JPH0220131B2 - - Google Patents

Info

Publication number
JPH0220131B2
JPH0220131B2 JP58042021A JP4202183A JPH0220131B2 JP H0220131 B2 JPH0220131 B2 JP H0220131B2 JP 58042021 A JP58042021 A JP 58042021A JP 4202183 A JP4202183 A JP 4202183A JP H0220131 B2 JPH0220131 B2 JP H0220131B2
Authority
JP
Japan
Prior art keywords
magnetic field
mold
yoke
cavity
magnetizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58042021A
Other languages
Japanese (ja)
Other versions
JPS59168620A (en
Inventor
Eisaku Fujimoto
Takahiro Motone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4202183A priority Critical patent/JPS59168620A/en
Publication of JPS59168620A publication Critical patent/JPS59168620A/en
Publication of JPH0220131B2 publication Critical patent/JPH0220131B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、1つの金型から多極異方性樹脂磁
石の多数個取りを可能とした磁場射出成形用金型
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a mold structure for magnetic field injection molding that allows a large number of multipolar anisotropic resin magnets to be produced from one mold.

従来技術 フエライト磁石粉末の如き強磁性粉末を熱可塑
性合成樹脂(またはゴム)に溶融混合し、所定形
状に成形した後これを着磁させることにより、等
方性の樹脂磁石(またはゴム磁石)を製造する方
法が、既に広く実用化されるに至つている。近
時、前記樹脂磁石の磁気特性を更に向上させるべ
く種々の研究がなされ、その研究の成果として、
磁石粉末の磁化容易軸を磁化方向に配向させて異
方化する技術の開発がなされている。
Prior art Isotropic resin magnets (or rubber magnets) are made by melt-mixing ferromagnetic powder such as ferrite magnet powder with thermoplastic synthetic resin (or rubber), molding it into a predetermined shape, and then magnetizing it. The manufacturing method has already come into widespread practical use. Recently, various studies have been conducted to further improve the magnetic properties of the resin magnets, and as a result of the research,
Techniques have been developed to orient the axis of easy magnetization of magnet powder in the direction of magnetization to make it anisotropic.

磁石を異方化するには、粒子に剪断応力を機械
的に作用させたり、射出成形金型に磁場を形成し
たりする方法があり、殊に後者の方法が工業的に
広く実施化されている。これは、磁気異方性定数
の大きい強磁性粉末と合成樹脂との混合物を加熱
溶融し、この溶融混合物を磁場形成した金型キヤ
ビテイに射出して、磁石粉末粒子の磁化容易軸を
前記磁場の作用下に一定方向に配向させることに
より、磁気特性の優れた異方性樹脂磁石を製造す
るものである。
To make a magnet anisotropic, there are methods such as applying shear stress mechanically to particles or creating a magnetic field in an injection mold, and the latter method in particular has been widely implemented industrially. There is. This method heats and melts a mixture of ferromagnetic powder with a large magnetic anisotropy constant and synthetic resin, injects the molten mixture into a mold cavity in which a magnetic field is formed, and aligns the axis of easy magnetization of the magnet powder particles with the magnetic field. An anisotropic resin magnet with excellent magnetic properties is manufactured by orienting it in a certain direction under action.

発明が解決すべき課題 ところで、磁場射出成形により異方性樹脂磁石
を製造するに際し従来は、第1図に示す如く、金
型に画成したキヤビテイ10の半径方向外周にn
極の着磁ヨーク12が対向的に配設され、この場
合に磁界発生用の励磁コイル14は、1つの着磁
ヨークに対応して各1個必要であつた。このた
め、スペースの限られた金型中で、n個の着磁ヨ
ークに対応的に励磁コイルを夫々組込むことは機
械構造上限界があり、従つて1回の射出成形で、
1個の金型から多極異方性樹脂磁石を多数個取り
することは非常に困難であつた。
Problems to be Solved by the Invention By the way, when producing an anisotropic resin magnet by magnetic field injection molding, conventionally, as shown in FIG.
The magnetizing yokes 12 of the poles are arranged to face each other, and in this case, one excitation coil 14 for generating a magnetic field is required for each magnetizing yoke. For this reason, there is a mechanical structural limit to incorporating excitation coils corresponding to n magnetizing yokes in a mold with limited space, and therefore, it is difficult to incorporate excitation coils into n magnetizing yokes in a single injection molding process.
It has been extremely difficult to produce a large number of multipolar anisotropic resin magnets from one mold.

