JPS59168512A - Control method for position of traveling object - Google Patents

Control method for position of traveling object

Info

Publication number
JPS59168512A
JPS59168512A JP58042883A JP4288383A JPS59168512A JP S59168512 A JPS59168512 A JP S59168512A JP 58042883 A JP58042883 A JP 58042883A JP 4288383 A JP4288383 A JP 4288383A JP S59168512 A JPS59168512 A JP S59168512A
Authority
JP
Japan
Prior art keywords
ultrasonic
guided vehicle
unmanned guided
traveling
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58042883A
Other languages
Japanese (ja)
Inventor
Taichi Inoue
太一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP58042883A priority Critical patent/JPS59168512A/en
Publication of JPS59168512A publication Critical patent/JPS59168512A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • G05D1/0282Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal generated in a local control room

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To ensure an easy countermeasure to the change, etc. of a course of a traveling object by providing an ultrasonic oscillator at one side of an area near the traveling object and its course and an ultrasonic sensor at the other side of said area respectively and controlling the position of the traveling controller from the transmission time of the ultrasonic wave. CONSTITUTION:A traveling object 5 receives the ultrasonic wave radiation indicating signal from a central controller 10 through an antenna 6a and radiates the signal through an ultrasonic transmitter 7a. The ultrasonic sensors A and B set at the areas near the traveling course of the object 5 send the ultrasonic wave reception signals back to the controller 10. The controller 10 calculates the distances among sensors A and B and the object 5 from the time needed from the indication of radiation to the reception and then decides the position of the subject 5. Based on this detected position, the controller 10 transmits the control signal to guide the object 5 and controls a driver in the object 5.

Description

【発明の詳細な説明】 この発明は無人誘導車等の移動物体の位置を制御する位
置制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a position control method for controlling the position of a moving object such as an unmanned guided vehicle.

周知のように、工場、倉庫等において荷物の搬送を行な
う無人誘導車は、走行路上に布設されたレールオたけ電
磁誘導線に誘導されて移動する。
As is well known, unmanned guided vehicles that transport cargo in factories, warehouses, etc. move by being guided by rail-operated electromagnetic guide lines installed on a running path.

また、無人誘導車の荷物の積み降し等を行なうステーシ
ョンには、光線または誘導磁気信号を発する装置を設け
、この信号によシ無人誘導車を停車させるようになって
いる。
In addition, a station for loading and unloading luggage of the unmanned guided vehicle is equipped with a device that emits a light beam or a guided magnetic signal, and this signal causes the unmanned guided vehicle to stop.

例えば第1図は従来の電磁誘導方式による無人誘導車シ
ステムの一構成例を示す図である。この図において符号
IFi無人誘導車であり、無人誘導車10走行路上には
電磁誘導線2が埋設されている。さらに走行路に面して
ステーション3 a 、 3bが各々設けられておシ、
ステーション3a、3bに面する走行路には各々電磁誘
導線4a、4bが埋設されている。一方、無人誘導車1
には磁気センサが設けられており、電磁誘導線2の誘導
磁気を検出しつつ移動し、また各ステーション3a。
For example, FIG. 1 is a diagram showing a configuration example of an unmanned guided vehicle system using a conventional electromagnetic induction method. In this figure, the symbol IFi denotes an unmanned guided vehicle, and an electromagnetic guide wire 2 is buried on the traveling path of the unmanned guided vehicle 10. Further, stations 3a and 3b are provided facing the running route, respectively.
Electromagnetic induction wires 4a and 4b are buried in the running paths facing the stations 3a and 3b, respectively. On the other hand, unmanned guided vehicle 1
is provided with a magnetic sensor, and moves while detecting the induced magnetism of the electromagnetic induction wire 2, and each station 3a.

3bにおいては電磁誘導線4 a + 4 bの誘導磁
気を検出して停車する。
3b, the train detects the induced magnetism of the electromagnetic induction wires 4a + 4b and stops.

kころでこの様な従来のレールまたは電磁誘導方式によ
る無人誘導車システムだおいては、走行路の全長にわた
ってレールまたは電磁誘導線を布設しなければならず、
地上工事が極めて大樹かシになってコストが重みまた走
行路やステーションの変更あるいけ追加も容易でないと
いう問題があった。
In such conventional rail or electromagnetic induction unmanned guided vehicle systems, rails or electromagnetic guide lines must be laid over the entire length of the travel path.
There were problems in that the ground work was extremely large and expensive, and it was not easy to change or add tracks to running routes or stations.

