JPS59165455A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59165455A
JPS59165455A JP3954283A JP3954283A JPS59165455A JP S59165455 A JPS59165455 A JP S59165455A JP 3954283 A JP3954283 A JP 3954283A JP 3954283 A JP3954283 A JP 3954283A JP S59165455 A JPS59165455 A JP S59165455A
Authority
JP
Japan
Prior art keywords
layer
high density
polycrystalline silicon
high concentration
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3954283A
Other languages
Japanese (ja)
Inventor
Toshio Yonezawa
敏夫 米沢
Hiroshi Kinoshita
博 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3954283A priority Critical patent/JPS59165455A/en
Priority to GB08405871A priority patent/GB2137019A/en
Priority to DE19843408552 priority patent/DE3408552A1/en
Publication of JPS59165455A publication Critical patent/JPS59165455A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent the occurrence of a crystal defect and to reduce a collector series resistance by forming grooves which reach a high density buried layer from the surface of an insular region and accumulating a polycrystalline silicon which includes the high density impurity in the grooves. CONSTITUTION:An N<+> type high density buried layer 12, p<+> type high density buried layers 13, 14, epitaxial layer 15, and an oxidized film 16 are sequentially formed on a P type silicon substrate 11. Then, the film 16 of the prescribed region is etched, holes 17, 18 are formed, P type impurity is selectively diffused, and element isolating regions 19, 20 are formed. Then, the film 16 is selectively etched to form a hole, and the substrate 11 is subsequently etched to form a groove 21. Subsequently, a polycrystalline silicon in which a high density N type impurity is added is accumulated on the substrate 11 by a CVD method, a high density polycrystalline silicon layer 22 of the desired thickness is formed, a heat treatment is then performed, and the layer is electrically activated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体装置に係シ、特にバイポーラトランジ
スタにおけるコレクタ・シリーズ抵抗の低減化を図るた
めの高濃度層に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to semiconductor devices, and particularly to a highly doped layer for reducing collector series resistance in a bipolar transistor.

〔発明の技術的背景〕[Technical background of the invention]

通常、NPNトランノスタにおいては、コレクタ・シリ
ーズ抵抗の低減化を図るために、基板表面から高濃度埋
込み層に達する程深くN型の高濃度層(表面濃度;10
19〜1020crn−3)が形成される。
Normally, in an NPN trannostar, in order to reduce the collector series resistance, an N-type heavily doped layer (surface concentration: 10
19-1020crn-3) is formed.

従来、この高濃度層は熱拡散によシ形成されている。す
なわち、例えばpoct3(オキシ塩化リン)等の高濃
度N+材料を約900〜1100℃の温度でシリコン基
板上に堆積し、その後900〜1200℃の温度の窒素
雰囲気中でスランビング処理を行うものである。
Conventionally, this high concentration layer is formed by thermal diffusion. That is, for example, a high concentration N+ material such as POC 3 (phosphorus oxychloride) is deposited on a silicon substrate at a temperature of about 900 to 1100°C, and then a slumping process is performed in a nitrogen atmosphere at a temperature of 900 to 1200°C. .

〔背景技術の問題点〕        /しかしながら
、この従来方法では、高濃度不純物を高温で拡散処理す
るために高濃度層の近傍に結晶欠陥を誘発してしまう。
[Problems with Background Art] /However, in this conventional method, crystal defects are induced in the vicinity of the high concentration layer because the high concentration impurity is diffused at high temperature.

この結晶欠陥が発生すると、高濃度層とペース層との間
でリーク電流が増大し、素子の耐圧が劣化することにな
る。この結晶欠陥は特に素子の微細化に対して重大な悪
影響を及ぼすもので、このため製品の歩留りが低下する
。このような結晶欠陥の発生を防止するには、拡散不純
物の濃度を低下させればよいが、これではコレクタ・シ
リーズ抵抗の低減化を図ることができなくなる。
When these crystal defects occur, leakage current increases between the high concentration layer and the paste layer, and the withstand voltage of the device deteriorates. These crystal defects particularly have a serious adverse effect on the miniaturization of elements, and therefore reduce the yield of products. Although the occurrence of such crystal defects can be prevented by lowering the concentration of the diffused impurity, it is no longer possible to reduce the collector series resistance.