発明の目的 この発明は、磁場射出成形で多極異方性樹脂磁
石を製造するに際し内在している前記難点に鑑
み、これを好適に克服するべく案出されたもので
あつて、金型中の複数のキヤビテイに多極磁界を
印加するための着磁ヨークと閉成された磁気回路
との配列に工夫を加えることにより、従来着磁ヨ
ークの極数に対応してn個必要とされていた励磁
コイルの配設数を低減させ、スペースの限られた
金型での多極異方性樹脂磁石の多数個取りを実現
し、併せて製造コストの減少および稼動効率の向
上を図ることを目的とする。
Purpose of the Invention The present invention was devised in order to suitably overcome the above-mentioned difficulties inherent in manufacturing multipolar anisotropic resin magnets by magnetic field injection molding. By adding some innovation to the arrangement of the magnetizing yoke and the closed magnetic circuit for applying a multi-polar magnetic field to multiple cavities of the By reducing the number of excitation coils installed, it is possible to manufacture a large number of multi-pole anisotropic resin magnets in a mold with limited space, and at the same time, reduce manufacturing costs and improve operating efficiency. purpose.

課題を解決するための手段 前記課題を克服し、所期の目的を達成するため
本発明は、金型に画成したキヤビテイに着磁ヨー
クを臨ませ、該ヨークを着磁して前記キヤビテイ
に磁場形成を行なうと共に、強磁性粉末と樹脂と
の溶融混合物を該キヤビテイに射出して異方性樹
脂磁石を製造する磁場射出成形用金型構造におい
て、前記金型に複数個のキヤビテイを所要の配列
で画成すると共に、少なくとも1つの磁界発生源
により励磁される閉成した磁気回路を該金型に所
要数だけ設け、前記夫々の閉成した磁気回路の一
部を構成する着磁ヨークを、各キヤビテイに臨ま
せるよう構成したことを特徴とする。
Means for Solving the Problems In order to overcome the above-mentioned problems and achieve the intended purpose, the present invention provides a method in which a magnetizing yoke faces a cavity defined in a mold, and the yoke is magnetized and attached to the cavity. In a magnetic field injection molding mold structure in which an anisotropic resin magnet is manufactured by forming a magnetic field and injecting a molten mixture of ferromagnetic powder and resin into the cavity, the mold has a plurality of cavities as required. A required number of closed magnetic circuits defined by an array and excited by at least one magnetic field generation source are provided in the mold, and a magnetizing yoke forming a part of each of the closed magnetic circuits is provided in the mold. , is characterized by being configured to face each cavity.

実施例 次に、本願の発明に係る磁場射出成形用金型構
造につき、好適な実施例を挙げて、添付図面を参
照しながら以下説明する。
Embodiments Next, preferred embodiments of the magnetic field injection molding mold structure according to the invention of the present application will be described below with reference to the accompanying drawings.

(第1実施例について) 第2図は、第1実施例に係る磁場射出成形用金
型構造の概略平面図である。図において参照符号
16は、例えばオーステナイト系ステンレスの如
き非磁性体を材質とする磁場射出成形用金型を示
し、この金型16の分割平面内には、4つのキヤ
ビテイ18a〜18dが所定配列で画成されてい
る。すなわち図示例では、金型16の分割平面に
設けた仮想正方形の各頂点に夫々のキヤビテイ1
8が位置している。
(Regarding the first embodiment) FIG. 2 is a schematic plan view of a mold structure for magnetic field injection molding according to the first embodiment. In the figure, reference numeral 16 indicates a magnetic field injection molding mold made of a non-magnetic material such as austenitic stainless steel, and within the dividing plane of this mold 16, four cavities 18a to 18d are arranged in a predetermined arrangement. It is defined. That is, in the illustrated example, each cavity 1 is placed at each vertex of a virtual square provided on the dividing plane of the mold 16.
8 is located.

