JPS59173314A - Drawing of synthetic fiber - Google Patents

Drawing of synthetic fiber

Info

Publication number
JPS59173314A
JPS59173314A JP4726983A JP4726983A JPS59173314A JP S59173314 A JPS59173314 A JP S59173314A JP 4726983 A JP4726983 A JP 4726983A JP 4726983 A JP4726983 A JP 4726983A JP S59173314 A JPS59173314 A JP S59173314A
Authority
JP
Japan
Prior art keywords
synthetic fibers
fiber
colloid
fibers
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4726983A
Other languages
Japanese (ja)
Inventor
Akihiro Aoki
昭宏 青木
Shiyouzaburou Hiratsuka
平塚 尚三郎
Norihisa Yamaguchi
山口 紀久
Shoji Makino
昭二 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4726983A priority Critical patent/JPS59173314A/en
Priority to DE8484102374T priority patent/DE3462159D1/en
Priority to US06/586,792 priority patent/US4525384A/en
Priority to EP84102374A priority patent/EP0121132B1/en
Publication of JPS59173314A publication Critical patent/JPS59173314A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the troubles of fluffing, end-breakage, etc. in the drawing of synthetic fiber, by applying inert hydrated inorganic colloid having film- forming property to an undrawn yarn of synthetic fiber, and hot-drawing the yarn gradually causing the molecular orientation. CONSTITUTION:The hot-drawing of a synthetic fiber made of an aromatic copolyamide of preferably formula I and/or formula II (R1-R3 are H or lower alkyl; Ar1-Ar3 are phenyl, naphthyl, biphenyl, diphenyl ether, etc.) is carried out by coating the undrawn yarn of the fiber with inert hydrated inorganic colloid having film-forming property (preferably composed mainly of colloidal silica or dilatable mica colloid), and drawing the coated yarn gradually causing the molecular orientation of the fiber.

Description

【発明の詳細な説明】 a0発明の利用分野 本発明は合成繊維の熱延伸方法に関する。[Detailed description of the invention] Field of application of a0 invention The present invention relates to a method for hot stretching synthetic fibers.

さらに詳しくは、高温度に加熱して高倍率に延伸して、
高強力の合成繊維を得る延伸方法に関するものである。
More specifically, by heating to high temperature and stretching to high magnification,
The present invention relates to a drawing method for obtaining high-strength synthetic fibers.

b、従来技術 近年、合成繊維に対する要求が高度化し、特に高強力・
高モジユラス化の要髭に対し、種々の新規な素材が開発
・検討されてきている。それらのうち、ある種のもの、
特に芳香族ポリアミド、芳香族コポリアミド、芳香族オ
キサジアゾール、/メチルヒドラジドコポリマー等から
なる高性能合成繊維にあっては5そのすぐれた性能を発
現するために、未延伸糸を高温度(例えば300〜60
0℃)で除徐に配向を高めながら高倍率に延伸する工程
が適用され、この工程においては、繊維表面が軟化する
まで加熱されて延伸されるだめに、繊維束を構成してい
るフィラメントどうしが、接触している部分で融着した
りあるいは、延伸点の異なるフィラメントどうしの摩擦
力が高くなるために、フィラメントが切断され、毛羽の
発生を引きおこし、しばしば延伸中に断糸を誘発すると
いう現象を引きおこす。
b. Prior art In recent years, the requirements for synthetic fibers have become more sophisticated, especially those with high strength and
Various new materials have been developed and studied to address the need for high modulus beards. Some of them,
In particular, for high-performance synthetic fibers made of aromatic polyamides, aromatic copolyamides, aromatic oxadiazoles, /methyl hydrazide copolymers, etc.5, undrawn yarns are heated at high temperatures (e.g. 300-60
A process of drawing at a high magnification while gradually increasing the orientation at 0°C) is applied, and in this process, the filaments that make up the fiber bundle are heated until the fiber surface softens and drawn. However, the filaments may be fused at the contact points, or the frictional force between the filaments at different drawing points may be high, causing the filaments to break, causing fuzz, and often causing yarn breakage during drawing. This causes the phenomenon.

更には、熱処理効率を向上させるだめに、繊維束を加熱
板に接触させて延伸させた場合、熱板とそれに接触した
繊維との摩擦力が高くなり、上記と同様延伸中の断糸を
誘発するという現象も多くなる。
Furthermore, if the fiber bundle is drawn in contact with a heating plate in order to improve heat treatment efficiency, the frictional force between the heating plate and the fibers in contact with it will increase, causing yarn breakage during drawing as described above. The phenomenon of doing so will also increase.

このような断糸を防ぐ方法として、加熱の温度を下げる
方法も考えられるが、その場合には、繊維の温度を高く
することができず、従って延伸倍率を高くできないため
に延伸によって繊維の高強力を発現できない。
One possible way to prevent such yarn breakage is to lower the heating temperature, but in that case, it is not possible to raise the temperature of the fibers and therefore the draw ratio cannot be increased. Unable to express power.