〔発明の目的〕[Purpose of the invention]

この発明は上記実情に鑑みてなされたもので、その目的
は、結晶欠陥の発生を防止し、かつコレクタ・シリ−・
ズ抵抗の低減化を図ることのできる半導体装置を提供す
ることにある。
This invention was made in view of the above circumstances, and its purpose is to prevent the occurrence of crystal defects, and to prevent the collector series from occurring.
An object of the present invention is to provide a semiconductor device that can reduce the current resistance.

〔発明の概要〕[Summary of the invention]

この発明は、半導体基板上のバイポーラトランジスタが
形成された島領域において、その表面から高濃度埋込み
層に達する溝を形成し、この溝に例えば高濃度不純物を
含む多結晶シリコンを堆積して、この高濃度多結晶シリ
コン層により、コレクタ・シリーズ抵抗の低減化を図る
もので、高温の熱処理や高濃度不純物の拡散処理が不要
である。
In the present invention, a groove is formed in an island region on a semiconductor substrate in which a bipolar transistor is formed, and a trench is formed from the surface of the island region to a high concentration buried layer, and polycrystalline silicon containing a high concentration of impurities is deposited in the trench. The high-concentration polycrystalline silicon layer reduces collector series resistance, eliminating the need for high-temperature heat treatment or high-concentration impurity diffusion treatment.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照してこの発明の一実施例を説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図(、)は、例えばP型のシリコン基板11上にN
+高濃度埋込み層12及び戸高濃度埋込み層13.14
を拡散形成し、その上にエピタキシャル層15を成長さ
せ、さらにこのエピタキシャル層15上に酸化膜(Si
O□)16を形成した状態を示したものである。ここで
、エピタキシャル層15′の厚さは5μnBQ抵抗は1
.5〜2.00・cm−’とする。この状態から素子分
離領域を形成するために、第2図(b)に示すように写
真蝕刻法を用いて所定の領域の酸化膜16をエツチング
し、開口17.18を形成する。
In FIG. 1(,), for example, N is placed on a P-type silicon substrate 11.
+High concentration buried layer 12 and high concentration buried layer 13.14
is diffused, an epitaxial layer 15 is grown thereon, and an oxide film (Si
This figure shows the state in which O□) 16 is formed. Here, the thickness of the epitaxial layer 15' is 5 μn, and the BQ resistance is 1
.. 5 to 2.00 cm-'. In order to form an element isolation region from this state, as shown in FIG. 2(b), the oxide film 16 in a predetermined region is etched using photolithography to form openings 17 and 18.

その後、第1図(C)に示すように、開口17゜18を
通してP型不純物例えばボロンを選択的に拡散し素子分
離領域19.20を形成する。
Thereafter, as shown in FIG. 1C, P-type impurities such as boron are selectively diffused through the openings 17 and 18 to form element isolation regions 19 and 20.

なお、この分離方法は酸化膜分離のような他の方法でも
可能である。次に、第1図(d)に示すようにコレクタ
・シリーズ抵抗低減化のだめの高濃度層形成予定領域の
酸化膜16を写真蝕刻法によシ選択的にエツチングして
開口を形成する。
Note that this separation method can also be performed using other methods such as oxide film separation. Next, as shown in FIG. 1(d), an opening is formed by selectively etching the oxide film 16 in a region where a high concentration layer for reducing collector series resistance is to be formed by photolithography.

引き続き、反応性イオンエツチング技術を用いて、水素
(H2)と塩素(Ct3)との混合ガス中でプラズマを
発生させ、シリコン基板11を選択的にエツチングして
溝21を形成する。この選択エツチングにはレジスト材
料をマスクとして使用する。溝2ノの深さはエピタキシ
ャル層15の厚、さと略同じとし、N+高濃度埋込み層
12に達するように深く形成するものとする。
Subsequently, using reactive ion etching technology, plasma is generated in a mixed gas of hydrogen (H2) and chlorine (Ct3), and the silicon substrate 11 is selectively etched to form the grooves 21. A resist material is used as a mask for this selective etching. The depth of the trench 2 is approximately the same as the thickness of the epitaxial layer 15, and is formed deep enough to reach the N+ heavily doped buried layer 12.