前記キヤビテイ18は、例えば回転電機用ロー
タを製造するのに適した円筒状に形成され、各キ
ヤビテイ18の内周には、強磁性体からなる着磁
ヨーク20が、夫々90゜の位相角をもつて順次配
設されている。すなわち、各キヤビテイ18に関
して4つの着磁ヨーク20a〜20bがキヤビテ
イに臨み、該ヨークの端面がキヤビテイ内周壁面
の一部を形成している。
The cavities 18 are formed in a cylindrical shape suitable for manufacturing rotors for rotating electric machines, for example, and on the inner periphery of each cavity 18, a magnetizing yoke 20 made of a ferromagnetic material is provided with a phase angle of 90°. They are arranged sequentially. That is, for each cavity 18, four magnetizing yokes 20a to 20b face the cavity, and the end surfaces of the yokes form part of the inner circumferential wall surface of the cavity.

そして、各キヤビテイ18に配設した4つの着
磁ヨークの内、2つの着磁ヨーク20a,20d
の夫々は、その両端部を隣接するキヤビテイ1
8,18に共通的に臨ませているので、便宜上こ
れを共通着磁ヨークと称する。なお、この共通着
磁ヨーク20a,20dは、何れも金型16内に
位置している。また、残り2つの着磁ヨーク20
b,20cは、共通着磁ヨーク20a,20dに
対し夫々90゜の位相角で金型16から外方に独立
的に延出しているので、便宜上これを独立着磁ヨ
ークと称する。すなわち、第2図のキヤビテイ1
8aにつき観察すれば、該キヤビテイ18aに一
端部を臨ませている着磁ヨーク20aは、前記仮
想正方形の隣接角部に位置するキヤビテイ18b
に他端部を臨ませているから共通着磁ヨークであ
る。同じく、キヤビテイ18aに一端部を臨ませ
ている着磁ヨーク20dも、仮想正方形の隣接角
部に位置するキヤビテイ18dに他端部を臨ませ
ているから共通着磁ヨークである。そして、キヤ
ビテイ18aの残り2つの着磁ヨーク20b,2
0cが、金型16外方に延出した独立着磁ヨーク
となる。
Of the four magnetizing yokes disposed in each cavity 18, two magnetizing yokes 20a and 20d
Each of the two ends of each of the adjacent cavities 1
8 and 18, this is called a common magnetizing yoke for convenience. Note that the common magnetizing yokes 20a and 20d are both located within the mold 16. In addition, the remaining two magnetizing yokes 20
b and 20c independently extend outward from the mold 16 at a phase angle of 90 degrees with respect to the common magnetizing yokes 20a and 20d, so for convenience they are referred to as independent magnetizing yokes. In other words, cavity 1 in Figure 2
8a, the magnetizing yoke 20a whose one end faces the cavity 18a is the same as the cavity 18b located at the adjacent corner of the virtual square.
It is a common magnetizing yoke because the other end faces the yoke. Similarly, the magnetizing yoke 20d, which has one end facing the cavity 18a, is also a common magnetizing yoke because its other end faces the cavity 18d located at an adjacent corner of the virtual square. Then, the remaining two magnetizing yokes 20b, 2 of the cavity 18a
0c is an independent magnetizing yoke extending outward from the mold 16.

次に、金型16内に位置する前記共通着磁ヨー
ク20a,20dは、夫々その中央部から磁界誘
導用ヨーク22が直角に分岐され、前記金型16
の外方へ延出している。従つてこの磁界誘導用ヨ
ーク22は、第2図から判明するように、例えば
キヤビテイ18a,18dから金型外方へ延出す
る各独立着磁ヨーク20c,20cの中間に位置
していることになる。また磁界誘導用ヨーク22
の他端部は、その両側に位置する一対の独立着磁
ヨーク20,20を直角に折曲形成した連結ヨー
ク24,24と一体接続されて、閉成した磁気回
路(磁気閉ループ)を形成している。
Next, the common magnetizing yokes 20a and 20d located in the mold 16 each have a magnetic field guiding yoke 22 branched at a right angle from the center thereof.
It extends outward. Therefore, as can be seen from FIG. 2, the magnetic field guiding yoke 22 is located between the independent magnetizing yokes 20c, 20c extending outward from the cavities 18a, 18d, for example. Become. In addition, the magnetic field induction yoke 22
The other end is integrally connected to connecting yokes 24, 24, which are formed by bending a pair of independent magnetized yokes 20, 20 located on both sides at right angles, to form a closed magnetic circuit (magnetic closed loop). ing.