この発明は上述した事情に鑑み、走行路面にレールまた
は電磁誘導等を布設する必要が無く、かつ、走行路の変
更を容易に行うことができる移動物体の位置制御方法を
提供するもので、移動物体と移動物体の走行コース近傍
とのいずれか一方に超音波発振器を、他方に超音波セン
サを設け、中央制御装置の制御のもとに超音波発振器か
ら放射された超音波を超音波センサで検出し、この検出
結果に基づいて、移動物体の位置を制御することを特徴
としている。
In view of the above-mentioned circumstances, the present invention provides a method for controlling the position of a moving object, which does not require the installation of rails or electromagnetic induction on the running road surface, and can easily change the running route. An ultrasonic oscillator is installed on one side of the object and the vicinity of the travel course of the moving object, and an ultrasonic sensor is installed on the other side, and the ultrasonic sensor emits the ultrasonic waves emitted from the ultrasonic oscillator under the control of a central controller. It is characterized by detecting the moving object and controlling the position of the moving object based on the detection result.

以下、図面を参照してこの発明の一実施例について説明
する。第2図はこの発明による方法を適用した無人誘導
車システムの構成を示す図である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing the configuration of an unmanned guided vehicle system to which the method according to the present invention is applied.

この図において符号5は予め定められた走行路に従って
走行する無人誘導車(移動物体)であわ、この無人誘導
車5には受信装置6、超音波発振器7、駆動装置8が各
々設けられている。受信装置6はアンテナ6aを介して
久方される高周波から信号成分を抽出し、次いで、得ら
れた信号を解読し、この解読結果に基づいて超音波発振
器7および駆動装置8へ各々指示を与える。超音波発振
器7は受信装置6からの指示に従って超音波信号を作成
し、超音波送波器7aへ出方する。!た、駆動装置8は
受信装置6からの指示に従って無人誘導車50図示せぬ
動輪装置およびステアリング機構を駆動する。
In this figure, reference numeral 5 denotes an unmanned guided vehicle (moving object) that travels along a predetermined running route, and this unmanned guided vehicle 5 is provided with a receiving device 6, an ultrasonic oscillator 7, and a driving device 8. . The receiving device 6 extracts signal components from the high frequency waves emitted through the antenna 6a, then decodes the obtained signal, and gives instructions to the ultrasonic oscillator 7 and the driving device 8, respectively, based on the decoding results. . The ultrasonic oscillator 7 creates an ultrasonic signal according to instructions from the receiving device 6, and outputs it to the ultrasonic transmitter 7a. ! Further, the drive device 8 drives the driving wheel device and steering mechanism (not shown) of the unmanned guided vehicle 50 in accordance with instructions from the receiving device 6.

次に、符号AおよびBは各々無人誘導車5の走行コース
近傍の所定位置に設置された超音波センサであり、その
出力がケーブル9a、9bを介して中央制御装置1oへ
供給される。中央制御装置10は第3図に示すようにC
’PU (中央処理装置)11と、ROM(リードオン
リメそり)12とRAM(ランダムアクセスメモリ)1
3と送信装置14と、受信回路15a 、15bとから
構成されている。この場合、CPUIIHシステム全体
を制御すると共に各種の演算を行うものでパスライン1
6を介して各部と接続されている。ROM12けCPU
IIで用いられるプログラムが記憶されているメモリ、
RAMI 3U無人誘導車5の走行ルートに関するデー
タ等が記憶されるメモリである。送信装置14はCPU
I 1から出力される、無人誘導車5に対する各種の信
号を高周波信号に重畳させてアンテナ10aから出力す
る装置でちる。受信回路15aおよび15bは各々超音
波センサAおよびBから供給される受信信号が一定レベ
ルを趨えた時これを検知し、受信パルスP1およびP2
を各々CPUIIへ供給する。
Next, symbols A and B are ultrasonic sensors installed at predetermined positions near the travel course of the unmanned guided vehicle 5, and their outputs are supplied to the central controller 1o via cables 9a and 9b. As shown in FIG.
'PU (Central Processing Unit) 11, ROM (Read Only Memory) 12 and RAM (Random Access Memory) 1
3, a transmitting device 14, and receiving circuits 15a and 15b. In this case, it controls the entire CPU IIH system and performs various calculations, and the pass line 1
It is connected to each part via 6. ROM12 CPU
A memory in which programs used in II are stored;
RAMI 3U This is a memory in which data regarding the driving route of the unmanned guided vehicle 5 is stored. The transmitting device 14 is a CPU
It is a device that superimposes various signals for the unmanned guided vehicle 5 outputted from I1 onto a high frequency signal and outputs it from the antenna 10a. The receiving circuits 15a and 15b detect when the received signals supplied from the ultrasonic sensors A and B exceed a certain level, and transmit received pulses P1 and P2.
are supplied to each CPU II.