次に、第1図(、)に示すように、例えばCVD((J
6mical″Vapour Deposition 
)法によシリコン基板11上に高濃度のN型不純物を添
加した多結晶シリコンを堆積させ、所望の厚さの高濃度
多結晶シリコン層22を形成する。すなわちへ00〜7
00℃の温度で、5IH4(シラン)ガスとドーピング
ガ゛ス(例えば、PH31ASH3)を同時に流して熱
分解させることにより、高濃度多結晶シリコン層22を
形成するものである。
Next, as shown in FIG. 1(,), for example, CVD ((J
6mical"Vapour Deposition
) polycrystalline silicon doped with a high concentration of N-type impurity is deposited on the silicon substrate 11 by the method to form a high concentration polycrystalline silicon layer 22 with a desired thickness. i.e. to 00-7
The highly concentrated polycrystalline silicon layer 22 is formed by simultaneously flowing 5IH4 (silane) gas and doping gas (for example, PH31ASH3) at a temperature of 0.000C to cause thermal decomposition.

その後、この溝21内に埋込壕れだ高濃度多結晶シリコ
ン層22を電気的に活性化させるために熱処理を施す。
Thereafter, a heat treatment is performed to electrically activate the heavily doped polycrystalline silicon layer 22 buried in the trench 21.

第2図は上記高濃度多結晶シリコン層22を加工した後
、NPN)ランジスタのP層(ペース)23及び1層(
エミッタ)24を形成し、さらにペース電極25、エミ
ッタ電極26及びコレクタ電極27をそれぞれ形成した
ものである。
FIG. 2 shows the P layer (paste) 23 and the first layer (
In addition, a pace electrode 25, an emitter electrode 26, and a collector electrode 27 are formed.

第1図(、)の工程において、高濃度多結晶シリコン層
22の形成は、第3図に示すようにP層(ペース)23
を形成した後、エミッタ拡散の拡散材料として利用する
高濃度多結晶シリコン28の形成と同様に行うようにし
てもよい。
In the process shown in FIG. 1(,), the formation of the high concentration polycrystalline silicon layer 22 is performed using a P layer (paste) 23 as shown in FIG.
After forming, the process may be performed in the same manner as the formation of high concentration polycrystalline silicon 28 used as a diffusion material for emitter diffusion.

このようにして形成されたバイポーラトランジスタにお
いては、溝21の内部に高濃度多結晶シリコン層22が
埋め込まれているために、コレクタ・シリーズ抵抗の低
減化を図ることができる。また、この高濃度多結晶シリ
コン層22の形成には高濃度不純物の拡散や高温の熱処
理が不要であるため、結晶欠陥の発生を防止することが
できる。従って、リーク電流の増大、素子の耐圧劣化を
防止することができ、このため高濃度多結晶シリコン層
22をP層(ペース)23に近接して形成することがで
き、集積度が向上すると共に製品の製造歩留りが向上す
る。
In the bipolar transistor thus formed, since the highly concentrated polycrystalline silicon layer 22 is embedded inside the groove 21, the collector series resistance can be reduced. Further, since the formation of this highly concentrated polycrystalline silicon layer 22 does not require diffusion of highly concentrated impurities or high temperature heat treatment, it is possible to prevent crystal defects from occurring. Therefore, it is possible to prevent an increase in leakage current and a deterioration in the withstand voltage of the element. Therefore, the high concentration polycrystalline silicon layer 22 can be formed close to the P layer (paste) 23, and the degree of integration is improved. Product manufacturing yield is improved.

具体的には、従来、60〜70チであった製造品(aで
示す)と本発明による製品(bで示す)とを比較して示
すものである。ここで、測定条件はRg= 10 kΩ
、■。=500μAとしている。同図によれば、従来製
品と比較して本発明による製品が良好な特性を示すこと
がわかる。
Specifically, the figure shows a comparison between a conventional manufactured product (indicated by a) having a size of 60 to 70 inches and a product according to the present invention (indicated by b). Here, the measurement conditions are Rg = 10 kΩ
,■. =500μA. According to the figure, it can be seen that the product according to the present invention exhibits better characteristics than the conventional product.