この構成に係る磁界誘導用ヨーク22および独
立着磁ヨーク20には、各キヤビテイ18に磁場
を形成する目的で励磁コイル26が配設されてい
る。すなわち、第2図に示す実施例で励磁コイル
26は、中間の磁界誘導用ヨーク22およびその
両側に位置する一対の独立着磁ヨーク20,20
に夫々配設されるようになつている(この場合
は、分割巻された励磁コイル26が各キヤビテイ
当り3個配設され、金型全体では12個あることに
なる)。各励磁コイル26は、キヤビテイ18に
有効な磁場を形成するため、1つの着磁ヨーク2
0につき、少なくとも7000ガウス以上の起磁力を
与えるものであることが要求される。
An excitation coil 26 is disposed in the magnetic field induction yoke 22 and the independent magnetization yoke 20 of this configuration for the purpose of forming a magnetic field in each cavity 18. That is, in the embodiment shown in FIG. 2, the excitation coil 26 includes an intermediate magnetic field inducing yoke 22 and a pair of independent magnetizing yokes 20, 20 located on both sides thereof.
(In this case, three divided excitation coils 26 are arranged for each cavity, and there are 12 in the entire mold). Each excitation coil 26 is connected to one magnetizing yoke 2 in order to form an effective magnetic field in the cavity 18.
0, it is required to provide a magnetomotive force of at least 7000 Gauss or more.

しかし、磁界誘導用ヨーク22に配設した励磁
コイル26が発生する磁界は、共通着磁ヨーク2
0aまたは20dの両端部に分配されるので
14000ガウス以上が必要とされ、これは独立着磁
ヨーク20cまたは20bにおける励磁コイル2
6の起磁力の2倍である。従つて、磁界誘導用ヨ
ーク22に配設された励磁コイル26の巻数(例
えば800ターン)は、各独立着磁ヨーク20に配
設された励磁コイル26の巻数(例えば400ター
ン)の2倍に設定されている。
However, the magnetic field generated by the excitation coil 26 disposed in the magnetic field induction yoke 22 is
Since it is distributed to both ends of 0a or 20d
14,000 gauss or more is required, which is equivalent to the excitation coil 2 in the independent magnetizing yoke 20c or 20b.
It is twice the magnetomotive force of 6. Therefore, the number of turns of the excitation coil 26 disposed on the magnetic field induction yoke 22 (for example, 800 turns) is twice the number of turns of the excitation coil 26 disposed on each independent magnetizing yoke 20 (for example, 400 turns). It is set.

(第2実施例について) 更に第3図に、本発明の第2実施例に係る磁場
射出成形用金型構造を示す。これは、励磁コイル
の配設形態が第1実施例と相違するだけで、他の
構造は全く同じである。すなわち本実施例では、
励磁コイル26は、各独立着磁ヨーク20,20
を直角に折曲形成した連結ヨーク24,24の
夫々に配設されていて、この2つの励磁コイル2
6,26で発生した磁界を、前記磁界誘導用ヨー
クを介して共通着磁ヨークに分配するようになつ
ている(この場合、分割巻された励磁コイル26
が各キヤビテイ当り2個配設され、金型全体では
8個あることになる)。このとき各励磁コイル2
6は、夫々少なくとも14000ガウス以上の起磁力
を発生するものとし、かつ各コイル巻数比は1:
1(例えば1000ターンずつ)に設定されている。
(Second Embodiment) Furthermore, FIG. 3 shows a mold structure for magnetic field injection molding according to a second embodiment of the present invention. This differs from the first embodiment only in the arrangement of the excitation coil, and the other structures are completely the same. That is, in this example,
The excitation coil 26 is connected to each independent magnetizing yoke 20, 20.
The two excitation coils 2
The magnetic field generated in the coils 6 and 26 is distributed to the common magnetizing yoke via the magnetic field induction yoke (in this case, the magnetic field generated in the excitation coil 26
(There are two in each cavity, and there are eight in the entire mold). At this time, each exciting coil 2
6 shall each generate a magnetomotive force of at least 14,000 Gauss or more, and each coil turns ratio shall be 1:
1 (for example, 1000 turns each).