次に、上述した無人誘導車システムの動作を説明する、
まず、中央制御装置11において無人誘送信装置14を
介してアンテナ10aから発信する。この信号は無人誘
導車5の受信回路6にょっ丁受信、解読され、この解読
結果にしたがって、超音波発信器7へ超音波放射の指示
が与えられる。
Next, the operation of the above-mentioned unmanned guided vehicle system will be explained.
First, in the central control device 11, a signal is transmitted from the antenna 10a via the unmanned invitation transmitting device 14. This signal is immediately received and decoded by the receiving circuit 6 of the unmanned guided vehicle 5, and according to the decoding result, an instruction to emit ultrasonic waves is given to the ultrasonic transmitter 7.

超音波発振器7はこの指示を受け、超音波送波器7aか
ら超音波を放射する。放射された超音波は超音波センサ
AおよびBによって各々受波され、超音波センサAおよ
びBから各々受信信号が受信回路15a、15bへ供給
される。受信回路15aおよび15bは各々受信信号が
一定しベルヲ超えた時点で受信パルスP1.P2をcP
Ullへ出力する。
The ultrasonic oscillator 7 receives this instruction and emits ultrasonic waves from the ultrasonic transmitter 7a. The emitted ultrasonic waves are received by ultrasonic sensors A and B, respectively, and received signals from ultrasonic sensors A and B are supplied to receiving circuits 15a and 15b, respectively. The receiving circuits 15a and 15b each receive a received pulse P1. when the received signal becomes constant and exceeds the bell. P2 to cP
Output to Ull.

一方、CPU11は超音波放射を指示する信号を出力し
た時点(なお、この時点は超音波送信器7aカ・ら超音
波が放射される時刻に略等しい)から時間計測を開始し
、受信パルスP1.P2が供、給されるまでの時間TA
 、Tsを各々計測する。
On the other hand, the CPU 11 starts time measurement from the time when it outputs a signal instructing ultrasonic emission (this time is approximately equal to the time when ultrasonic waves are emitted from the ultrasonic transmitter 7a), and receives the received pulse P1. .. Time TA until P2 is supplied
, Ts are measured respectively.

なお、第V図(イ)に超音波放射を指示する信号の出力
タイミングを示し、また1口)および(ハ)に各々受信
パルスP1.P2および時間TA、TBを示す。
Incidentally, FIG. P2 and times TA and TB are shown.

ここで、時間1人、TBは各々無人誘導車5と超音波セ
ンサA、Bとの間の超音波伝播時間である。
Here, time per person and TB are the ultrasonic propagation times between the unmanned guided vehicle 5 and the ultrasonic sensors A and B, respectively.

次にCPUI 1は以下の過程によって無人誘導車5の
位置を検出する。すなわち、まず、時間TA。
Next, the CPU 1 detects the position of the unmanned guided vehicle 5 through the following process. That is, first, time TA.