C9発明の目的 本発明の目的は、前記の如く合成繊維を高温度((加熱
して、高倍率に延伸する際に発生する毛羽、糸切れ等の
トラブルを防止することにあり、繊維表面が軟化しても
延伸中の繊維束構成フィラメントどうしの接触による断
糸を抑制できる工朶的に有利な方法を提供せんとするも
のである。
C9 Purpose of the Invention The purpose of the present invention is to prevent problems such as fuzz and thread breakage that occur when synthetic fibers are heated at high temperatures and stretched to a high magnification, as described above, and the fiber surface is The object of the present invention is to provide a technically advantageous method capable of suppressing yarn breakage due to contact between filaments constituting a fiber bundle during drawing even when the filaments are softened.

d0発明の構成 本発明は、合成繊維を熱延伸するに際して、未延伸糸に
造膜性能を有する不活性な無機物の水和コロイドを塗布
して後、徐々に分子配向させながら延伸することを特徴
とする合成繊維の延伸方法である。
d0 Structure of the Invention The present invention is characterized in that, when hot-drawing synthetic fibers, an inert inorganic hydrated colloid having film-forming properties is applied to undrawn yarns, and then the molecules are drawn while being gradually oriented. This is a method for drawing synthetic fibers.

本発明において[造膜性能を有する不活性な無機物の水
利コロイド」とは水利コロイドを形成できる1で微粒子
化された無機物からなる水和コロイドで、かつ該コロイ
ドの水分を蒸発乾固させたときに、薄膜を形成する所謂
、造膜性能を有するもので、延伸温度で、水、有機溶媒
2弱酸、あるいは弱アルカリと反応をしない微粒子から
なるものである。
In the present invention, "an inert inorganic water colloid with film-forming ability" refers to a hydrated colloid made of an inorganic substance that has been made into fine particles by 1, which can form a water colloid, and when the water content of the colloid is evaporated to dryness. In addition, it has a so-called film-forming ability to form a thin film, and is made of fine particles that do not react with water, an organic solvent, a weak acid, or a weak alkali at the stretching temperature.

水和コロイドを繊維表面に塗着させて後、該繊維を高温
に加熱する際、水を媒体として二次凝集体を形成し、一
般的にはこの二次凝集体が粗大粒子となるので、繊維表
面に微粉末コロイドとして塗布しても、微粉末としての
効果はなくなってしまう。
After applying the hydrated colloid to the fiber surface, when the fiber is heated to a high temperature, secondary aggregates are formed using water as a medium, and generally these secondary aggregates become coarse particles. Even if it is applied as a fine powder colloid to the fiber surface, the effect of the fine powder will be lost.

ところが、無機微粒子の水利コロイドの水分を蒸発乾固
させて出来る二次凝集体の中にも粗大粒子とならずに、
薄膜を形成する性能−を有するものは、繊維表面に塗着
させて後加熱した際、繊維表面に薄膜を形成し、繊維束
を構成するフィラメントどうしの摩擦力を低くし、ある
いはフィラメントと熱板との摩擦力を低くできるのであ
る。このため、本発明で使用する水利コロイドは、繊維
表面に塗布後、乾燥させる際繊維表面に薄M!を形成す
るものでなければならない。゛ また本発明において、繊維に塗布する微粉末が、化学的
に活性であると、繊維表面が軟化する湿層まで加熱した
ときに、繊維が微粉末と化学反応するために変質して、
繊維が劣化して高強力糸を得ることができないので、塗
布する水和コロイドは化学的に不活性なものからならな
ければならない。
However, even in the secondary aggregates formed by evaporating the water content of water colloids made of inorganic fine particles to dryness, they do not become coarse particles.
Those that have the ability to form a thin film form a thin film on the fiber surface when coated on the fiber surface and then heated, reducing the frictional force between the filaments that make up the fiber bundle, or when the filaments and the hot plate are heated. This allows the frictional force between the two to be lowered. For this reason, the water-use colloid used in the present invention has a thin M! It must form a In addition, in the present invention, if the fine powder applied to the fibers is chemically active, when heated to a wet layer where the fiber surface softens, the fibers will chemically react with the fine powder and change in quality.
The applied hydrated colloid must be chemically inert, since the fibers will degrade and high tenacity yarns cannot be obtained.

繊維に塗布する水オロコロイドは、塗布後、延伸IU前
−まで繊維表面に薄膜状で残存していてはじめて軟化し
た繊維表面どうしおよび繊維表面と熱板との摩擦力が低
くなり高倍率延伸時[、繊維:を構成しているフィラメ
ントが切断され難くなるのであり、その水foコロイド
成分が繊維表面を実質的に均一に覆って薄膜を形成して
いることが必須の要件となるのである。
The water orocolloid applied to the fibers remains in the form of a thin film on the fiber surface after application and before stretching IU, and only then does the frictional force between the softened fiber surfaces and between the fiber surface and the hot plate become low during high-magnification stretching [ This makes it difficult for the filaments constituting the fibers to be cut, and it is essential that the water fo colloid components substantially uniformly cover the fiber surface to form a thin film.