尚、上記実施例においては、高濃度多結晶シリコン層2
2をCVD法により形成するようにしだが、その他プラ
ズマ励起による方法、スパッタリング方法を用いてもよ
く、さらにはCVD法により多結晶シリコンを堆積した
後に不純物のイオン注入を行う方法によっても形成する
ことができる。また、上記実施例においては、溝21内
に高濃度多結晶シリコン層22を形成するようにしたが
、これに限定するものではなく、高濃度多結晶シリコン
層22の代シに金属(At、 AA合金、 Mo 、 
Mo5t 、 Pt 、 Ti 、 TiN。
In the above embodiment, the highly concentrated polycrystalline silicon layer 2
2 is formed by the CVD method, but other methods such as plasma excitation, sputtering, or even impurity ion implantation after depositing polycrystalline silicon by the CVD method may also be used. can. Further, in the above embodiment, the high concentration polycrystalline silicon layer 22 is formed in the groove 21, but the invention is not limited to this, and instead of the high concentration polycrystalline silicon layer 22, metal (At, AA alloy, Mo,
Mo5t, Pt, Ti, TiN.

TIW等)をCVD法、スクリーンプリンタ法等により
堆積するようにしてもよい。
TIW, etc.) may be deposited by a CVD method, a screen printer method, or the like.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、結晶欠陥の発生を防止
することができるため、リーク電流の増大及び素子の耐
圧劣化を防止して集積度を向上させることができると共
にコレクタ・シリーズ抵抗の低減化を図ることが容易と
なる。
As described above, according to the present invention, since it is possible to prevent the occurrence of crystal defects, it is possible to prevent an increase in leakage current and a deterioration of the breakdown voltage of elements, thereby improving the degree of integration, and reducing collector series resistance. This makes it easier to promote

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(、)はこの発明の一実施例に係る半導
体装置の製造工程を示す断面図、第2図及び指数を従来
製品と本発明による製品とを比較して示す特性図である
。 11・・・シリコン基板、12・・・N+高濃度埋込み
層、15・・・エピタキシャル層、19.20・・・素
子分離領域、21・・・溝、−22・・・高濃度多結晶
シリコン層、23・・・P!(ペース)、24・・・N
+層(エミッタ)。 出願人代理人  弁理士 鈴 江 武 彦第1図 16 第1図 1 第2図
FIG. 1 (,) to (,) are cross-sectional views showing the manufacturing process of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing a comparison of indexes between a conventional product and a product according to the present invention. It is. DESCRIPTION OF SYMBOLS 11... Silicon substrate, 12... N+ high concentration buried layer, 15... Epitaxial layer, 19.20... Element isolation region, 21... Groove, -22... High concentration polycrystalline silicon Layer, 23...P! (pace), 24...N
+ layer (emitter). Applicant's agent Patent attorney Takehiko Suzue Figure 1 16 Figure 1 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 第一導電型の半導体基板と、この半導体基板上に形成さ
れた第二導電型の半導体層と、この半導体層に形成され
た島領域と、この島領域に形成された能動層と、この能
動層の下部に形成された第二導電型の高濃度埋込み層と
、前記半導体基板の表面から前記高濃度埋込み層に達す
るように形成された溝と、この溝の内部に堆積された導
電層とを具備したことを特徴とする半導体装置。
A semiconductor substrate of a first conductivity type, a semiconductor layer of a second conductivity type formed on this semiconductor substrate, an island region formed in this semiconductor layer, an active layer formed in this island region, and a semiconductor layer of a second conductivity type formed on this semiconductor substrate. a second conductivity type high concentration buried layer formed at the bottom of the layer; a groove formed to reach the high concentration buried layer from the surface of the semiconductor substrate; and a conductive layer deposited inside the groove. A semiconductor device characterized by comprising:
JP3954283A 1983-03-10 1983-03-10 Semiconductor device Pending JPS59165455A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3954283A JPS59165455A (en) 1983-03-10 1983-03-10 Semiconductor device
GB08405871A GB2137019A (en) 1983-03-10 1984-03-06 Semiconductor Device and Method for Manufacturing
DE19843408552 DE3408552A1 (en) 1983-03-10 1984-03-08 SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3954283A JPS59165455A (en) 1983-03-10 1983-03-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59165455A true JPS59165455A (en) 1984-09-18