THに各々超音波の伝播速度Vを乗算して無人誘導車5
と超音波センサA、Hの各々との距離TA・vX’pB
−vを求める。次に第5図に示すように超音波センサA
の位置を中心とし、半径T A−Vの円CAと、超音波
センサBの位置を中心とし、半径TB−■の円CBとの
交点x 、 x’の座標を求める。ここで、交点x 、
 x’の一方が無人誘導車5の位置となる。次KCPU
IIは無人誘導車5の移動範囲と超音波センサA、Bの
位置関係から、例えば超音波センサA、Bを結ぶ直線の
左側にある交点Xを無人誘導車5の位置(座標)として
検出する。
The unmanned guided vehicle 5 is obtained by multiplying TH by the propagation velocity V of each ultrasonic wave.
Distance TA・vX'pB between and each of ultrasonic sensors A and H
- Find v. Next, as shown in Fig. 5, the ultrasonic sensor A
The coordinates of the intersections x and x' of a circle CA with a radius TA-V centering on the position of and a circle CB with a radius TB-■ centering on the position of the ultrasonic sensor B are determined. Here, the intersection x,
One side of x' is the position of the unmanned guided vehicle 5. NextKCPU
II detects, for example, the intersection X on the left side of the straight line connecting ultrasonic sensors A and B as the position (coordinates) of the unmanned guided vehicle 5 from the movement range of the unmanned guided vehicle 5 and the positional relationship of the ultrasonic sensors A and B. .

以上が無人誘導車5の位置検出の過程である。The above is the process of detecting the position of the unmanned guided vehicle 5.

次に、無人誘導車5の走行コースをRAR,’llB内
に収録する過程を説明する。この場合、無人誘導車5を
手動によシ予め定められた走行コースに沿って走行させ
る。この手動走行の間、CPU11は一定時間(例えば
7秒間)おきに上述した方法で無人誘導車5の位置を検
出し、この検出結果を順次RAM131C収録する。第
を図はこの収録過程における記憶データ例を示す図であ
シ、この図において、t=o、  ハ λ・・・は各々
0秒後(スタート時点)、7秒後、2秒後・・・の意味
であυ、またTAおよびTBは7秒毎に検出された無人
誘導車5と超音波センサAおよびBとの間の超音波伝播
時間である。ここで、例えばスタート時点(t=0)か
ら3秒後に無人誘導車5がステーションに達したとする
と、操作者が操作スイッチ(図示略)をオンとする。C
PUIIはこの操作スイッチの操作を検出し、第2図に
示すように3秒後の次に、RAM13に収録した走行コ
ースに関するデータに基づいて無人誘導車5を自動走行
させろ過程を説明する。この場合まず無人誘導車5を手
動によジスタート位置へ配置し、そして、スタート釦(
図示略)を押す。CPUI 1はこのスタート釦の操作
を検知し、スタート信号を無人誘導    ゛車5へ送
出する。このスタート信号は無人誘導車5の受信装置6
によって受信、解読され、受信装置6から駆動装置8ヘ
スタート指令が出力される。
Next, the process of recording the travel course of the unmanned guided vehicle 5 in RAR,'llB will be explained. In this case, the unmanned guided vehicle 5 is manually driven along a predetermined travel course. During this manual running, the CPU 11 detects the position of the unmanned guided vehicle 5 at regular intervals (for example, 7 seconds) using the method described above, and sequentially records the detection results in the RAM 131C. Figure 5 shows an example of stored data during this recording process. In this figure, t=o, λ... are 0 seconds later (start time), 7 seconds later, 2 seconds later... · means υ, and TA and TB are the ultrasonic propagation times between the unmanned guided vehicle 5 and the ultrasonic sensors A and B detected every 7 seconds. Here, for example, if the unmanned guided vehicle 5 reaches the station 3 seconds after the start time (t=0), the operator turns on the operation switch (not shown). C
The PUII detects the operation of this operation switch, and after 3 seconds, as shown in FIG. 2, explains the process of causing the unmanned guided vehicle 5 to travel automatically based on the data regarding the travel course stored in the RAM 13. In this case, first manually place the unmanned guided vehicle 5 to the start position, and then press the start button (
(not shown). The CPU 1 detects the operation of this start button and sends a start signal to the unmanned guided vehicle 5. This start signal is received by the receiving device 6 of the unmanned guided vehicle 5.
The signal is received and decoded by the receiving device 6, and a start command is outputted to the driving device 8.

