JPS59165460A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS59165460A
JPS59165460A JP4023883A JP4023883A JPS59165460A JP S59165460 A JPS59165460 A JP S59165460A JP 4023883 A JP4023883 A JP 4023883A JP 4023883 A JP4023883 A JP 4023883A JP S59165460 A JPS59165460 A JP S59165460A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
resistance semiconductor
resistance
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4023883A
Other languages
Japanese (ja)
Inventor
Takeshi Konuma
小沼 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4023883A priority Critical patent/JPS59165460A/en
Publication of JPS59165460A publication Critical patent/JPS59165460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a preferable MIS structure by forming a high resistance semiconductor on a conductive semiconductor by an ion implantation method or the like, and reducing boundary charge density by utilizing the boundary between the conductive semiconductor and the high resistance semiconductor layer. CONSTITUTION:Si ions are selectively implanted on a semiinsulating GaAs substrate 11 to form an n type semiconductor layer 12 to become a channel region, and n<+> type semiconductor layers 13, 14 to respectively become a source and a drain. Then, B ions are implanted from the surface of the layer 12 to become the channel region, and a high resistance semiconductor layer 15 is formed on part of the layer 12. Thereafter, an SiO2 film 16 is accumulated as an insulating film. Then, ohmic electrodes are formed by metal made of Au-Ge as source and drain electrodes 17, 18. A gate electrode 19 made of aluminum is formed. In this manner, an MISFET for controlling the conductivity of the layer 15 through the layer 15 and the film 16 is produced by the voltage applied to the gate electrode 19.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はマイク波帯領域での増巾器、高速論理管2へ婬
々 回路等に用いられる半導体装  関するも である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor device used in amplifiers in the microwave band region, high-speed logic tubes 2, and other circuits.

従来例の構成とその問題点 G a A tsの如き化合物半導体は、電子の移動度
が大きい、半絶縁性基板が得られる等の理由で高速。
Conventional Structures and Problems Compound semiconductors such as Ga Ats are high-speed because of their high electron mobility and the ability to form semi-insulating substrates.

高周波領域の半導体装置に用いられている。かがる半導
体装置としてはショットキ障壁ゲート型電界効果トラン
ジスタが通常用いられる。ショットキ障壁ゲート型電界
効果トランジスタと同様MIS(Metal−Insu
lator Sem1conductor )型電界効
果トランジスタも高速、高周波領域の半導体装置として
有用なデバイスであるが、G a A sの如き化合物
半導体では、単体半導体であるStのSiO2の如き良
好な絶縁膜が得られていない。G a A sを例にと
ると絶縁膜の形成方法として陽極酸化法。
Used in semiconductor devices in the high frequency range. A Schottky barrier gate field effect transistor is commonly used as a semiconductor device to be used. Similar to Schottky barrier gate field effect transistors, MIS (Metal-Insuction Transistors)
(lator Sem1conductor) type field effect transistor is also a useful device as a semiconductor device in the high-speed, high-frequency region, but compound semiconductors such as GaAs cannot produce good insulating films such as SiO2 of St, which is an elemental semiconductor. do not have. Taking GaAs as an example, the anodic oxidation method is used to form an insulating film.

プラズマ酸化法、高温酸化法等によるG a A sの
直接酸化、CVD法(Chemical Vapor 
Deposition)。
Direct oxidation of GaAs by plasma oxidation method, high temperature oxidation method, etc., CVD method (Chemical Vapor
Deposition).

PVD法(Plasma Vapor Deposit
ion)等による5IO2,Si3N4.Al2O3等
の堆積が行われている。これらの絶縁膜ばG a A 
sとの界面電荷密度が多く、MIS型電界効果トランジ
スタとして良好な動作をしない。
PVD method (Plasma Vapor Deposit
5IO2, Si3N4. Deposition of Al2O3 etc. is being carried out. These insulating films are G a A
Since the interface charge density with s is high, it does not operate well as a MIS type field effect transistor.

第1図は従来のMIS型電界効果トランジスタである。FIG. 1 shows a conventional MIS type field effect transistor.

第1図で1は半絶縁性GaAs、2はチャネルとなるn
千生導体層、3,4はそれぞれソース、ドレイン領域と
なるn千生導体層、5はプラズマ酸化法で形成したGa
、Asのゲート酸化膜。
In Figure 1, 1 is semi-insulating GaAs, and 2 is n, which is the channel.
Senshu conductor layers, 3 and 4 are n Senshu conductor layers that become source and drain regions, respectively, and 5 is Ga formed by plasma oxidation method.
, As gate oxide film.

