Spin coating was performed for 30 seconds, and solvent drying was performed at 60° C. for 30 minutes. At this stage, the resin remains soluble in the solvent.

次いで空気中350℃、60分の硬化を行なった。平坦
基板に同一条件で塗布したとき樹脂膜の厚さは0.35
μmであった。さらに厚さ4000Xのパーマロイパタ
ーンを形成し、その上に樹脂液−■を300Orpm、
30秒の条件で回転塗布し、溶剤乾燥後、窒素中300
℃、180分の硬化を行なった。平坦基板上では厚さ0
.4μmとなる。その上にスパッタによって厚さ0.4
μmの5IO2層を形成した。2層の絶縁層の窓あけを
CF4−02(5%)の反応ガスを用いたドライエツチ
ングによって行ないバブルメモリを得た。得られたバブ
ルメモリを85℃、90%RHの環境に置き、ノぞ一マ
ロイi4ターンとコンダクタパターンの間に300vの
直流電圧を100時間印加したが、絶縁不良は起きなか
った。このバブルメモリの正常の動作電圧は最大24V
であシ、優れた信頼性があることがわかった。
Then, curing was performed in air at 350° C. for 60 minutes. The thickness of the resin film is 0.35 when applied to a flat substrate under the same conditions.
It was μm. Furthermore, a permalloy pattern with a thickness of 4000X was formed, and resin liquid -■ was applied at 300 rpm on top of it.
Spin coating for 30 seconds, and after drying the solvent, apply 300% in nitrogen.
Cure for 180 minutes. Thickness 0 on flat substrate
.. It becomes 4 μm. On top of that, the thickness is 0.4 by sputtering.
A 5IO2 layer of μm was formed. A bubble memory was obtained by dry etching the two insulating layers using a reactive gas of CF4-02 (5%). The obtained bubble memory was placed in an environment of 85° C. and 90% RH, and a DC voltage of 300 V was applied between the Nozoichi Malloy i4 turn and the conductor pattern for 100 hours, but no insulation failure occurred. The normal operating voltage of this bubble memory is up to 24V.
It was found to have excellent reliability.

8)比較例4 実施例3と同様にして、但しコンダクタとノヤーマロイ
の間の絶縁層としてポリノエトキシシロキサン溶液を途
布し、空気中350℃、60分処理して厚さ3500X
(平坦基板上)の5IO2層を形成し、パーマロイ層の
上にはスフ4ツタによる厚さ100OOXのS iO2
層を形成した。このパズルメモリを実施例3で行なった
のと同様の電食試験を行なった所、48時間で絶縁不良
が発生した。
8) Comparative Example 4 In the same manner as in Example 3, except that a polynoethoxysiloxane solution was applied as an insulating layer between the conductor and the Noyer Malloy, and treated in air at 350°C for 60 minutes to a thickness of 3500X.
A 5IO2 layer (on a flat substrate) is formed, and on top of the permalloy layer, a 100OOX thick SiO2
formed a layer. When this puzzle memory was subjected to the same electrolytic corrosion test as in Example 3, insulation failure occurred after 48 hours.

(7)発明の効果 本発明によれば耐熱性、信頼性のあるコーティング樹脂
を配線層間絶縁に用いることができるので高信頼性の多
層構造体を得ることができる。
(7) Effects of the Invention According to the present invention, since a heat-resistant and reliable coating resin can be used for wiring interlayer insulation, a highly reliable multilayer structure can be obtained.

特許出願人 富士通株式会社 特許出願代理人 弁理士青水 朗 弁理士 西舘和之 弁理士 内田幸男 弁理士 山 口 昭 之patent applicant Fujitsu Limited patent application agent Patent attorney Akira Aomizu Patent Attorney Kazuyuki Nishitate Patent attorney Yukio Uchida Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】 基板上に絶縁層及び導電性配線を一層もしくけそれ以上
に構成した配線構造体において、前記絶縁層の全部もし
くは一部が一般式: %式%) 〔式中、RはH3SIO、H2C馬sto 、 H(c
a、)2si。 もしくは(CH3) 3S toであシ、ahoもしく
け11分子中のaの平均値はOと1の範囲にある。〕で
表わされるポリシロキサンの末端をH3SiO2H2C
H,SiO、H(CH3)2810もしくは(cu、)
3si。 で封鎖しであるシリコーン樹脂を塗布硬化させた層で形
成されていることを特徴とする配線構造体1
[Scope of Claims] A wiring structure in which an insulating layer and conductive wiring are formed on a substrate in one or more layers, in which all or part of the insulating layer has the general formula: % formula %) [wherein R H3SIO, H2C horse sto, H(c
a,)2si. Or (CH3) 3S to and aho, and the average value of a in the 11 molecules is in the range of O and 1. ] H3SiO2H2C
H, SiO, H(CH3)2810 or (cu,)
3si. A wiring structure 1 characterized in that it is formed of a layer formed by applying and hardening a silicone resin as a sealant.
JP5252983A 1983-03-30 1983-03-30 Wiring structure Granted JPS59178749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5252983A JPS59178749A (en) 1983-03-30 1983-03-30 Wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5252983A JPS59178749A (en) 1983-03-30 1983-03-30 Wiring structure