Family

ID=12555937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3954283A Pending JPS59165455A (en) 1983-03-10 1983-03-10 Semiconductor device

Country Status (3)

Country Link
JP (1) JPS59165455A (en)
DE (1) DE3408552A1 (en)
GB (1) GB2137019A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166071A (en) * 1985-01-17 1986-07-26 Toshiba Corp Semiconductor device and manufacture thereof
JPS63215068A (en) * 1987-03-04 1988-09-07 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof
JPH04123076U (en) * 1991-04-24 1992-11-06 船井電機株式会社 parallel jumper wire
KR20190019191A (en) * 2016-06-23 2019-02-26 리텔퓨즈 인코퍼레이티드 Semiconductor device having side-diffusion trench plug

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2181889A (en) * 1985-10-19 1987-04-29 Plessey Co Plc Improvements relating to bipolar transistors
DE69132730T2 (en) * 1990-05-31 2002-07-04 Canon Kk Semiconductor arrangement with improved wiring
GB9013926D0 (en) * 1990-06-22 1990-08-15 Gen Electric Co Plc A vertical pnp transistor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA928863A (en) * 1970-01-19 1973-06-19 Rca Corporation Semiconductor integrated circuit device
DE2106540A1 (en) * 1970-02-13 1971-08-19 Texas Instruments Inc Semiconductor circuits and processes for their manufacture
US3847687A (en) * 1972-11-15 1974-11-12 Motorola Inc Methods of forming self aligned transistor structure having polycrystalline contacts
US3913124A (en) * 1974-01-03 1975-10-14 Motorola Inc Integrated semiconductor transistor structure with epitaxial contact to the buried sub-collector including fabrication method therefor
GB1534896A (en) * 1975-05-19 1978-12-06 Itt Direct metal contact to buried layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166071A (en) * 1985-01-17 1986-07-26 Toshiba Corp Semiconductor device and manufacture thereof
JPS63215068A (en) * 1987-03-04 1988-09-07 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof
JPH04123076U (en) * 1991-04-24 1992-11-06 船井電機株式会社 parallel jumper wire
KR20190019191A (en) * 2016-06-23 2019-02-26 리텔퓨즈 인코퍼레이티드 Semiconductor device having side-diffusion trench plug

Also Published As

Publication number Publication date
GB2137019A (en) 1984-09-26
GB8405871D0 (en) 1984-04-11
DE3408552A1 (en) 1984-09-20

Similar Documents

Publication Publication Date Title
US4080619A (en) Bipolar type semiconductor device
EP0100897A2 (en) Method for contacting a pn junction region
JPH0550144B2 (en)
JPH02102557A (en) Manufacture of semiconductor device
JP2701902B2 (en) Semiconductor structure having porous strained layer and method of manufacturing SOI semiconductor structure
EP0180457B1 (en) Semiconductor integrated circuit device and method for producing same
JPS59165455A (en) Semiconductor device
JP2001284605A (en) Schottky diode
US4149915A (en) Process for producing defect-free semiconductor devices having overlapping high conductivity impurity regions
US4451844A (en) Polysilicon emitter and base contacts separated by lightly doped poly separator
JPH0645340A (en) Semiconductor device and its manufacture
US20050179060A1 (en) Semiconductor device for integrated injection logic cell and process for fabricating the same
GB1572819A (en) Semiconductor device
JP2523679B2 (en) Thin film transistor and manufacturing method thereof
JP2615652B2 (en) Manufacturing method of bipolar transistor
JPH10303207A (en) Semiconductor wafer, its manufacture, and semiconductor integrated circuit device
JPH0621365A (en) Semiconductor integrated circuit device and manufacture thereof
KR930010675B1 (en) Manufacturing method of semiconductor device using mbe process
JPS5817680A (en) Semiconductor device
JP2635086B2 (en) Method for manufacturing semiconductor device
JPS5934638A (en) Semiconductor device
JP3186265B2 (en) Bipolar transistor and method of manufacturing the same
JPS6136935A (en) Manufacture of semiconductor device
JPS61224355A (en) Semiconductor device and manufacture thereof
JPS617664A (en) Semiconductor device and manufacture thereof