全体に均一に覆っていないと、該成分で覆われていない
繊維表面どうし、あるいは繊維表面とが、熱板と接触し
た部分で、摩擦力のためにフィラメント切れが発生する
ので、本発明の目的を達成すると七ができない。
If the entire fiber is not covered uniformly, the filament will break due to frictional force at the portion where the fiber surfaces that are not covered with the component or the fiber surface come into contact with the hot plate. If you achieve 7, you won't be able to do 7.

従って、水利コロイドの塗布量は、繊維表面を均一に5
うに足る量必要である゛が、塗布量が多すぎると、繊維
が巻取られるまでのプOセスあるいは、繊維を加工する
プロセスでコロイド成分が繊維から脱離して糸導を汚す
などのトラブルを生じるばかりでなく、繊維をゴム補強
、F’RP用等に使用した場合、ゴム。
Therefore, the amount of water colloid applied should be 50% evenly over the fiber surface.
However, if the amount applied is too large, problems such as colloidal components detaching from the fibers and staining the thread guide during the process of winding the fibers or during the process of processing the fibers may occur. Not only is it produced, but when the fibers are used for rubber reinforcement, F'RP, etc., rubber.

または樹脂に対する接着性を低下せしめるので、コロイ
ド成分は必要最少量でなければならなく、従って少量で
薄膜で繊維を均一に覆うには、薄膜の厚さが薄いほど好
ましく、従って水利コロイドを構成する無機物の粒子が
小さいほど好ましく、粒子径まだは臂開板の厚さとして
100mμ以下がより効果的である、これに対し、下記
無機物の粒子径が太きいと、繊維を均一て被覆するため
には多量の微粒子を用いる必要があるばかりでなく、粒
子−が大きいためだけの原因によっても延伸プロセス、
巻取プロセスおよび加工プロセスでの該無機物の脱離の
量が多くなり好ましくない。
Otherwise, the amount of colloidal components must be the minimum necessary because it reduces the adhesion to the resin. Therefore, in order to uniformly cover the fibers with a thin film with a small amount, the thinner the thin film is, the better. The smaller the particle size of the inorganic material is, the more preferable it is, and the more effective the particle size is 100 mμ or less as the thickness of the arm plate.On the other hand, if the particle size of the inorganic material described below is large, it will be difficult to uniformly coat the fibers. Not only is it necessary to use a large amount of fine particles, but also the drawing process is difficult due to the large size of the particles.
This is undesirable because the amount of the inorganic substance desorbed during the winding process and processing process increases.

延伸前に繊維に塗布する無機微粒子の量は繊維の重量に
対して0.01〜1wt%好ましくは0.05〜0.5
 wt%である。
The amount of inorganic fine particles applied to the fibers before stretching is 0.01 to 1 wt% based on the weight of the fibers, preferably 0.05 to 0.5%.
It is wt%.

本発明に使用される好ましい水和コロイドとしては微細
シリカから力るコロイダルンリ力、微綿粒子からなる膨
潤性雲母のコロイドなどの化学的に不活性な無機化合物
、あるいはそれらの混合物を主成分とする造膜性能を有
する水和コロイドがあげられる。
Preferred hydrated colloids used in the present invention include colloidal colloids made from fine silica, chemically inert inorganic compounds such as swellable mica colloids made of fine cotton particles, or mixtures thereof. Examples include hydrated colloids that have film-forming properties.

本発明において造膜性を有する不活性な無機物の水和コ
ロイドを未延伸糸て塗布する方法としては該コロイド液
に未延伸糸を浸漬させることが好ましく、この場合オイ
リングローラ−法1c比して、均一に繊維に塗布させる
ことができ、繊維への塗布量を調節する方法としては、
浸漬時間を変更するか、分散液の濃度を変える方法、更
には浸漬後の未延伸糸を絞pローラー間で絞り出す方法
等採用できる。
In the present invention, as a method for applying a hydrated colloid of an inert inorganic substance having a film-forming property to an undrawn yarn, it is preferable to immerse the undrawn yarn in the colloid liquid. , as a method to uniformly apply it to the fibers and to adjust the amount applied to the fibers,
Methods such as changing the dipping time or changing the concentration of the dispersion, and furthermore, squeezing out the undrawn yarn after dipping between squeezing rollers can be adopted.

本発明に用いる水和コロイドを作成する方法として造膜
性能を有する無機微粒子を超音波等を用いて物理的に分
散させる方法がある。
As a method for producing the hydrated colloid used in the present invention, there is a method in which inorganic fine particles having film-forming properties are physically dispersed using ultrasonic waves or the like.

本発明において造膜性能を実験的に評価するには、水利
コロイドをガラス板上知塗布して100〜300°Cに
加熱しながら水分を蒸発乾固させた後の造膜性能で判断
できる。本発明に用いられる水利コロイドは」1記方法
で評価して、2μ以上の幅の薄膜を形成するものが好ま
しい。
In order to experimentally evaluate the film forming performance in the present invention, it can be judged by the film forming performance after coating the water colloid on a glass plate and evaporating water to dryness while heating the glass plate to 100 to 300°C. The aqueous colloid used in the present invention is preferably one that forms a thin film with a width of 2μ or more when evaluated by the method described in 1.