Publications (2)

Publication Number Publication Date
JPS59178749A true JPS59178749A (en) 1984-10-11
JPH0230572B2 JPH0230572B2 (en) 1990-07-06

Family

ID=12917275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5252983A Granted JPS59178749A (en) 1983-03-30 1983-03-30 Wiring structure

Country Status (1)

Country Link
JP (1) JPS59178749A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219928A (en) * 1986-03-20 1987-09-28 Fujitsu Ltd Manufacture of insulating film
JPS6430294A (en) * 1987-07-27 1989-02-01 Kyocera Corp Electronic circuit component
JPH01173784A (en) * 1987-12-28 1989-07-10 Kyocera Corp Manufacture of multilayer interconnection board
EP0479452A2 (en) * 1990-10-01 1992-04-08 Dow Corning Corporation Perhydrosiloxane copolymers and their use as coating materials
EP0615000A1 (en) 1993-03-08 1994-09-14 Dow Corning Corporation Coatings using filled hydrogen silsequioxane
EP0770652A2 (en) 1995-10-26 1997-05-02 Dow Corning Corporation Tamper-proof electronic coatings
EP0775680A1 (en) 1995-11-27 1997-05-28 Dow Corning Corporation Protective coating for electronic devices
EP0778612A2 (en) 1995-12-04 1997-06-11 Dow Corning Corporation Method of curing hydrogen silsesquioxane resin by electron beam to convert it to a silica containing ceramic coating
US5693565A (en) * 1996-07-15 1997-12-02 Dow Corning Corporation Semiconductor chips suitable for known good die testing
US5707681A (en) * 1997-02-07 1998-01-13 Dow Corning Corporation Method of producing coatings on electronic substrates
US5711987A (en) * 1996-10-04 1998-01-27 Dow Corning Corporation Electronic coatings
US5807611A (en) * 1996-10-04 1998-09-15 Dow Corning Corporation Electronic coatings
US5866197A (en) * 1997-06-06 1999-02-02 Dow Corning Corporation Method for producing thick crack-free coating from hydrogen silsequioxane resin
US5906859A (en) * 1998-07-10 1999-05-25 Dow Corning Corporation Method for producing low dielectric coatings from hydrogen silsequioxane resin
US6210749B1 (en) 1997-06-06 2001-04-03 Dow Corning, Corporation Thermally stable dielectric coatings
EP1107330A2 (en) 1999-12-06 2001-06-13 Dow Corning Corporation Modification of infrared reflectivity using silicon dioxide thin films derived from silsesquioxane resins
US6576300B1 (en) 2000-03-20 2003-06-10 Dow Corning Corporation High modulus, low dielectric constant coatings
US6756085B2 (en) 2001-09-14 2004-06-29 Axcelis Technologies, Inc. Ultraviolet curing processes for advanced low-k materials
US6759098B2 (en) 2000-03-20 2004-07-06 Axcelis Technologies, Inc. Plasma curing of MSQ-based porous low-k film materials
US6913796B2 (en) 2000-03-20 2005-07-05 Axcelis Technologies, Inc. Plasma curing process for porous low-k materials
US8088547B2 (en) 2004-11-02 2012-01-03 Dow Corning Corporation Resist composition
US8148043B2 (en) 2006-06-28 2012-04-03 Dow Corning Corporation Silsesquioxane resin systems with base additives bearing electron-attracting functionalities
US8524439B2 (en) 2006-06-28 2013-09-03 Dow Corning Corporation Silsesquioxane resin systems with base additives bearing electron-attracting functionalities
US9012547B2 (en) 2010-11-09 2015-04-21 Dow Corning Corporation Hydrosilylation cured silicone resins plasticized by organophosphorous compounds
US10358561B2 (en) 2014-04-09 2019-07-23 Dow Silicones Corporation Hydrophobic article
US10473822B2 (en) 2014-04-09 2019-11-12 Dow Silicones Corporation Optical element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054955Y2 (en) * 1988-09-01 1993-02-08

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223273A (en) * 1975-08-15 1977-02-22 Nec Corp Method of manufacturing semiconductor element
JPS5477557A (en) * 1978-11-15 1979-06-21 Toshiba Corp Monostable multivibrator circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223273A (en) * 1975-08-15 1977-02-22 Nec Corp Method of manufacturing semiconductor element
JPS5477557A (en) * 1978-11-15 1979-06-21 Toshiba Corp Monostable multivibrator circuit