(金型縦断面について) 第2図および第3図に示す構造を有する金型の
縦断面を、第4図に例示する。すなわち、円筒状
キヤビテイ18の開口部上方には、該開口部を開
閉自在に閉塞する非磁性体からなる可動金型28
が昇降自在に配設されている。この可動金型28
がキヤビテイ18の開口部に臨む部分には、キヤ
ビテイ内方に向け若干突出する円錐台形状の***
部30が一体的に形成され、この***部30に、
後述する溶融混合物射出用のピンポイントゲート
32が垂直に穿設されている。また、可動金型2
8の上方には、非磁性体からなる更に別の可動金
型34が昇降自在に配設され、可動金型28の頂
部および可動金型34の合わせ境界面には、図示
の如くランナ36が形成されている。このランナ
36は、可動金型34に穿設したスプルー38お
よびノズル口40に連通接続している。なお、各
金型28および34を構成する非磁性体として
は、例えばオーステナイト系ステンレスが好適に
使用される。
(Regarding the longitudinal section of the mold) FIG. 4 illustrates a longitudinal section of the mold having the structure shown in FIGS. 2 and 3. That is, above the opening of the cylindrical cavity 18 is a movable mold 28 made of a non-magnetic material that can freely open and close the opening.
is arranged so that it can be raised and lowered freely. This movable mold 28
A raised part 30 in the shape of a truncated cone that slightly protrudes inward of the cavity is integrally formed in the part facing the opening of the cavity 18.
A pinpoint gate 32 for injecting a molten mixture, which will be described later, is vertically bored. In addition, movable mold 2
Above 8, another movable mold 34 made of a non-magnetic material is disposed so as to be able to rise and fall freely, and a runner 36 is provided at the top of the movable mold 28 and the interface between the movable mold 34 as shown in the figure. It is formed. The runner 36 is connected to a sprue 38 and a nozzle opening 40 formed in the movable mold 34 . Note that, as the nonmagnetic material constituting each of the molds 28 and 34, for example, austenitic stainless steel is preferably used.

また円筒状キヤビテイ18の底部42を形成す
る金型16には、その底部中央において、後述す
る如くロータ回転軸44を挿通するための貫通孔
46が垂直に穿設されている。この場合、貫通孔
46の内径は回転軸44の外径に対し2/100〜3/1
00程度の環状細隙が形成されるよう予め寸法設定
してあり、更に貫通孔46の略中間から下方に
は、大径の段付孔部48が一体的に形成してあ
る。これは射出成形後にロータを脱型するに際
し、回転軸44が貫通孔46内壁に接触する摩擦
抵抗を軽減させるためである。また、前記中心貫
通孔46の周囲に隣接して複数の貫通孔50が穿
設され(第5図)、この貫通孔50にノツクアウ
トピン52が昇降自在に挿通されて、キヤビテイ
18中に突出可能となつている。
Further, the mold 16 forming the bottom 42 of the cylindrical cavity 18 has a through hole 46 perpendicularly bored in the center of the bottom for inserting a rotor rotation shaft 44 as described later. In this case, the inner diameter of the through hole 46 is 2/100 to 3/1 of the outer diameter of the rotating shaft 44.
The dimensions are set in advance so that an annular slit of approximately 0.00 mm is formed, and furthermore, a large-diameter stepped hole portion 48 is integrally formed from approximately the middle of the through hole 46 downward. This is to reduce the frictional resistance of the rotating shaft 44 coming into contact with the inner wall of the through hole 46 when the rotor is demolded after injection molding. Further, a plurality of through holes 50 are bored adjacent to the periphery of the center through hole 46 (FIG. 5), and a knockout pin 52 is inserted into the through hole 50 so as to be vertically movable, and protrudes into the cavity 18. It's becoming possible.

なお、中心貫通孔46の外部開放端には、当板
54を着脱自在に位置させ、この当板54により
回転軸44のキヤビテイ中での位置規制をさせる
のが好ましい。
It is preferable that a contact plate 54 is removably located at the externally open end of the central through hole 46, and that the position of the rotary shaft 44 in the cavity is regulated by the contact plate 54.