これにより無人誘導車5が走行を開始する。CPU11
は上述したスタート信号を出力した時点以後、7秒毎に
無人誘導車5と超音波センサA、Bの各々との間の超音
波伝:播時間TA’、TB’を計測し、この計測結果と
RAM13内のデータとを比較する。そして、この比較
結果に従って無人誘導車5の走行を制御する。いま、例
えば7秒後の超音波センサ時間T A’ l T B’
が各々りJ−、/22であった°とすると、CPU11
はこのデータと第6図に示す7秒後のデータTA=りQ
lTB−/20とを比較し、この比較結果から無人銹導
者5が7秒後の目的地点へ到達していないことを検知し
、加とTBとの差よシ大きいことから、超音波センサA
の方向へわずかに方向修正を行うよう指示する信号を無
人誘導車5へ出力する。また、CPU11はスタート時
点から3秒後にデータ(O、O)をRAM13から読出
した時点で無人誘導車5へ停止を指示する信号を出力す
る。これによシ、無人誘導車5がステーションにおいて
停止する。再スタートは手動によシ行わせてもよく、あ
るいは一定時間経過後に自動的に行わせてもよい。以下
、上記動作が繰返えされ、これによシ無人誘導車50走
行が自動的に制御される。
As a result, the unmanned guided vehicle 5 starts traveling. CPU11
Measures the ultrasonic propagation times TA' and TB' between the unmanned guided vehicle 5 and each of the ultrasonic sensors A and B every 7 seconds after outputting the above-mentioned start signal, and calculates the measurement results. and the data in the RAM 13 are compared. Then, the traveling of the unmanned guided vehicle 5 is controlled according to this comparison result. Now, for example, the ultrasonic sensor time after 7 seconds T A' l T B'
are respectively J- and /22, then CPU11
is this data and the data after 7 seconds shown in Figure 6 TA=riQ
1TB-/20, and based on the comparison result, it was detected that the unmanned guide 5 had not reached the destination point after 7 seconds. A
A signal is output to the unmanned guided vehicle 5 instructing it to make a slight direction correction in the direction of. Further, the CPU 11 outputs a signal instructing the unmanned guided vehicle 5 to stop at the time when the data (O, O) is read from the RAM 13 three seconds after the start time. As a result, the unmanned guided vehicle 5 stops at the station. The restart may be performed manually or automatically after a certain period of time has elapsed. Thereafter, the above operation is repeated, and the travel of the unmanned guided vehicle 50 is thereby automatically controlled.

なお、上記実施例においては、説明を簡単にするため超
音波センサA、  Bを2箇所に設けたが、これを3箇
所以上の個所に設け、無人誘導車5に近い超音波センサ
の検出結果を選択することによシ広範囲な走行路面にお
いても高い精度で無人誘導車の位置を制御することがで
きる。また、上記実施例においては、中央制御装置10
と無人誘導車5および超音波センサA、Bとは各々無線
および有線で接続されているが、これらの接続手段は無
線、有線、光等いずれの手段を用いてもよい。
In addition, in the above embodiment, the ultrasonic sensors A and B were provided at two locations to simplify the explanation, but if these were provided at three or more locations, the detection results of the ultrasonic sensors near the unmanned guided vehicle 5 By selecting , the position of the unmanned guided vehicle can be controlled with high precision even on a wide range of road surfaces. Further, in the above embodiment, the central control device 10
The unmanned guided vehicle 5 and the ultrasonic sensors A and B are connected wirelessly and wired, respectively, but any means such as wireless, wired, optical, etc. may be used for these connection means.

次に無人ぎ導車5の位置を検出する他の位置検出方法に
ついて説明する。
Next, another position detection method for detecting the position of the unmanned guided vehicle 5 will be explained.

(1]  第2図に示す超音波センサA、Bの設置位置
に各々、第7図に示すようにコ個の超音波センサA1.
A2.B1.B2を超音波の半波長程度離して設置し、
超音波センサA1.A2に各々到達する超音波の位相差
から直@X −At  (A 2 )の方向を検知し、
同様に超音波センサBl、B2に各々到達する超音波の
位相差から直線X −B 1(B2)の方向を検知し、
これら直@X−Ax。
(1) At the installation positions of the ultrasonic sensors A and B shown in FIG. 2, there are installed ultrasonic sensors A1 and B as shown in FIG.
A2. B1. Place B2 at a distance of about half an ultrasonic wave wavelength,
Ultrasonic sensor A1. Detect the direction of direct @X − At (A 2 ) from the phase difference of the ultrasonic waves that each reach A2,
Similarly, the direction of the straight line
These direct @X-Ax.

