JPS59166859A - Eddy current flaw detector for pipe provided with interpolating coil - Google Patents

Eddy current flaw detector for pipe provided with interpolating coil

Info

Publication number
JPS59166859A
JPS59166859A JP4057783A JP4057783A JPS59166859A JP S59166859 A JPS59166859 A JP S59166859A JP 4057783 A JP4057783 A JP 4057783A JP 4057783 A JP4057783 A JP 4057783A JP S59166859 A JPS59166859 A JP S59166859A
Authority
JP
Japan
Prior art keywords
signal
defect
component
amplitude
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4057783A
Other languages
Japanese (ja)
Inventor
Yasuo Ishibashi
石橋泰雄
Hiroshi Hoshikawa
星川洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHU TORYO KK
Original Assignee
TOKUSHU TORYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHU TORYO KK filed Critical TOKUSHU TORYO KK
Priority to JP4057783A priority Critical patent/JPS59166859A/en
Publication of JPS59166859A publication Critical patent/JPS59166859A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To output a signal having a good correlativity against a phase of a defect signal by providing a signal converting circuit for indicating a defect and operating cos theta or sin theta/2 basing on an (x) component and a (y) component of a vector signal of phase theta. CONSTITUTION:An amplitude A of a defect signal by an (x) component and a (y) component of a defect signal is derived by an expression I . Also, costheta and sintheta/2 are derived by an expression II and an expression III, respectively. A defect detecting part 1 consists of a detecting coil 2 inserted into a pipe P to be tested, an oscillating circuit, a bridge circuit, and amplifier, etc., and a variation of the impedance of the detecting coil, which is varied in accordance with size of a defect is outputted as a defect signal. A signal converting part 11 derives the amplitude A, costheta and sintheta/2 by operating and processing a signal (x) and (y) from the defect detecting part 1. An output part 21 consists of gate circuits 22, 23 and indicating devices 24, 25 and 26, and when the amplitude A becomes a prescribed value (a value above a noise level), a signal costheta and a signal sintheta/2 are outputted to the indicating devices 25, 26. According to this system, costheta or sintheta/2 is operated, therefore, the flaw detecting work is executed efficiently, and also automated easily.

Description

【発明の詳細な説明】 この発明は内挿コイルを備えた管用渦流探傷装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an eddy current flaw detection device for pipes equipped with an interpolated coil.

渦流探傷法では一般に材料中の欠陥は検出コイルのイン
ピーダンス変化として検出される。渦流探傷器は抵抗分
および誘導分よりなるベクトルの欠陥信号を出力する。
In the eddy current flaw detection method, defects in the material are generally detected as changes in the impedance of the detection coil. An eddy current flaw detector outputs a vector defect signal consisting of a resistive component and an inductive component.

内挿コイルを用いた管の渦流探傷法では、欠陥信号の振
幅は欠陥の深さだけではなく、欠陥の断面積にも依存す
るので、浅い欠陥でも開口面積が太きいときには振幅も
大きくなる。したがって、1チヤンネル式記録の信号光
示、すなわち振幅のみ全表示する方法では正確に欠陥の
深さを知ることはできない。
In tube eddy current testing using an interpolated coil, the amplitude of the defect signal depends not only on the depth of the defect but also on the cross-sectional area of the defect, so even if the defect is shallow, the amplitude will be large when the opening area is large. Therefore, the depth of the defect cannot be accurately determined by the signal light display of one channel recording, that is, by displaying only the amplitude in its entirety.