実施例の作用 実施例に係る磁場射出成形用金型構造は、この
ように構成したから、励磁コイル26を付勢し磁
界を励起してやれば、該磁界は各閉ループを介し
て着磁ヨーク20a〜20dに誘導され、該ヨー
ク先端を臨ませたキヤビテイ18に有効磁場が形
成される。そこで、実施例に係る金型構造を使用
して、回転電機用磁石ロータを製造する場合につ
き説明する。先ず、第4図に示す如く、円筒状キ
ヤビテイ18の底部に穿設した貫通孔46中に回
転軸44を挿通して、該回転軸44の軸心をキヤ
ビテイ18の軸心と一致させる。この場合、中心
貫通孔46の下部開口を前記当板54で閉塞する
ことにより、回転軸44の端部はこの当板54に
当接して所定位置規制がなされる。従つて回転軸
44は、常に所定寸法長だけ該キヤビテイ18中
に臨むようセツトされることになる。
Effects of the Embodiment Since the magnetic field injection molding mold structure according to the embodiment is configured as described above, when the excitation coil 26 is energized to excite the magnetic field, the magnetic field is transmitted through each closed loop to the magnetizing yokes 20a to 20a. 20d, and an effective magnetic field is formed in the cavity 18 facing the tip of the yoke. Therefore, a case will be described in which a magnetic rotor for a rotating electric machine is manufactured using the mold structure according to the embodiment. First, as shown in FIG. 4, the rotating shaft 44 is inserted into the through hole 46 formed in the bottom of the cylindrical cavity 18, and the axis of the rotating shaft 44 is aligned with the axis of the cavity 18. In this case, by closing the lower opening of the center through hole 46 with the abutment plate 54, the end of the rotating shaft 44 comes into contact with the abutment plate 54 and is regulated in a predetermined position. Therefore, the rotating shaft 44 is always set so as to face into the cavity 18 by a predetermined length.

次いで、磁気異方性定数の大きい強磁性粉末と
合成樹脂とからなる混合物を加熱溶融し、この溶
融混合物を前記可動金型34のノズル口40から
注入し、スプルー36およびピンポイントゲート
32を介して円筒状キヤビテイ18中に射出す
る。また、これと同期して前述の如く励磁コイル
26を付勢し、前記着磁ヨーク20a〜20dを
介してキヤビテイ18に半径方向外方から強磁界
を印加する。このように磁石粉末と合成樹脂との
混合物が溶融状態にあり、粒子配列が固まつてい
ない間に複数極の磁界が印加されることにより、
粉末粒子の磁化容易軸は磁化方向に配向され、磁
気特性の優れた多極異方性樹脂磁石(本実施例の
場合、回転電機用の円筒形磁石ロータ)が得られ
る。
Next, a mixture consisting of a ferromagnetic powder with a large magnetic anisotropy constant and a synthetic resin is heated and melted, and this molten mixture is injected from the nozzle port 40 of the movable mold 34 through the sprue 36 and the pinpoint gate 32. and injected into the cylindrical cavity 18. In addition, in synchronization with this, the excitation coil 26 is energized as described above, and a strong magnetic field is applied to the cavity 18 from the outside in the radial direction via the magnetizing yokes 20a to 20d. In this way, while the mixture of magnet powder and synthetic resin is in a molten state and the particle arrangement is not solidified, a multi-pole magnetic field is applied,
The axis of easy magnetization of the powder particles is oriented in the magnetization direction, and a multipolar anisotropic resin magnet (in this example, a cylindrical magnet rotor for a rotating electric machine) with excellent magnetic properties is obtained.

発明の効果 このように本発明に係る金型構造によれば、着
磁ヨークの配列を工夫したことにより、従来は着
磁ヨークの極数×キヤビテイ数だけ必要としてい
た励磁コイルの数を低減させることができる。
Effects of the Invention As described above, according to the mold structure of the present invention, by devising the arrangement of the magnetizing yokes, the number of excitation coils, which was conventionally required by the number of poles of the magnetizing yokes x the number of cavities, can be reduced. be able to.