X−B1の交点として無人誘導車5の位置を検出する。The position of the unmanned guided vehicle 5 is detected as the intersection of X-B1.

第r図は上述した方向検出の原理を説明するための図で
あり、この図において矢印Yの方向に無人誘導車5があ
るとする。とこの場合、△AIA2MにおいてM線A1
−A2は一定、直iA1−Mと直?A2−Mとは直交す
ることから図に示す長さLがわかれば△AIA2Mが決
定され、無人誘導車5の方向、すなわちl A 2 A
 IMが決定される。したがって、超音波センサA1.
A2に各々到達する超音波の位相差からLを求めれば、
直線M−A 1(X−A 1)の方向を検出することが
できる。なお、第r図における符号α1.α2は各々超
音波波形である。
FIG. In this case, M line A1 at △AIA2M
-A2 is constant, direct iA1-M and direct? Since it is perpendicular to A2-M, if the length L shown in the figure is known, △AIA2M can be determined, and the direction of the unmanned guided vehicle 5, that is, l A 2 A
IM is determined. Therefore, ultrasonic sensor A1.
If L is calculated from the phase difference of the ultrasonic waves that each reach A2,
The direction of straight line M-A 1 (X-A 1) can be detected. Note that the symbol α1. α2 is an ultrasonic waveform.

(2)無人誘導車50走行コース近傍の一個所に第7図
に示す超音波センサA1.A2組を設置し、超音波セン
サAl 、A2に各々到達する超音波の位相差から直線
X−A1の方向を検知し、また無人誘導車5と超音波セ
ンサA1との間の超音波伝播時間から距離X−Alを検
知し、これらの検知結果に基づいて無人誘導車5の位置
を検出する。
(2) The ultrasonic sensor A1 shown in FIG. A2 sets are installed, and the direction of the straight line The distance X-Al is detected from the distance X-Al, and the position of the unmanned guided vehicle 5 is detected based on these detection results.

(3)無人誘導車5の走行コース近傍の一個所に7個の
超音波センサを水平面内において回転可能に設け、この
超音波センサを回転させて超音波が最も大きなレベルで
受信される方向を検知し、この検知結果および無人誘導
車5と超音波センサとの間の超音波伝播時間からこの間
の距離を検知し、これらの検知結果に基づいて無人誘導
車5の位置を検出する。
(3) Seven ultrasonic sensors are installed rotatably in a horizontal plane at one location near the travel course of the unmanned guided vehicle 5, and the ultrasonic sensors are rotated to determine the direction in which ultrasonic waves are received at the highest level. Based on this detection result and the ultrasonic propagation time between the unmanned guided vehicle 5 and the ultrasonic sensor, the distance therebetween is detected, and the position of the unmanned guided vehicle 5 is detected based on these detection results.

(4)無人誘導車50走行コース近傍の一個所に多数の
超音波センサを環状に配置し、超音波が最も大きなレベ
ルで受信される超音波センサの位置から無人誘導車5の
方向を検知し、この検知結果および無人誘導車5と超音
波センサとの間の超音波伝播時間からこの間の距離を検
知し、これらの検知結果に基づいて無人誘導車5の位置
を検出する。
(4) A large number of ultrasonic sensors are arranged in a ring at one location near the driving course of the unmanned guided vehicle 50, and the direction of the unmanned guided vehicle 5 is detected from the position of the ultrasonic sensor where the ultrasonic waves are received at the loudest level. The distance between the detection results and the ultrasonic propagation time between the unmanned guided vehicle 5 and the ultrasonic sensor is detected, and the position of the unmanned guided vehicle 5 is detected based on these detection results.

(5)以上(2)〜(4)の位置検出方法において無人
誘導車5に超音波センサを設け、走行コース近傍に超音
波発振器7を設けて無人誘導車5の位置を検出する。
(5) In the position detection methods (2) to (4) above, the unmanned guided vehicle 5 is provided with an ultrasonic sensor, and the ultrasonic oscillator 7 is provided near the travel course to detect the position of the unmanned guided vehicle 5.