一方、欠陥の深さは欠陥信号の位相によく対応すること
が知られている。Jまた、ASME (米国機械学会)
の規格には欠陥信号の位相によって欠陥の深さを検出す
ることが規定されている。欠陥信号の位相は試験周波数
によって大きく変化するが、上記規定ではリフトオフな
どによる雑音信号の位相を0、すなわち雑音信号はX軸
上に現われるようにしたとき、標準試験片の貫通ドリル
穴に対する位相が135度となるように試験周波数を選
定することになっている。この場合、欠陥信号の位相は
0〜180度の範囲内で変化する。
On the other hand, it is known that the depth of a defect corresponds well to the phase of the defect signal. JAlso, ASME (American Society of Mechanical Engineers)
The standard stipulates that the depth of a defect is detected based on the phase of the defect signal. The phase of the defect signal varies greatly depending on the test frequency, but in the above regulations, when the phase of the noise signal due to lift-off etc. is set to 0, that is, the noise signal appears on the X axis, the phase with respect to the through drill hole of the standard test piece is The test frequency is to be selected so that the angle is 135 degrees. In this case, the phase of the defect signal varies within a range of 0 to 180 degrees.

従来、2チャンネル式渦流探傷器の二つの出力信号(振
幅Xおよびy)をX−YレコーダのチャートあるいはC
RTの画面から読み取り、これに基づいて欠陥信号の位
相θの一〇を計算していた。
Conventionally, the two output signals (amplitudes X and y) of a two-channel eddy current flaw detector were recorded on the chart of an
The phase θ of the defect signal was calculated based on the reading from the RT screen.

そして、位相θの代りにこの一〇により欠陥の深さを求
めていた。しかし、この方法では振幅Xおよびyの読取
り、−θの計算などに多くの手間を要し、探傷作業の能
率低下の一因となっていた。
Then, instead of the phase θ, the depth of the defect was determined using this 10. However, this method requires a lot of time and effort to read the amplitudes X and y, calculate -θ, etc., which is one of the causes of a decrease in the efficiency of flaw detection work.

1だ、−θは90度近くで非常に大きな値となるので、
これにより欠陥の深さを求めることは困難であった。
1, since -θ becomes a very large value near 90 degrees,
This made it difficult to determine the depth of the defect.

この発明は内挿コイルを用いた管の渦流探傷における上
記のような問題を解決するためになされたもので、欠陥
信号の位相に対し良好な相関性をもった信号を出力する
渦流探傷装置を提供しようさするものである。
This invention was made in order to solve the above-mentioned problems in eddy current flaw detection of tubes using an interpolation coil, and it is an eddy current flaw detection device that outputs a signal that has good correlation with the phase of a defect signal. This is what we are trying to provide.

この発明の管用渦流探傷装置は欠陥を指示する、位相θ
のベクトル信号のX成分およびX成分(こ基づいて所θ
またはsinθ//2を演算する信号変換回路を備えて
いる。
The eddy current flaw detection device for pipes of this invention indicates a defect, and the phase θ
The X component and the X component of the vector signal (based on this, θ
Alternatively, it is provided with a signal conversion circuit that calculates sin θ//2.

この発明では瀉θ捷たはsinθ//2を演算し、これ
を出力するので、従来のようにX−Yレコーダあるいは
CRTから欠陥信号のX成分およびX成分を読み取る必
要はなく、丑だ読み取ったX成分およQyX成分ら一〇
を求める計算も不要である。したがって、探傷作業は能
率的となり、自動化も容易となる。゛さらに、邸θまた
はS石θ/2は位相θの変域内(0〜180度)で連続
的に変化するので、房θまたはmθ/2から欠陥の深さ
を正確に求めることができる。
In this invention, since the θ value or sin θ//2 is calculated and outputted, there is no need to read the X component and the X component of the defective signal from an X-Y recorder or CRT as in the past. There is no need to calculate the X component, QyX component, etc. Therefore, flaw detection work becomes efficient and automation becomes easy. Furthermore, since the height θ or the S-stone θ/2 changes continuously within the range of the phase θ (0 to 180 degrees), the depth of the defect can be accurately determined from the cluster θ or mθ/2.

以下、この発明を実施例に基づき詳細に説明する。Hereinafter, this invention will be explained in detail based on examples.

欠陥信号のX成分およびX成分により欠陥信号の振幅A
は次の式(1)によって求められる。
The amplitude A of the defect signal is determined by the X and X components of the defect signal.
is determined by the following equation (1).