すなわち、例えば異方性樹脂磁石の4個取りに
際して本来16個必要となる励磁コイルの数を、第
1実施例の場合は12個に、また第2実施例では8
個に低減させることができ、限られた金型スペー
ス内で各キヤビテイに容易に多極磁界を印加し
て、多極異方化された樹脂磁石の4個取りを実現
し、併せて製造コストの減少と稼動効率の向上を
達成し得る等、多くの有益な効果を奏するもので
ある。なお実施例では、何れも1つの金型にキヤ
ビテイを4つ設けて、異方性樹脂磁石を4個取り
する場合につき説明したが、本願はキヤビテイの
数やヨークの配置を4つに限定するものではな
く、その他の変更例であつても好適に本発明を応
用し得るものである。
That is, for example, the number of excitation coils that would normally be 16 when producing four anisotropic resin magnets is reduced to 12 in the first embodiment, and 8 in the second embodiment.
It is possible to easily apply a multi-polar magnetic field to each cavity within a limited mold space, and realize the production of four multi-polar anisotropic resin magnets, which also reduces manufacturing costs. This has many beneficial effects, such as a reduction in energy consumption and an improvement in operating efficiency. In each of the examples, a case was explained in which four cavities were provided in one mold and four anisotropic resin magnets were taken, but in the present application, the number of cavities and the arrangement of the yoke are limited to four. However, the present invention can be suitably applied to other modifications as well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術に係る磁場射出成形用金型に
より異方性樹脂磁石を製造する際の着磁ヨークと
励磁コイルとの配設例を示す概略説明図、第2図
は本発明の第1実施例に係る磁場射出成形用金型
構造の平面図、第3図は第2実施例に係る金型構
造の平面図、第4図は実施例に係る磁場射出成形
用金型構造の好適実施例の縦断面図、第5図は第
4図のA−A線横断面図である。 16……金型、18……キヤビテイ、20a,
20d……共通着磁ヨーク、20b,20c……
独立着磁ヨーク、22……磁界誘導用ヨーク、2
6……励磁コイル。
FIG. 1 is a schematic explanatory diagram showing an example of the arrangement of a magnetizing yoke and an excitation coil when manufacturing an anisotropic resin magnet using a magnetic field injection mold according to the prior art, and FIG. FIG. 3 is a plan view of the mold structure for magnetic field injection molding according to the embodiment, FIG. 4 is a plan view of the mold structure for magnetic field injection molding according to the embodiment, and FIG. FIG. 5 is a cross-sectional view taken along the line A--A in FIG. 4. 16... Mold, 18... Cavity, 20a,
20d... Common magnetizing yoke, 20b, 20c...
Independent magnetizing yoke, 22...Yoke for magnetic field induction, 2
6... Excitation coil.

Claims (1)

【特許請求の範囲】 1 金型に画成したキヤビテイに着磁ヨークを臨
ませ、該ヨークを着磁して前記キヤビテイに磁場
形成を行なうと共に、強磁性粉末と樹脂との溶融
混合物を該キヤビテイに射出して異方性樹脂磁石
を製造する磁場射出成形用金型構造において、 前記金型に複数個のキヤビテイを所要の配列で
画成すると共に、少なくとも1つの磁界発生源に
より励磁される閉成した磁気回路を該金型に所要
数だけ設け、 前記夫々の閉成した磁気回路の一部を構成する
着磁ヨークを、各キヤビテイに臨ませるよう構成
した ことを特徴とする磁場射出成形用金型構造。 2 前記閉成した磁気回路は、隣接し合うキヤビ
テイを金型内で磁気的に結合する2つの共通着磁
ヨークと、一端部を金型外方に延出させた2つの
独立着磁ヨークとを備え、各ヨークの端部は前記
各キヤビテイの内側に夫々所定の位相角で臨ませ
てある 特許請求の範囲第1項記載の磁場射出成形用金
型構造。 3 前記磁界発生源は、共通着磁ヨークから金型
外方へ導出した磁界誘導用ヨークとその両側に位
置する一対の独立着磁ヨークとの夫々に配設した
励磁コイルで構成され、 磁界誘導用ヨークに配設した励磁コイルの巻数
は、各独立着磁ヨークに配設した励磁コイルの巻
数の2倍に設定されている特許請求の範囲第1項
または第2項記載の磁場射出成形用金型構造。 4 前記磁界発生源は、金型外方に延出している
2つの独立着磁ヨークの夫々に配設した励磁コイ
ルで構成されると共に、 この励磁コイルで発生した磁界は金型外方へ導
出した磁界誘導用ヨークを介して前記共通着磁ヨ
ークに分配され、 各励磁コイルの巻数比は1:1に設定されてい
る特許請求の範囲第1項または第2項記載の磁場
射出成形用金型構造。
[Claims] 1. A magnetizing yoke is placed facing a cavity defined in a mold, the yoke is magnetized to form a magnetic field in the cavity, and a molten mixture of ferromagnetic powder and resin is poured into the cavity. In a magnetic field injection molding mold structure for manufacturing an anisotropic resin magnet by injecting into the mold, a plurality of cavities are defined in a desired arrangement in the mold, and a closed cavity excited by at least one magnetic field generation source is provided. For magnetic field injection molding, the mold is provided with a required number of closed magnetic circuits, and a magnetizing yoke forming a part of each of the closed magnetic circuits is configured to face each cavity. Mold structure. 2 The closed magnetic circuit includes two common magnetizing yokes that magnetically couple adjacent cavities within the mold, and two independent magnetizing yokes with one end extending outside the mold. The mold structure for magnetic field injection molding according to claim 1, wherein the end portion of each yoke faces the inside of each cavity at a predetermined phase angle. 3. The magnetic field generation source is composed of excitation coils disposed in each of a magnetic field inducing yoke led out from a common magnetizing yoke to the outside of the mold and a pair of independent magnetizing yokes located on both sides of the yoke, and magnetic field inducing. For magnetic field injection molding according to claim 1 or 2, the number of turns of the excitation coil disposed on the magnetizing yoke is set to twice the number of turns of the excitation coil disposed on each independent magnetizing yoke. Mold structure. 4. The magnetic field generation source is composed of an excitation coil disposed on each of two independent magnetizing yokes extending outside the mold, and the magnetic field generated by the excitation coil is guided outside the mold. The magnetic field injection molding metal according to claim 1 or 2, wherein the magnetic field is distributed to the common magnetizing yoke through a magnetic field inducing yoke, and the turns ratio of each exciting coil is set to 1:1. Type structure.
JP4202183A 1983-03-14 1983-03-14 Die structure for injection molding in magnetic-field Granted JPS59168620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4202183A JPS59168620A (en) 1983-03-14 1983-03-14 Die structure for injection molding in magnetic-field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4202183A JPS59168620A (en) 1983-03-14 1983-03-14 Die structure for injection molding in magnetic-field