以上説明したように、この発明によれば、移動物体と移
動物体の走行コース近傍とのいずれか一方に超音波発振
器を、他力に超音波センサを設け、中央制御装置の制御
のもとに超音波発振器から放射された超音波を超音波セ
ンサで検出し、この検出結果に基づいて、移動物体の位
置を制御するようにしたので、走行路面てレールまたは
電磁前導線等を布設する必要が無くなシ、シたがってシ
ステム全体の価格が安価となシ、捷だ走行コースやステ
ーションの変更あるいは追加も極めて容易に行なうこと
ができる。
As explained above, according to the present invention, an ultrasonic oscillator is provided on either the moving object or the vicinity of the traveling course of the moving object, and an ultrasonic sensor is provided on the other side, and the Ultrasonic waves emitted from an ultrasonic oscillator are detected by an ultrasonic sensor, and the position of a moving object is controlled based on the detection results, so there is no need to install rails or electromagnetic lead wires on the road surface. Therefore, the price of the entire system is low, and it is extremely easy to change or add a running course or station.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電磁誘導方式による無人誘導車システム
の一構成を示す図、第2図はこの発明の方法を適用した
無人誘導車システムの一実施例の構成を示す図、第3図
は第2図の中央制御装置の構成を示すブロック図、第≠
、j図は第2図の一実施例における超音波伝播時間にょ
シ位置を検出する方法を説明するための図、第6図は第
一、3図の一実施例においてRAMI a内に収録され
るデータ例を示す図、第7.2図は超音波の位相差によ
シ位置を検出する方法を説明するための図である。 5・・・・・・無人誘導車、7・・・・・・超音波発振
器、l。 ・・・・・・中央制御装置、A、B・・・・・・超音波
センサ。
FIG. 1 is a diagram showing the configuration of an unmanned guided vehicle system using a conventional electromagnetic induction method, FIG. 2 is a diagram showing the configuration of an embodiment of an unmanned guided vehicle system to which the method of the present invention is applied, and FIG. Block diagram showing the configuration of the central control device in Figure 2, Part ≠
, j is a diagram for explaining the method of detecting the ultrasonic propagation time and position in one embodiment of FIG. 2, and FIG. FIG. 7.2 is a diagram illustrating a method of detecting the position based on the phase difference of ultrasonic waves. 5...Unmanned guided vehicle, 7...Ultrasonic oscillator, l. ... Central control unit, A, B ... Ultrasonic sensor.

Claims (1)

【特許請求の範囲】[Claims] 中央制御装置の制御のもとに移動物体の位置を自動的に
制御する移動物体の位置制御方法において、前記移動物
体と前記移動物体の走行コース近傍とのいずれか一方に
超音波発振器を、他方に超音波センサを設け、前記超音
波発振器から放射された超音波を前記超音波センサで検
出し、この検出結果に基づいて、前記移動物体の位置を
制御することを4′!徴とする移動物体の位置制御方法
Ω
A method for controlling the position of a moving object that automatically controls the position of the moving object under the control of a central control device, wherein an ultrasonic oscillator is installed in either the moving object or near the travel course of the moving object, and the other 4'! An ultrasonic sensor is provided in the ultrasonic oscillator, the ultrasonic sensor detects the ultrasonic wave emitted from the ultrasonic oscillator, and the position of the moving object is controlled based on the detection result. A method for controlling the position of a moving object based on
JP58042883A 1983-03-15 1983-03-15 Control method for position of traveling object Pending JPS59168512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58042883A JPS59168512A (en) 1983-03-15 1983-03-15 Control method for position of traveling object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042883A JPS59168512A (en) 1983-03-15 1983-03-15 Control method for position of traveling object

Publications (1)

Publication Number Publication Date
JPS59168512A true JPS59168512A (en) 1984-09-22

Family

ID=12648432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042883A Pending JPS59168512A (en) 1983-03-15 1983-03-15 Control method for position of traveling object

Country Status (1)