A = A乙閣    ・・(1) また、邸θおよびsinθ/2はそれぞれ邸θ−x/f
i   ・・・・・・・(2)SLn0/2−X7司「
])/ 22 、、、、、、 (3)によって求められ
る。
A = Aokaku ... (1) Also, residence θ and sin θ/2 are respectively residence θ-x/f
i ・・・・・・(2) SLn0/2-X7 Tsukasa
])/22 , , , , It is obtained by (3).

第1図は上記式(11〜(3)の演算を実行する回路を
含むこの発明の装置の一例を示すもので、装置のブロッ
ク図である。
FIG. 1 is a block diagram showing an example of the device of the present invention including a circuit that executes the calculations of the above equations (11 to (3)).

管用渦流探傷装置は欠陥検出部1.信号変換部11およ
び出力部21よりなっている。
Eddy current flaw detection equipment for pipes has a defect detection section 1. It consists of a signal conversion section 11 and an output section 21.

欠陥検出部1は被試験管P内に挿入される検出コイル2
、発振回路、ブリッジ回路、増幅器等(いずれも図示し
ない)からなり、公知の渦流探傷装置の本体と同様の構
成である。欠陥検出部1は欠陥の大きさにより変化する
検出コイル2のインピーダンスの変化を欠陥信号として
出力する。欠陥信号はX成分およびX成分とからなるベ
クトル信号である。
The defect detection section 1 includes a detection coil 2 inserted into the test tube P.
, an oscillation circuit, a bridge circuit, an amplifier, etc. (all not shown), and has the same structure as the main body of a known eddy current flaw detection device. The defect detection section 1 outputs a change in the impedance of the detection coil 2, which changes depending on the size of the defect, as a defect signal. The defect signal is a vector signal consisting of an X component and an X component.

信号変換部11は欠陥検出部1からの信号Xおよびyを
演算処理して振幅A、COSθおよび癲θ/2を求める
。すなわち、信号変換部11は2乗口路12゜13を備
えており、欠陥検出部1からの信号Xおよびyを2乗す
る。2乗口路12 、 、13には加算回路14および
平方根回路15が順次接続されており、平方根回路15
から振幅Aが出力される。また、信号変換部11は欠陥
検出部1から信号x5上記平方根回路15から振幅Aが
入力される除算回路16ヲ備えている。除算回路16は
除算XAを行い、房θを求める。信号変換部11はまた
減算回路17を有している。
The signal conversion section 11 performs arithmetic processing on the signals X and y from the defect detection section 1 to obtain amplitude A, COS θ, and amplitude θ/2. That is, the signal converter 11 is provided with a square path 12.degree. 13, and squares the signals X and y from the defect detector 1. An adder circuit 14 and a square root circuit 15 are sequentially connected to the square root circuits 12 , , 13 .
An amplitude A is output from. The signal conversion section 11 also includes a division circuit 16 into which the signal x from the defect detection section 1 and the amplitude A from the square root circuit 15 are input. The division circuit 16 performs division XA to obtain the tuft θ. The signal conversion section 11 also has a subtraction circuit 17.

減算回路17には欠陥検出部1からの信号X5平方根回
路15からの振幅Aが入力され、両者の差(A−x)が
求められる。減算回路17には除算回路18が接続され
ており、除算回路18は平方根回路19がら振幅Aが入
力され、商(A−X)/Aを求める。・除算回路18に
続いて平方根回路19および定数倍回路加が順次設けら
れている。平方根回路19はVイに悪Σ臥を求め、定数
倍回路加はこれを1冷σ倍してsin ’12を出力す
る。
The signal X5 from the defect detection section 1 and the amplitude A from the square root circuit 15 are input to the subtraction circuit 17, and the difference (A-x) between the two is determined. A division circuit 18 is connected to the subtraction circuit 17, and the division circuit 18 receives the amplitude A from the square root circuit 19 and calculates the quotient (A-X)/A. - Following the division circuit 18, a square root circuit 19 and a constant multiplication circuit are sequentially provided. The square root circuit 19 obtains the negative ΣΣ for V, and the constant multiplier adds this by 1 cold σ and outputs sin '12.