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219928A (en) * 1986-03-20 1987-09-28 Fujitsu Ltd Manufacture of insulating film
JPH0588540B2 (en) * 1986-03-20 1993-12-22 Fujitsu Ltd
JPS6430294A (en) * 1987-07-27 1989-02-01 Kyocera Corp Electronic circuit component
JPH01173784A (en) * 1987-12-28 1989-07-10 Kyocera Corp Manufacture of multilayer interconnection board
EP0479452A2 (en) * 1990-10-01 1992-04-08 Dow Corning Corporation Perhydrosiloxane copolymers and their use as coating materials
EP0615000A1 (en) 1993-03-08 1994-09-14 Dow Corning Corporation Coatings using filled hydrogen silsequioxane
EP0770652A2 (en) 1995-10-26 1997-05-02 Dow Corning Corporation Tamper-proof electronic coatings
EP0775680A1 (en) 1995-11-27 1997-05-28 Dow Corning Corporation Protective coating for electronic devices
EP0778612A2 (en) 1995-12-04 1997-06-11 Dow Corning Corporation Method of curing hydrogen silsesquioxane resin by electron beam to convert it to a silica containing ceramic coating
US5693565A (en) * 1996-07-15 1997-12-02 Dow Corning Corporation Semiconductor chips suitable for known good die testing
US5711987A (en) * 1996-10-04 1998-01-27 Dow Corning Corporation Electronic coatings
US5807611A (en) * 1996-10-04 1998-09-15 Dow Corning Corporation Electronic coatings
US6144106A (en) * 1996-10-04 2000-11-07 Dow Corning Corporation Electronic coatings
US5707681A (en) * 1997-02-07 1998-01-13 Dow Corning Corporation Method of producing coatings on electronic substrates
US5866197A (en) * 1997-06-06 1999-02-02 Dow Corning Corporation Method for producing thick crack-free coating from hydrogen silsequioxane resin
US6210749B1 (en) 1997-06-06 2001-04-03 Dow Corning, Corporation Thermally stable dielectric coatings
US6022625A (en) * 1997-06-06 2000-02-08 Dow Corning Corporation Method for producing thick crack-free coatings from hydrogen silsesquioxane resin
US5906859A (en) * 1998-07-10 1999-05-25 Dow Corning Corporation Method for producing low dielectric coatings from hydrogen silsequioxane resin
EP1107330A2 (en) 1999-12-06 2001-06-13 Dow Corning Corporation Modification of infrared reflectivity using silicon dioxide thin films derived from silsesquioxane resins
US6576300B1 (en) 2000-03-20 2003-06-10 Dow Corning Corporation High modulus, low dielectric constant coatings
US6759098B2 (en) 2000-03-20 2004-07-06 Axcelis Technologies, Inc. Plasma curing of MSQ-based porous low-k film materials
US6759133B2 (en) 2000-03-20 2004-07-06 Dow Corning Corporation High modulus, low dielectric constant coatings
US6913796B2 (en) 2000-03-20 2005-07-05 Axcelis Technologies, Inc. Plasma curing process for porous low-k materials
US6756085B2 (en) 2001-09-14 2004-06-29 Axcelis Technologies, Inc. Ultraviolet curing processes for advanced low-k materials
US8088547B2 (en) 2004-11-02 2012-01-03 Dow Corning Corporation Resist composition
US8148043B2 (en) 2006-06-28 2012-04-03 Dow Corning Corporation Silsesquioxane resin systems with base additives bearing electron-attracting functionalities
US8524439B2 (en) 2006-06-28 2013-09-03 Dow Corning Corporation Silsesquioxane resin systems with base additives bearing electron-attracting functionalities
US9012547B2 (en) 2010-11-09 2015-04-21 Dow Corning Corporation Hydrosilylation cured silicone resins plasticized by organophosphorous compounds
US10358561B2 (en) 2014-04-09 2019-07-23 Dow Silicones Corporation Hydrophobic article
US10473822B2 (en) 2014-04-09 2019-11-12 Dow Silicones Corporation Optical element

Also Published As

Publication number Publication date
JPH0230572B2 (en) 1990-07-06

Similar Documents

Publication Publication Date Title
JPS59178749A (en) Wiring structure
EP0517475B1 (en) Process for coating a substrate with a silica precursor
JPS63107122A (en) Flattening method for irregular substrate
JP3418458B2 (en) Method for manufacturing semiconductor device
TW442546B (en) Method for producing low dielectric coatings from hydrogen silsequioxane resin
US6764718B2 (en) Method for forming thin film from electrically insulating resin composition
JPS6046826B2 (en) semiconductor equipment
WO2002077321A1 (en) Method for forming metal pattern
JPH0615770A (en) Passivation of metal in metal/polyimide structure
JP2001247819A (en) Electric insulating crosslinked film-forming organic resin composition, and method for forming electric insulating crosslinked film
JPS60124943A (en) Formation of silicon oxide film
JP3489946B2 (en) Method for forming insulating film of semiconductor device and material for forming insulating film
JPS5957437A (en) Forming method for silicon oxide film
JP2000100808A (en) Insulation film forming material and semiconductor device containing insulating film formed of the same
JPH07307114A (en) Method for forming polyimide insulated film
JPH0578939B2 (en)
JPH0551458A (en) Organosilicon polymer and method for producing semiconductor device using the same polymer
JPH0263057A (en) Photosensitive heat resistant resin composition and production of integrated circuit
JP4688411B2 (en) Composite insulation coating
JPS6346576B2 (en)
JPH01313942A (en) Semiconductor device
JPS60108842A (en) Manufacture of semiconductor device
JPS6113382B2 (en)
JPS6356569A (en) Heat-resistant resin coating material
JPS63152673A (en) Heat-resistant resin composition