本発明の方法が適用される合成繊維としては、軟化温度
以上で熱延伸される有機合成繊維すべてを含むが、例え
ば、ポリエチレン。
Synthetic fibers to which the method of the present invention is applied include all organic synthetic fibers that are heat-stretched at temperatures above their softening temperature, such as polyethylene.

ポリプロピレン、ポリアミド、ポリエステル等の熱可塑
性ポリマーを主成分とする熱可塑性ポリマーがあげられ
る。
Examples include thermoplastic polymers whose main component is thermoplastic polymers such as polypropylene, polyamide, and polyester.

更に、本発明の方法が好ましく適用される繊維として、
近年高強力・高モジュラス繊維として開発されている以
下の如き繊維素材力玉あげられる。
Furthermore, as fibers to which the method of the present invention is preferably applied,
The following fiber materials have recently been developed as high-strength, high-modulus fibers.

(1)下記繰返し単位 NR+ xr、 NR2Co Ar2  Co−及び/
又は−NR3−Ar3−CO− (ここで、J+ R2+ R3は水素及び/又は低級ア
ルキル基であり、Ar1. Ar2. Ar3 は以下
から選ばれた少なくとも一部の芳香族残基を示す。
(1) The following repeating units NR+ xr, NR2Co Ar2 Co- and/
or -NR3-Ar3-CO- (wherein, J+ R2+ R3 is hydrogen and/or a lower alkyl group, and Ar1. Ar2. Ar3 represents at least some aromatic residues selected from the following.

す。壕だ、芳香族残基の水素原子は/・ロゲン原子及び
/又は低級アルキル基で置換されていてもよい。) で示される芳香族ポリアミドの繊維、例えば、直線及び
/又は平行軸の結合手を有する芳香族残基(例えばp−
フェニレン、2゜6−ナブタンン、  4.4’−ジフ
ェニル等)カらなる全芳香族ポリアミドに3.4′−2
フエニルエーテル、4.4′−ジフェニルエーテル。
vinegar. However, the hydrogen atom of the aromatic residue may be substituted with a rogen atom and/or a lower alkyl group. ), for example, aromatic residues having straight and/or parallel axial bonds (e.g. p-
phenylene, 2°6-nabutane, 4,4'-diphenyl, etc.) and 3.4'-2
Phenyl ether, 4,4'-diphenyl ether.

m−フェニレン等を共重合したり、更r(芳香族残基の
水素原子の一部を)・ロゲン原子及び/又は低級アルキ
ル基で置換することにより、繊維に成形した場合の延伸
性を高めた芳香族コポリアミドの繊維。
By copolymerizing m-phenylene etc. or substituting some of the hydrogen atoms of aromatic residues with r, rogene atoms and/or lower alkyl groups, the stretchability when formed into fibers is improved. Aromatic copolyamide fiber.

特に、前記Ar、、 Ar2. Ar3 の80モル%
以上が、 で、構成単位(A)が90〜60モル%、構成単位(B
)が10〜40モル%である芳香族コポリアミドの繊維
In particular, the above Ar, Ar2. 80 mol% of Ar3
The above is 90 to 60 mol% of the structural unit (A) and the structural unit (B
) is 10 to 40 mol%.

(2)下記構成単位群 NRr  Arl  co  NU  NH−NR2A
r2  NR3− NR4Ar3  Cト Co  Ar4  co− (ここでRIt R2+ R3+ R4は水素原子及び
/又は低級アルキル基であり、Ar4. Ar2 、 
Ar3 。
(2) The following structural unit group NRr Arl co NU NH-NR2A
r2 NR3- NR4Ar3 CtoCo Ar4 co- (here, RIt R2+ R3+ R4 is a hydrogen atom and/or a lower alkyl group, Ar4. Ar2,
Ar3.

Ar4 は′以下から選ばれた少なくとも一種の゛芳香
族残基を示す。
Ar4 represents at least one aromatic residue selected from the following.

また、芳香族残基の水素原子はハロゲン原子及び/又は
低級アルキル基で置換されていてもよい) で示される芳香族コポリアミドヒドラジドからなる繊維
Furthermore, the hydrogen atoms of the aromatic residues may be substituted with halogen atoms and/or lower alkyl groups.) A fiber made of an aromatic copolyamide hydrazide.

例えば、直線及び/′又は平行軸の結合手を有する芳香
族残基からなる全芳香族ポリアミドにヒドラジド結合を
導入(例えばた芳香族コポリアミドヒドラジド繊維。
For example, hydrazide bonds are introduced into fully aromatic polyamides consisting of aromatic residues with straight and /' or parallel axis bonding hands (e.g. aromatic copolyamide hydrazide fibers).