Publications (2)

Publication Number Publication Date
JPS59168620A JPS59168620A (en) 1984-09-22
JPH0220131B2 true JPH0220131B2 (en) 1990-05-08

Family

ID=12624512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4202183A Granted JPS59168620A (en) 1983-03-14 1983-03-14 Die structure for injection molding in magnetic-field

Country Status (1)

Country Link
JP (1) JPS59168620A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777177B2 (en) * 1986-06-25 1995-08-16 電気化学工業株式会社 Simultaneous multi-pole magnetized injection molding die and simultaneous multi-pole magnetized molding method using the same

Also Published As

Publication number Publication date
JPS59168620A (en) 1984-09-22

Similar Documents

Publication Publication Date Title
US5181971A (en) Magnet and method of manufacturing the same
JPS6150368B2 (en)
US4954800A (en) Magnet and method of manufacturing the same
JPH0220131B2 (en)
US4904175A (en) Magnetic plastic rotor disk manufacturing apparatus
JPS5668254A (en) Rotor molding die for miniature motor of watch
JPS63228707A (en) Manufacture of anisotropic multi-pole plastic magnet
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JPS6211212A (en) Injection molding die for manufacturing plastic magnet
JPS59165633A (en) Method and apparatus for applying multipolar magnetic field to plurality of cavity demarcated to magnetic field injection molding die
JPH02213108A (en) Manufacture of anisotropic multipole plastic magnet
JP2800458B2 (en) Magnetic forming equipment for anisotropic plastic magnets
JPH0629139A (en) Anisotropic resin magnet with functional member
JPH0138903Y2 (en)
JPH0523307Y2 (en)
JPH0239852B2 (en) RINGUJOJISEISEIKEITAINOSEIZOHOHO
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPS5668255A (en) Rotor for miniature motor of watch
JPH0533802B2 (en)
JPH0654742B2 (en) Method for manufacturing multipolar anisotropic resin magnet
JPH01228817A (en) Injection molding machine of anisotropic plastic magnet
JPH0343707Y2 (en)
JPH027856A (en) Manufacturing device for rotor of rotary electric machine
JPS6214411A (en) Manufacture of ring-shaped magnetic molded matter
JPH071743B2 (en) Magnetic field molding equipment for resin magnets