出力部21はゲート回路22.23および指示装置24
゜5.26よりなっている。ゲート回路22.23はゲ
ート信号として前記平方根回路15がら振幅Aが入力さ
れ、振幅Aが所定の値(雑音レベル以上の値)となった
とき除算回路16からの信号部θおよび定数倍回路20
からの信号部θ/2を指示装置5,26に出力する。指
示装置24は振幅Aを表示する。
The output section 21 includes gate circuits 22, 23 and an indicating device 24.
It is from ゜5.26. The gate circuits 22 and 23 receive the amplitude A from the square root circuit 15 as a gate signal, and when the amplitude A reaches a predetermined value (a value higher than the noise level), the signal section θ from the division circuit 16 and the constant multiplier circuit 20 are input.
The signal portion θ/2 from the input signal θ/2 is outputted to the indicating device 5, 26. The indicating device 24 displays the amplitude A.

つぎに、上記装置による実験例について説明する。Next, an experimental example using the above device will be explained.

実験に用いた試験品は外径32mm、  肉厚15間の
アルミニウム管に人工欠陥(平底ドリル穴および円周溝
)7i−ASMEの規格に基づき加工したものである。
The test piece used in the experiment was an aluminum tube with an outer diameter of 32 mm and a wall thickness of 15 mm, which was machined with artificial defects (flat bottom drill hole and circumferential groove) according to the 7i-ASME standard.

検出コイルは外径24■1幅2圏の円周溝に0.1圏φ
のエナメル線を110タ一ン巻いたもので、2個の検出
コイルを中心間隔6門をおいて配置した。試験周波数は
8KJ−1zで、貫通ドリル穴に対する信号の位相は1
33度であった。検出コイルは管内を0.216 ’I
’!/Sの速度で移動した。
The detection coil has an outer diameter of 24 mm, a width of 2 circles, and a circumferential groove with a diameter of 0.1 mm.
Enameled wire was wound with 110 turns, and two detection coils were arranged with a center spacing of 6 gates. The test frequency is 8KJ-1z and the signal phase for the through drill hole is 1
It was 33 degrees. The detection coil moves inside the tube at 0.216'I
'! Moved at a speed of /S.

第2図は実験結果を示すもので、曲線aは信号部θを、
曲線すは信号sinθ/2を示している。、信号部θお
よびsinθ/2はそれぞれ欠陥の深さに対応し連続的
に変化しており、これらの信号から欠陥の深さを知るこ
とができる。両凸Haおよびbを比較すると明らかなよ
うに、出力信号部θは出力信号sinθ/2よりも欠陥
の深さに対し大きく変化するので、前者による方が高い
精度で欠陥の深さを求めることができる。一方、雑音信
号の位相が0となるように試験周波数を選んだ場合、出
力信号sinθ/2は雑音信号のとき0(!:なり、欠
陥とリフトオフなどとを弁別することができる。
Figure 2 shows the experimental results, where curve a represents the signal part θ,
The curve shows the signal sin θ/2. , signal portion θ and sin θ/2 change continuously corresponding to the depth of the defect, and the depth of the defect can be known from these signals. As is clear from comparing the biconvex Ha and b, the output signal part θ changes more with respect to the depth of the defect than the output signal sin θ/2, so the former allows determining the depth of the defect with higher accuracy. I can do it. On the other hand, if the test frequency is selected so that the phase of the noise signal is 0, the output signal sin θ/2 becomes 0 (!:) when it is a noise signal, and it is possible to discriminate between defects and lift-off.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の装置の一例を示すブロック図、およ
び第2図は上記装置による実験例を示すもので、欠陥の
深さと信号幅θおよびsinθ/2との関係を示すグラ
フである。 1・・・欠陥検出部、2・・・検出コイ/し、11・・
・信号変換部、12.1.3・・・2乗回路、工4・・
・力ロ算回路、15.19・・・平方根回路、16.1
8・・・除算回路、17・・・減算回路、20・・・定
数倍回路、21・・・出力部、22.23・・・ゲート
回路、24.25.26・・・指示装置、P・・・被試
験管。 特許出願人 代理人 弁理士 矢 葺 知 之 (ほか1名)
FIG. 1 is a block diagram showing an example of the apparatus of the present invention, and FIG. 2 shows an experimental example using the above apparatus, and is a graph showing the relationship between the depth of a defect and the signal width θ and sin θ/2. DESCRIPTION OF SYMBOLS 1... Defect detection part, 2... Detection coil/shi, 11...
・Signal converter, 12.1.3... Square circuit, Engineering 4...
・Power rho arithmetic circuit, 15.19...Square root circuit, 16.1
8... Division circuit, 17... Subtraction circuit, 20... Constant multiplier circuit, 21... Output section, 22.23... Gate circuit, 24.25.26... Indication device, P ...Test tube. Patent applicant Representative patent attorney Tomoyuki Yafuki (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] 欠陥を指示する、位相θのベクトル信号のX成分および
X成分に基づいて邸θまたはsInθ/2を演算する信
号変換回路を有することを特徴とする内挿コイルを備え
た管用渦流探傷装置。
What is claimed is: 1. An eddy current flaw detection device for pipes equipped with an interpolation coil, characterized by having a signal conversion circuit that calculates θ or sInθ/2 based on the X component and the X component of a vector signal of phase θ, which indicates a defect.
JP4057783A 1983-03-14 1983-03-14 Eddy current flaw detector for pipe provided with interpolating coil Pending JPS59166859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4057783A JPS59166859A (en) 1983-03-14 1983-03-14 Eddy current flaw detector for pipe provided with interpolating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4057783A JPS59166859A (en) 1983-03-14 1983-03-14 Eddy current flaw detector for pipe provided with interpolating coil