(3)下記構成単位群 (ここでArc、 Ar2 は以下から選ばれた少なく
とも一種の芳香族残基を示す。
(3) The following structural unit group (where Arc and Ar2 represent at least one aromatic residue selected from the following):

まだ、芳香族残基の水素原子はハロゲン原子、低級アル
キル基で置換されていてもよい。) で示される芳香族オキサジアゾール/メチルヒドラジド
コポリマーからなる繊維。
However, the hydrogen atom of the aromatic residue may be substituted with a halogen atom or a lower alkyl group. ) A fiber made of an aromatic oxadiazole/methyl hydrazide copolymer.

例えば、以下の繰返し単位群 からなる芳香族オキサジアゾール/メチルヒドラジドコ
ポリマー繊維。
For example, an aromatic oxadiazole/methyl hydrazide copolymer fiber consisting of the following repeating unit group.

上記(1)〜(3)の繊維においては、充分な性能を発
揮させるためfは、繊維が軟化状態になる如き高温での
熱延伸が必要であシ、例えば、300〜600℃の熱板
上で徐々に分子配向させながら延伸する方法が採用され
るが、この場合、通常の方法では単糸間の融着がさけら
れ々い。また例えばポリエチレンの如き熱可塑性繊維を
高延伸倍率(10〜50倍)で延伸することにより、高
強力・高モジュラス繊維を得る場合においても多フィラ
メントの繊維集合体で延伸操作を実施しようとすると繊
維の軟化状態での延伸が避けられない。
In the fibers of (1) to (3) above, in order to exhibit sufficient performance, f requires hot stretching at a high temperature that softens the fibers. A method is adopted in which the fibers are stretched while gradually orienting the molecules, but in this case, it is difficult to avoid fusing between the single filaments in a normal method. Furthermore, even when obtaining high strength and high modulus fibers by drawing thermoplastic fibers such as polyethylene at a high draw ratio (10 to 50 times), if the drawing operation is performed on a multifilament fiber aggregate, the fibers Stretching in a softened state is unavoidable.

e1発明の効果 本発明方法をこれら熱延伸時軟化状態で延伸する合成繊
維に適用することにより、延伸性を向上させ繊維性能を
損うことなく、繊維を構成するフィラメント切れを防L
Lあるいは著しく低減することが可能となる。特に少量
の付与で大きな効果を得られる。また、繊維をゴム補強
・FRP等に使用した場合、ゴム又は樹脂に対する接着
性を低下せしめない又は低下せしめることが少ない。
e1 Effects of the Invention By applying the method of the present invention to these synthetic fibers that are drawn in a softened state during hot drawing, it is possible to improve drawability and prevent filament breakage that constitutes the fibers without impairing fiber performance.
It becomes possible to significantly reduce the amount of energy. In particular, a small amount can produce a large effect. Furthermore, when the fibers are used for rubber reinforcement, FRP, etc., the adhesion to rubber or resin is not reduced or is less likely to be reduced.

f、実施例 以下本発明方法を実施例によって説明する。f. Example The method of the present invention will be explained below with reference to Examples.

なお、以下の例(でおいて用いる主な特性値は次の如く
である。
The main characteristic values used in the following example are as follows.

(1)  ポリマーの固有粘度、 IV (1nher
entviscosity ) オストワルド型粘着管を用い、溶媒のみの流〜下一時間
をt。(秒)、ポリマーの希薄溶液の流下時間をt(秒
)、該希薄溶液中のポリマー濃度をC(1/de ) 
とすると、In (t/ tO) Iv=(de/I) で表わされる。特に断わらない限り、溶媒は97.5%
硫酸、  C= 0.5 g /deとし、30°Cで
測定する。
(1) Intrinsic viscosity of the polymer, IV (1nher
Entviscosity) Using an Ostwald-type sticky tube, under the flow of solvent only for 1 hour. (seconds), the flow time of the dilute polymer solution is t (seconds), and the polymer concentration in the dilute solution is C(1/de).
Then, it is expressed as In (t/tO) Iv=(de/I). Unless otherwise specified, solvent is 97.5%
Sulfuric acid, C=0.5 g/de, measured at 30°C.

(2)繊維の引張特性 インストロン引張試験機により、初長 25cTL、引張速度10gt/分とし、20℃。(2) Tensile properties of fibers The initial length was determined by Instron tensile testing machine. 25 cTL, tensile rate 10 gt/min, 20°C.

65%RHの雰囲気中で背伸曲線を測定する。The back extension curve is measured in an atmosphere of 65% RH.

これよシ強度(g/de)、伸度(%)、ヤング率(E
l /de )を算出する。
Strength (g/de), elongation (%), Young's modulus (E
l/de).