6.7はソース、ドレイン電極となるべき例えばA u
 −G eからなるオーミック電極である。8はゲート
電極となるべき例えばAlの金属層をそれぞれ示してい
る。
6.7 should be the source and drain electrodes, for example A u
- It is an ohmic electrode made of Ge. Reference numeral 8 indicates a metal layer of, for example, Al, which is to serve as a gate electrode.

この様なMIS型電界効果トランジスタに於ては、G 
a A s半導体層2と絶縁膜6との界面での界面電荷
密度が1013〜1o15CIrL−2と多いだめ、高
周波特性で最大発振周波数が向上しない、高速論理回路
等に用いた場合伝播遅延時間の短縮化が困難となる。
In such MIS type field effect transistor, G
Since the interfacial charge density at the interface between the a As semiconductor layer 2 and the insulating film 6 is as high as 1013 to 1015CIrL-2, the maximum oscillation frequency cannot be improved in high frequency characteristics, and the propagation delay time will be reduced when used in high-speed logic circuits. It becomes difficult to shorten the length.

発明の目的 を目的とする。purpose of invention With the goal.

発明の構成 本発明は導電性半導体に高抵抗半導体をイオン注入法等
にて形成し、導電性半導体と高抵抗半導体層の界面を利
用することにより、界面電荷密度を減少せしめることに
より良好なMIS構造を可能とするものである。
Structure of the Invention The present invention forms a high-resistance semiconductor on a conductive semiconductor by ion implantation or the like, and utilizes the interface between the conductive semiconductor and the high-resistance semiconductor layer to reduce the interfacial charge density, thereby achieving a good MIS. structure.

実施例の説明 第2図(a)〜(d)は本発明の一実施例のGaAsF
ETの製造工程の概略図である。
DESCRIPTION OF EMBODIMENTS FIGS. 2(a) to 2(d) show GaAsF of an embodiment of the present invention.
It is a schematic diagram of the manufacturing process of ET.

半絶縁性G a A S基板11に、選択イオン注入法
を用いて注人種としてSlをそれぞれ加速電圧120K
eV及び150KeV で注入量3 X 1 o12c
m ”。
Sl was implanted into the semi-insulating GaAs substrate 11 using selective ion implantation at an accelerating voltage of 120K.
Injection dose 3 x 1 o12c at eV and 150KeV
m”.

10 儒 注入し、As圧下で850℃、20分熱処理
して、チャネル領域となるn型半導体層12゜ソース、
ドレインとなるn士卒導体層13.14を形成する(a
)。
The n-type semiconductor layer 12° source,
Form conductor layers 13 and 14 that will become drains (a
).

次に、チャネル領域となるn型半導体層j2の表面より
、Bを50KeV で5x1.0cIrL  イオン注
入し、70o℃で10分間熱処理し、半導体層12の一
部に高抵抗半導体層15を形成する。この高抵抗半導体
層15の抵抗は1o〜1oΩ−儂であった0))。しか
るのち絶縁膜としてS i021’ 6をCVD法を用
いて4o○℃で1000人堆積する(c)。
Next, 5x1.0cIrL ions of B are implanted at 50KeV from the surface of the n-type semiconductor layer j2, which will become the channel region, and heat treated at 70°C for 10 minutes to form a high-resistance semiconductor layer 15 in a part of the semiconductor layer 12. . The resistance of this high-resistance semiconductor layer 15 was 10 to 10Ω-I0)). Thereafter, Si021'6 is deposited as an insulating film using the CVD method at 4°C for 1000 times (c).

次に、Au−Geからなる金属を用いてオーミック電極
を形成し、ソース電極17.ドレイン電極18とする。
Next, an ohmic electrode is formed using a metal made of Au-Ge, and the source electrode 17. This is assumed to be the drain electrode 18.

Alからなるゲート電極19を設ける(d)。こうして
、ゲート電極19に印加する電圧により高抵抗半導体層
16.絶縁膜16を介して   。
A gate electrode 19 made of Al is provided (d). In this way, the voltage applied to the gate electrode 19 causes the high resistance semiconductor layer 16. via the insulating film 16.

半導体層15の導電度を制御するMISFET を得る
ことができる。                  
1本発明の電界効果トランジスタは高抵抗半導体層と導
電性半導体層との界面を利用することにより、界面電荷
密度を減少せしめるものである。実   。
A MISFET that controls the conductivity of the semiconductor layer 15 can be obtained.
1. The field effect transistor of the present invention reduces the interfacial charge density by utilizing the interface between a high-resistance semiconductor layer and a conductive semiconductor layer. fruit .