Publications (1)

Publication Number Publication Date
JPS59166859A true JPS59166859A (en) 1984-09-20

Family

ID=12584337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4057783A Pending JPS59166859A (en) 1983-03-14 1983-03-14 Eddy current flaw detector for pipe provided with interpolating coil

Country Status (1)

Country Link
JP (1) JPS59166859A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793251A (en) * 1980-12-02 1982-06-10 Hara Denshi Sokki Kk Device for detecting flaw by eddy current

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793251A (en) * 1980-12-02 1982-06-10 Hara Denshi Sokki Kk Device for detecting flaw by eddy current

Similar Documents

Publication Publication Date Title
JPS5975146A (en) Vortex flaw detector for metallic pipe
JP2006208312A (en) Method and device for measuring internal defect
JPS6314905B2 (en)
JPS60253968A (en) Selective detecting method and facility for defect in part to be inspected
CN113640369A (en) Alternating current electromagnetic field lift-off effect compensation method suitable for metal surface cracks
JPS59166859A (en) Eddy current flaw detector for pipe provided with interpolating coil
JP2006300854A (en) Piping plate thickness measuring device
FI84762B (en) FOERFARANDE FOER KONTROLL AV BYGGDELAR MED HJAELP AV EN VIRVELSTROEM, I SYNNERHET I KAERNTEKNISKA ANLAEGGNINGAR.
JP2798199B2 (en) Noise Removal Method in Eddy Current Testing
US3075145A (en) Magnetic detection of flaws using mutually coupled coils
JPS6196401A (en) Method for measuring thickness of liner on the basis of two frequency
JPS59166858A (en) Eddy current flaw detecting method of pipe using interpolating coil
JPS6241342B2 (en)
JP2004354218A (en) Digital eddy current defect detection test device
US10775347B2 (en) Material inspection using eddy currents
JPH075408Y2 (en) Metal flaw detection probe
JPS6229023B2 (en)
JPS5811571B2 (en) Eddy current flaw detection method
JPH05196608A (en) Separated eddy current flaw detecting method
JPS586458A (en) Hot eddy current flaw detecting method of steel material
RU2686866C1 (en) Method of magnetic monitoring of pipeline defects and device for its implementation
JPH0410986B2 (en)
KR100397350B1 (en) Eddy current inspection device and method for inspecting defections of a tube
JP2610424B2 (en) Eddy current flaw detector
JP3327870B2 (en) Ultrasonic signal processor