実施例1 下記モノ4一単位 −HN −@−NIト      25モル%により構
成されるIV=3.1の芳香族コポリアミドエーテルを
CaC1!2  を含有するN−メチル−2−ピロリド
ン(NMP)VC6重量%溶解せしめたポリマー溶液を
孔径0.2mm500孔の口金から47o!/分の吐出
速度で押し出した。空気中を約10醋走行させた後、5
0℃のNMP/水(jO,/70重量%)の凝固浴中で
凝固させ30rIL/分の速度で巻き上げ、ひきつづき
50℃の水浴で洗浄した。水洗糸を粒径10〜20mμ
の二酸化硅素からなる濃度20%のコロイダルシリカ(
日産化学工v (+a mスノーテックス20)を濃度
0.35%になるように純水で希釈した液に浸漬させた
後、乾燥した。二酸化硅素の付着量は乾燥糸重量に対し
て約0.3%であった。引きつづき熱板上で12.0倍
に延伸し、油剤を付寿した後巻取った。得られた糸の物
性はアニール      767de 強    度           2 6.2   
g/de伸    度            4.5
  に初期モジュラス   615 9/deであった
。延伸時の糸切れはほとんどなく延伸性は極めて良好で
あった。
Example 1 An aromatic copolyamide ether of IV=3.1 composed of 25 mol% of the following mono 4 unit -HN-@-NI was converted into N-methyl-2-pyrrolidone (NMP) containing 1!2 CaC. A polymer solution in which 6% by weight of VC was dissolved was passed through a 500-hole nozzle with a pore diameter of 0.2 mm at 47°C. It was extruded at a discharge speed of /min. After running about 10 times in the air, 5
It was coagulated in a coagulation bath of NMP/water (jO,/70% by weight) at 0°C and rolled up at a rate of 30 rIL/min, followed by washing in a water bath at 50°C. Particle size of washed thread is 10~20mμ
Colloidal silica (20% concentration) consisting of silicon dioxide (
Nissan Chemical Industries v (+am Snowtex 20) was immersed in a solution diluted with pure water to a concentration of 0.35%, and then dried. The amount of silicon dioxide deposited was about 0.3% based on the weight of the dry yarn. Subsequently, it was stretched to 12.0 times on a hot plate, coated with oil, and then wound up. The physical properties of the obtained yarn are annealed 767de strength 2 6.2
g/de elongation 4.5
The initial modulus was 615 9/de. There was almost no yarn breakage during stretching, and the stretchability was extremely good.

この実験に用いた0、35%の水和コロイダルシリカを
ガラス板上て滴下して、180℃で水分の蒸発を行った
後、走査型電顕で観察したところ幅3〜5μ、長さio
oμ以上の細長い薄膜を形成していることが認められた
The 0.35% hydrated colloidal silica used in this experiment was dropped onto a glass plate and the water was evaporated at 180°C. When observed with a scanning electron microscope, it was found to have a width of 3 to 5 μm and a length of io.
It was observed that an elongated thin film with a diameter of 0μ or more was formed.

比較例1 コロイド化前の粒子径が0.5μの硅酸マグネシウム(
タルク)でもって濃度0.35%のコロイダルタルクを
作成して、その液に浸漬する以外は実施例1と同様にし
て延伸糸を得た。得られた糸の物性は実施例1とほとん
ど変らないが、延伸時の糸切れは10回720 kgで
延伸性は極めて不良であった。
Comparative Example 1 Magnesium silicate (with a particle size of 0.5μ before colloidalization)
A colloidal talc having a concentration of 0.35% was prepared using talc), and a drawn yarn was obtained in the same manner as in Example 1, except that the colloidal talc was immersed in the solution. The physical properties of the obtained yarn were almost the same as those in Example 1, but the yarn broke 10 times at 720 kg during stretching, and its drawability was extremely poor.

この実験に用いたコロイダルタルクを実施例1と同様に
ガラス板上で乾燥させ、凝集状態を観察したところ2μ
〜10μの2次凝集粒子が認められただけで、薄膜の形
成は認められなかった。
The colloidal talc used in this experiment was dried on a glass plate in the same manner as in Example 1, and the state of agglomeration was observed.
Only ~10 micron secondary agglomerated particles were observed, and no thin film formation was observed.

実施例2 実施例Iにおいてコロイダルシリカの代りにコロイダル
シリカ(ドビーエ業■製;水膨荀性含フッ素硅酸マグネ
シウム、厚さ5mμ、径工〜5μの襞開盤)10%液を
用いたところいずれも延伸性は良好であった。
Example 2 In Example I, a 10% solution of colloidal silica (manufactured by Dobie Industry ■; water-swellable fluorine-containing magnesium silicate, thickness 5 mμ, diameter - 5μ fold opening plate) was used. The stretchability was also good.

実施例3 次表に示すポリマー溶液を実施例IK:準じて紡糸・延
伸したところ、いずれも延伸時の断糸が多く、2に17
巻の採取が困難であった。
Example 3 When the polymer solutions shown in the following table were spun and stretched according to Example IK, there were many yarn breaks during stretching, and 17
It was difficult to collect the volumes.