流側の界面電荷密度は1o 〜1ocrrL   で従
来   ノ例に比して2〜3桁界面電荷密度A・減少し
だ。界面電荷密度の減少した理由は明らかではないが、
チャネルとなるn型半導体層とBをイオン注入して形成
した高抵抗半導体層とは四−〇 a A sで組成的に
は連続しており、それにより界面電荷密度が減少すると
考えられる。そして界面電荷密度は高抵抗半導体層の深
い不純物準位に帰因していると考えている。
The interfacial charge density on the flow side is 1o to 1ocrrL, which is a decrease of 2 to 3 orders of magnitude A compared to the conventional example. Although the reason for the decrease in interfacial charge density is not clear,
The n-type semiconductor layer serving as the channel and the high-resistance semiconductor layer formed by ion-implanting B are compositionally continuous at 4-0 a As, which is thought to reduce the interfacial charge density. We believe that the interfacial charge density is attributable to the deep impurity level of the high-resistance semiconductor layer.

実施例では基板として半絶縁性G a A sで説明し
たが、Inp、InGaAs  等を用いても良い。ま
た、チャネル、ソース、ドレイン領域の形成にイオン注
入法を用いたがたとえばCr  ドープのエビタクシャ
ル法を用いて形成しても良い。高抵抗半導体1@の形成
知性人種としてBを用いたが、H+ (プロトン)、C
r(クローム)、Fe(鉄)等を用ハても良い。絶縁膜
としてS i O2を用いたがSi3N4.Al2O3
等を用いても良いし、陽極酸化。
In the embodiment, semi-insulating GaAs is used as the substrate, but InP, InGaAs, etc. may also be used. Furthermore, although the ion implantation method is used to form the channel, source, and drain regions, they may also be formed using, for example, a Cr doped epitaxial method. B was used as an intelligent species for forming high-resistance semiconductor 1@, but H+ (proton), C
R (chromium), Fe (iron), etc. may also be used. Although SiO2 was used as the insulating film, Si3N4. Al2O3
etc., or anodic oxidation.

司温酸化等の直接酸化法により基板の酸化膜を形成して
も良い。高抵抗半導体層の形成後絶縁膜を杉成しだが、
絶縁膜を形成した後、この絶縁膜を介してイオン注入し
て高抵抗半導体層を形成して、 も良い。又高抵抗半導
体層表面如絶縁膜を形成しだが、高抵抗半導体層の抵抗
値、デバイスの目的によって絶縁膜は形成しなくとも良
い。
The oxide film on the substrate may be formed by a direct oxidation method such as cold oxidation. After forming the high-resistance semiconductor layer, an insulating film is formed.
After forming an insulating film, ions may be implanted through the insulating film to form a high-resistance semiconductor layer. Although an insulating film is formed on the surface of the high-resistance semiconductor layer, the insulating film may not be formed depending on the resistance value of the high-resistance semiconductor layer and the purpose of the device.

発明の効果 以上の様に本発明は、チャネルとなる導電性半導体層に
高抵抗層をイオン注入法にて高抵抗半導体層を形成する
ことにより、界面電荷密度の少ない電界効果トランジス
タの形成が可能となり、電界効果トランジスタの最高発
振周波数の向上、高速論理回路の素子として用いた場合
、伝播遅延時間が短縮する等の工業的価値が大きい。
Effects of the Invention As described above, the present invention makes it possible to form a field effect transistor with low interfacial charge density by forming a high resistance semiconductor layer by ion implantation in a conductive semiconductor layer that becomes a channel. Therefore, it has great industrial value, such as improving the maximum oscillation frequency of field effect transistors and shortening propagation delay time when used as an element in high-speed logic circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電界効果トランジスタの模式的な断面図
、第2図(a)〜(d)は本発明の一実施例を説明する
だめの電界効果トランジスタの製造工程の概略図である
。 11・・・・・半絶縁性G a A s基板、12−・
・・・・チャネルとなるn型半導体層、13・・・−・
ソース領域となる高濃度n型半導体層、14・・・・・
・ドレイン領域となる高濃度n型半導体層、15・・・
・・・高抵抗半導体層、16・・・・・5102.19
・・・・・・ゲート電極。
FIG. 1 is a schematic sectional view of a conventional field effect transistor, and FIGS. 2(a) to 2(d) are schematic views of the manufacturing process of a temporary field effect transistor to explain an embodiment of the present invention. 11...Semi-insulating GaAs substrate, 12-...
...N-type semiconductor layer serving as a channel, 13...-
Highly doped n-type semiconductor layer serving as a source region, 14...
・High concentration n-type semiconductor layer, 15... which becomes a drain region
...High resistance semiconductor layer, 16...5102.19
・・・・・・Gate electrode.