Country Link
JP (1) JPS59168512A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108188A (en) * 2005-01-12 2007-04-26 Matsushita Electric Works Ltd Line of flow measurement system
JP2007127663A (en) * 2005-01-12 2007-05-24 Matsushita Electric Works Ltd Flow line measuring system
JP2007183286A (en) * 2007-03-09 2007-07-19 Matsushita Electric Works Ltd System for measuring flow line
JP2007187676A (en) * 2007-03-09 2007-07-26 Matsushita Electric Works Ltd Flow line measuring system
JP2010019857A (en) * 1998-11-10 2010-01-28 Luidia Inc Transmitter pen positioning system
WO2018168219A1 (en) * 2017-03-17 2018-09-20 株式会社東芝 Position locating system, position locating method, and computer program
US10724996B2 (en) 2017-03-17 2020-07-28 Kabushiki Kaisha Toshiba Position location system, position location method, and non-transitory computer readable storage medium

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808845B2 (en) * 1998-11-10 2011-11-02 ルイディア インコーポレイテッド Transmitter pen positioning system
JP2010019857A (en) * 1998-11-10 2010-01-28 Luidia Inc Transmitter pen positioning system
JP4569565B2 (en) * 2005-01-12 2010-10-27 パナソニック電工株式会社 Flow line measurement system
JP2007127663A (en) * 2005-01-12 2007-05-24 Matsushita Electric Works Ltd Flow line measuring system
JP2007108188A (en) * 2005-01-12 2007-04-26 Matsushita Electric Works Ltd Line of flow measurement system
JP2007187676A (en) * 2007-03-09 2007-07-26 Matsushita Electric Works Ltd Flow line measuring system
JP4569584B2 (en) * 2007-03-09 2010-10-27 パナソニック電工株式会社 Flow line measurement system
JP4710855B2 (en) * 2007-03-09 2011-06-29 パナソニック電工株式会社 Flow line measurement system
JP2007183286A (en) * 2007-03-09 2007-07-19 Matsushita Electric Works Ltd System for measuring flow line
WO2018168219A1 (en) * 2017-03-17 2018-09-20 株式会社東芝 Position locating system, position locating method, and computer program
JP2018155662A (en) * 2017-03-17 2018-10-04 株式会社東芝 Position locating system, position locating method, and computer program
CN108966667A (en) * 2017-03-17 2018-12-07 株式会社东芝 Location position system, position calibration method and computer program
US10724996B2 (en) 2017-03-17 2020-07-28 Kabushiki Kaisha Toshiba Position location system, position location method, and non-transitory computer readable storage medium

Similar Documents

Publication Publication Date Title
US6459966B2 (en) Navigating method and device for an autonomous vehicle
CN107229281B (en) AGV trolley guiding method, intelligent manufacturing production line and logistics system
JPS59168512A (en) Control method for position of traveling object
JPH05143158A (en) Method and device for radio monitoring communication of unmanned traveling body
JPS6111819A (en) Railless floor conveyance system for freight transportation
JPS6373303A (en) Control system for autopilot vehicle at intersection
JP4352925B2 (en) Sensor control device for automatic guided vehicle and automatic guided system
JPH07117852B2 (en) Method for detecting the position of an unmanned vehicle
JP3233253B2 (en) Travel control device for mobile vehicles
JPH036521B2 (en)
JPS62140106A (en) Dive control equipment for traveling vehicle
JPS62189511A (en) Travel control equipment for moving vehicle
JPS62187911A (en) Travel control equipment for moving car
JPS6134614A (en) Communicating method of unattended truck
JPH08278818A (en) Steering system for self-traveling robot and automatic steering device
JP3201050B2 (en) Unmanned vehicle guidance system
JPH05127746A (en) Method and device for controlling travel of unmanned self-running body
JPH0445846B2 (en)
JP2007174786A (en) Automatic traveling carriage
JPH10177073A (en) Method and device for high speed obstacle detection with ultrasonic sensor
JPH10142328A (en) Apparatus for recognizing position of unmanned conveyor vehicle
JPS6125217A (en) Collision preventing system of unmanned truck
JPS62157913A (en) Unmanned conveyance system
JPS62274407A (en) Running control equipment for moving car
JPS62156706A (en) Emergency stop controller for self-traveling cart