下記のモノマ一単位 −HN會C0NHNH〜    35モル%−HN會N
ト      15モル% から構成されるIV= 4.3 (CaC42,5%を
含むN 、N’−ジメチルアセトアミド中30’(、で
測定)の芳香族コポリアミドヒドラジドの湿式紡出糸条
(フィラメント数1oo)を水洗し、水洗糸を実施例1
に準じて処理し、440 ’Cの熱板上で3.1倍に延
伸したところ、延伸時の断糸はほとんどなく良好であっ
たが、比較例IK準じて処理して延伸したところ延伸糸
の断糸が多く、2睦巻の採取が困難であった。
One unit of the following monomer -HNkaiC0NHNH~ 35 mol% -HNkaiN
Wet-spun yarn (number of filaments) of aromatic copolyamide hydrazide of 30' (measured at , Example 1
When processed according to Comparative Example IK and stretched to 3.1 times on a hot plate at 440'C, the result was good with almost no yarn breakage.However, when processed and stretched according to Comparative Example IK, the drawn yarn was There were many broken threads, making it difficult to collect 2-mimaki.

実施例5 構成単位 からなるIV=3.5の芳香族(オキサジアゾール/メ
チルヒドラジド)コポリマーを100%硫絃にとかした
ポリマー濃度10%の溶液を孔径Q、1ffl!u、孔
数100の紡糸口金より空気中に押し出し、約1(1m
m空気中を走行させた後15%の硫酸水溶液中で凝固さ
せた。得られた糸を水洗し、水洗糸を実施例1に準じて
処理し380℃の熱板上で6.8倍に延伸したところ、
延伸時の断糸はほとんどなく良好であったが、比較例1
に準じて処理して延伸したところ延伸時の断糸が多く、
2 kl?巻の採取が困難であった。
Example 5 A 10% polymer concentration solution prepared by dissolving an aromatic (oxadiazole/methyl hydrazide) copolymer of IV=3.5 consisting of structural units in a sulfur stove has a pore size Q of 1ffl! u, extruded into the air from a spinneret with 100 holes, about 1 (1 m
After running in air, it was coagulated in a 15% aqueous sulfuric acid solution. The obtained yarn was washed with water, and the washed yarn was treated according to Example 1 and stretched 6.8 times on a hot plate at 380 ° C.
Although the results were good with almost no yarn breakage during stretching, Comparative Example 1
When processed and stretched according to the method, there were many yarn breaks during stretching.
2 kl? It was difficult to collect the volumes.

Claims (1)

【特許請求の範囲】 1、合成繊維を熱延伸する尾際して、未延伸糸に造膜性
能を有する不活性な無機物の水和コロイドを塗布して後
、徐々に分子配向させながら延伸すると七を特徴とする
合成繊維の延伸方法。 2、無機物の水利コロイドが、コロイダルシリカ、また
は膨潤性雲母のコロイドを主成分とするものである特許
請求範囲第1項記載の合成繊維の延伸方法。 3、合成繊維が、下記繰返し単位 −NR,−Ar1−NR,,−Co−Ar2−Co −
及び/又は 、  NRa  A r3  CO− で示される芳香族コポリアミドからなる繊維である特許
請求の範囲第1項又は第2項記載の合成繊維の延伸方法
。 4 、Arc、 Ar2. Ar3の80モル%以上が
下記芳香族残基 舎      (A) −o−o −@−(B) しされていてもよい          」であり、か
つ構成単位(B)のモル%が10〜40%である特許請
求の範囲第3項記載の合成繊維の延伸方法。 5、R1,R2,R3がすべて水素原子である特許請求
の範囲第3項又は第4項記載の合成繊維の延伸方法! 6、合成繊維が、下記構成単位群 −NR,−Ar1−CO−NI(−NH−(C)−NR
2−A r、、 −NR3−(D)−NR4−Ar3−
Co −(E) −co−Ar4−CO−(F) していてもよい。            」で示され
る芳香族コポリアミドヒドラジドからなる繊維である特
許請求の範囲第1項又は第2項記載の合成繊維の延伸方
法。 7、  Arc、 Ar2. Ar3. Ar4の80
モル%以上がp−フェニレン残基である特許請求の範囲
第6項記載の合成繊維の延伸方法。 8、RI+ R2+ R3がすべて水素原子である特許
請求の範囲第6項又は第7項記載の合成繊維の延伸方法
。 9、合成繊維が、下記構成単位群 で示される芳香族オキ廿ジアゾール/メチルヒドラジド
コポリマーからなる繊維である特許請求の範囲第3項又
は第2項記載の合成繊維の延伸方法。 10、  Ar、、 Ar2の80モル%以上がp−フ
ェニレン残基である特許請求の範囲第9項記載の合成繊
維の延伸方法。
[Scope of Claims] 1. At the end of hot drawing of synthetic fibers, an inert inorganic hydrated colloid having film-forming properties is applied to the undrawn yarn, and then the fibers are drawn while gradually orienting the molecules. A method for drawing synthetic fibers characterized by seven features. 2. The method for drawing synthetic fibers according to claim 1, wherein the inorganic hydric colloid is mainly composed of colloidal silica or swellable mica colloid. 3. The synthetic fiber has the following repeating units -NR, -Ar1-NR,, -Co-Ar2-Co -
and/or A method for drawing a synthetic fiber according to claim 1 or 2, which is a fiber made of an aromatic copolyamide represented by NRa Ar3 CO-. 4, Arc, Ar2. 80 mol% or more of Ar3 is the following aromatic residue (A) -o-o -@-(B) '', and the mol% of the structural unit (B) is 10 to 40% A method for drawing synthetic fibers according to claim 3. 5. The method for drawing synthetic fibers according to claim 3 or 4, wherein R1, R2, and R3 are all hydrogen atoms! 6. The synthetic fiber has the following structural unit group -NR, -Ar1-CO-NI(-NH-(C)-NR
2-Ar,, -NR3-(D)-NR4-Ar3-
Co-(E)-co-Ar4-CO-(F) may be used. A method for drawing a synthetic fiber according to claim 1 or 2, which is a fiber made of an aromatic copolyamide hydrazide represented by the following. 7, Arc, Ar2. Ar3. 80 of Ar4
7. The method for drawing synthetic fibers according to claim 6, wherein mol% or more of the p-phenylene residues are p-phenylene residues. 8. The method for drawing synthetic fibers according to claim 6 or 7, wherein RI+ R2+ R3 are all hydrogen atoms. 9. The method for drawing synthetic fibers according to claim 3 or 2, wherein the synthetic fibers are fibers made of an aromatic oxydiazole/methyl hydrazide copolymer represented by the following structural unit group. 10. The method for drawing synthetic fibers according to claim 9, wherein 80 mol% or more of Ar2 is a p-phenylene residue.
JP4726983A 1983-03-07 1983-03-23 Drawing of synthetic fiber Pending JPS59173314A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4726983A JPS59173314A (en) 1983-03-23 1983-03-23 Drawing of synthetic fiber
DE8484102374T DE3462159D1 (en) 1983-03-07 1984-03-06 Process for producing wholly aromatic polyamide filaments heat-treated under tension
US06/586,792 US4525384A (en) 1983-03-07 1984-03-06 Process for producing wholly aromatic polyamide filaments heat-treated under tension
EP84102374A EP0121132B1 (en) 1983-03-07 1984-03-06 Process for producing wholly aromatic polyamide filaments heat-treated under tension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4726983A JPS59173314A (en) 1983-03-23 1983-03-23 Drawing of synthetic fiber