Claims (4)

【特許請求の範囲】[Claims] (1)半絶縁性化合物半導体に形成された導電性半導体
層と、前記導電性半導体層に形成された高抵抗半導体層
と、前記高抵抗半導体層上に形成された導電体とを有し
、前記導電体への印加電圧により前記高抵抗半導体層を
介して前記導電性半導体層の導電度を制御することを特
徴とする半導体装置。
(1) having a conductive semiconductor layer formed on a semi-insulating compound semiconductor, a high resistance semiconductor layer formed on the conductive semiconductor layer, and a conductor formed on the high resistance semiconductor layer; A semiconductor device, wherein the conductivity of the conductive semiconductor layer is controlled via the high-resistance semiconductor layer by applying a voltage to the conductor.
(2)導電体と高抵抗半導体間に絶縁膜を介在させたこ
とを特徴とする特許請求の範囲第1項に記載の半導体装
置。
(2) The semiconductor device according to claim 1, characterized in that an insulating film is interposed between the conductor and the high-resistance semiconductor.
(3)半絶縁性化合物半導体に導電性半導体層を形4y
g、1 成し、前記禽巷徳半導体層にイオン注入法を用いノて高
抵抗半導体層を形成し、前記高抵抗半導体層上に導電体
を形成することを特徴とする半導体装置の製造方法。
(3) Forming a conductive semiconductor layer on a semi-insulating compound semiconductor
g.1. A method for manufacturing a semiconductor device, comprising: forming a high-resistance semiconductor layer on the high-resistance semiconductor layer using an ion implantation method; and forming a conductor on the high-resistance semiconductor layer. .
(4)導電性半導体層上に絶縁膜を形成することを特徴
とする特許請求の範囲第3項に記載の半導体装置の製造
方法。
(4) The method for manufacturing a semiconductor device according to claim 3, characterized in that an insulating film is formed on the conductive semiconductor layer.
JP4023883A 1983-03-10 1983-03-10 Semiconductor device and manufacture thereof Pending JPS59165460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4023883A JPS59165460A (en) 1983-03-10 1983-03-10 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4023883A JPS59165460A (en) 1983-03-10 1983-03-10 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59165460A true JPS59165460A (en) 1984-09-18

Family

ID=12575135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4023883A Pending JPS59165460A (en) 1983-03-10 1983-03-10 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59165460A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196770A (en) * 1984-10-17 1986-05-15 Nec Corp Semiconductor device
JPH01208867A (en) * 1988-02-16 1989-08-22 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH01251664A (en) * 1988-03-31 1989-10-06 Nec Corp Field effect transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196770A (en) * 1984-10-17 1986-05-15 Nec Corp Semiconductor device
JPH01208867A (en) * 1988-02-16 1989-08-22 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH01251664A (en) * 1988-03-31 1989-10-06 Nec Corp Field effect transistor

Similar Documents

Publication Publication Date Title
JPS61256675A (en) Manufacture of schottky gate field effect transistor
JPS59165460A (en) Semiconductor device and manufacture thereof
JPS59188978A (en) Manufacture of schottky gate type field effect transistor
JPH04225533A (en) Field-effect transistor
JPH0328062B2 (en)
JPH028458B2 (en)
JPS6251268A (en) Semiconductor device
JP2867422B2 (en) Field effect transistor and method for manufacturing the same
JPS599971A (en) Insulated gate field effect transistor
JPS58123778A (en) Schottky gate field-effect transistor and its manufacture
JPH024137B2 (en)
JPH04369840A (en) Manufacture of semiconductor device
JPS58114463A (en) Manufacture of compound semiconductor device
JPS58124277A (en) Manufacture of schottky gate type field effect transistor
JPH0346271A (en) Mis type field effect transistor
JPS6318677A (en) Iii-v compound semiconductor device
JPH0434821B2 (en)
JPS59193070A (en) Manufacture of schottky gate field effect transistor
JPS6318676A (en) Iii-v compound semiconductor device
JPH08316453A (en) Semiconductor device and manufacture thereof
JPS59132681A (en) Schottky type field effect transistor
JPH03211882A (en) Compound semiconductor insulated gate type field effect transistor
JPH0354851B2 (en)
JPH0697430A (en) Insulated gate type field effect transistor
JPH02177337A (en) Manufacture of schottky gate field effect transistor