Publications (1)

Publication Number Publication Date
JPS59173314A true JPS59173314A (en) 1984-10-01

Family

ID=12770573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4726983A Pending JPS59173314A (en) 1983-03-07 1983-03-23 Drawing of synthetic fiber

Country Status (1)

Country Link
JP (1) JPS59173314A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105118A (en) * 1986-10-23 1988-05-10 Toray Ind Inc Drawing of multi-component fiber
US4865790A (en) * 1985-04-02 1989-09-12 Sumitomo Chemical Company, Limited Process for producing aromatic polyester fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865790A (en) * 1985-04-02 1989-09-12 Sumitomo Chemical Company, Limited Process for producing aromatic polyester fiber
JPS63105118A (en) * 1986-10-23 1988-05-10 Toray Ind Inc Drawing of multi-component fiber
JPH0373658B2 (en) * 1986-10-23 1991-11-22 Toray Industries

Similar Documents

Publication Publication Date Title
US4525384A (en) Process for producing wholly aromatic polyamide filaments heat-treated under tension
TW200422447A (en) Method and device for producing post-stretched cellulose spun threads
JPS62149934A (en) Production of thermoplastic synthetic fiber
JPH0627366B2 (en) Polyvinyl alcohol fiber, tire cord made of the fiber, and methods for producing the same
JPS59173314A (en) Drawing of synthetic fiber
JPS5854021A (en) Surface modifying method of fiber
JPS60239523A (en) Manufacture of aromatic polyamide fiber
JPH01239109A (en) Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber
JPS59137535A (en) Stretching of synthetic fiber
JPH01156517A (en) High-strength and high-modulus polyvinyl alcohol fiber having excellent hot-water resistance and production of said fiber
JP4451617B2 (en) Fully aromatic polyamide fiber with excellent processability
JP2005002517A (en) Method for producing thermoplastic synthetic fiber
JPS6052623A (en) Surface treatment of heat-meltable yarn
JPS61119708A (en) High-tenacity acrylic fiber and production thereof
JPH09256216A (en) Regenerated cellulose fiber and its production
JPS59163425A (en) Surface modification of synthetic fiber
JPS61215711A (en) Polyvinyl alcohol multifilament yarn having high tenacity and modulus
JPS61215708A (en) Production of multifilament yarn
KR101130061B1 (en) Fully aromatic polyamide fiber with excellent processability and adhesiveness
JPS6353286B2 (en)
JPS60239509A (en) Production of high-strength and high-modulus polyolefin based fiber
JPH01162816A (en) Novel polyethylene fiber
JPS6017112A (en) Preparation of aromatic polyamide yarn
JPS636650B2 (en)
JPS59179818A (en) Surface modification of fiber