JPS59162204A - Method and device for ultrafine powder - Google Patents

Method and device for ultrafine powder

Info

Publication number
JPS59162204A
JPS59162204A JP3551783A JP3551783A JPS59162204A JP S59162204 A JPS59162204 A JP S59162204A JP 3551783 A JP3551783 A JP 3551783A JP 3551783 A JP3551783 A JP 3551783A JP S59162204 A JPS59162204 A JP S59162204A
Authority
JP
Japan
Prior art keywords
alloy
metal
single metal
ultrafine powder
evaporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3551783A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP3551783A priority Critical patent/JPS59162204A/en
Publication of JPS59162204A publication Critical patent/JPS59162204A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain efficiently ultrafine powder of metals having a wide range of uniform grain sizes in a large amt. in the production process to recover the metal evaporated to like smoke by floating the metal to be evaporated in a space by alternating electromagnetic force and recovering the smoke-like metal with a cyclone and a filter. CONSTITUTION:After a sheath 1' is evacuated through an evacuating port 4, gaseous Ar or the like is introduced therein and the lamp of a single metal or alloy 3 which is a raw material is supported by a quartz rod bar 23 and high frequency current is conducted to a high frequency induction heating coil 16 for floating and melting. The alloy 3 is thus inductively heated and is floatingly melted, by which the rod bar 23 is lowered. Raw material grains 22 are preliminarily put into a hopper 20, and are supplied, if necessary, via a feeder 21, and a continuous operation is performed. The alloy 3 which is heated and melted like smoke by gaseous flow 9 is carried to a cyclone recovering device 17, where the alloy is recovered and is further recovered by a cylindrical filter 19 in a filter recovering vessel 18. The molten metal is cast in a copper casting mold 24 when the alternating electromagnetic force is turned off.

Description

【発明の詳細な説明】 この発明は、金属微粉末を大量に製造できかつ粉末の粒
度も均一になるようにした金属微粉末の製造方法およ°
び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing fine metal powder and a method for producing fine metal powder in large quantities and making the particle size of the powder uniform.
and equipment.

金属微粉末は、例えば化学工業における触媒用。Fine metal powder is used, for example, as a catalyst in the chemical industry.

テープレコーダーなどの磁性粉末用、導伝ペースト用、
粉末冶金の原料用、ろう材用などに需要がある。この種
の金属微粉末は(11粒度の均一なものが得られるか、
(2)大量に製造する方法が確立できるか、(31種々
の単体金属及び合金についてできるかが今後の課題であ
る。本発明は前記の3項に適する生産方式を提案する。
For magnetic powders such as tape recorders, conductive pastes,
There is a demand for it as a raw material for powder metallurgy and as a brazing material. This type of metal fine powder (11) Can you obtain a uniform particle size?
(2) Whether a method for mass production can be established or whether it can be done for various single metals and alloys is a future issue.The present invention proposes a production method suitable for the above three items.

本発明の詳細な説明する前に先ず従来の製造方式を説明
する。
Before explaining the present invention in detail, a conventional manufacturing method will first be explained.

第1図は、ペルジャ一方式の金属微粉末製造用実験装置
を略示するもので、1は気密外被を形成するガラス製ペ
ルジャー、2はタングステン線を円錐コイル状に巻装し
て構成した加熱器である。
Figure 1 schematically shows a Pelger one-type experimental apparatus for producing fine metal powder, in which 1 is a glass Pelger forming an airtight jacket, and 2 is composed of a tungsten wire wound into a conical coil shape. It is a heater.

加熱器2には、製造しようとする粉末の原料となる合金
又は単体金属3を引掛ける。排気b4は排気装置に接続
し、ペルジャーのヘル部分と基台部分の間の継ぎ目は気
密封止リング5で気密を保持する。
An alloy or a single metal 3 that is a raw material for the powder to be manufactured is hooked onto the heater 2. The exhaust b4 is connected to an exhaust device, and the joint between the heel part and the base part of the Pelger is kept airtight by an airtight sealing ring 5.

この装置では微粉末製造に際して先ずヘルジャ=1内を
1.0−5mm l1g程度に排気する。その後純度9
9.99%程度の不活性ガスをペルジャー内に導入する
In this apparatus, when producing fine powder, the inside of Herjar 1 is first evacuated to about 1.0-5 mm 11 g. Then purity 9
About 9.99% of inert gas is introduced into the Pelger.

次に加熱器2を一気に加熱する。このとき単体金属又は
合金は煙状となってペルジャー内に散乱し、その内壁で
冷却されてそこに耐着する。
Next, the heater 2 is heated all at once. At this time, the single metal or alloy scatters in the Pelger in the form of smoke, cools on the inner wall of the Pelger, and sticks there.

そこでペルジャーを取外して、耐着した微粉末を刷毛で
集める。こうして−回約10■の微粉末が得られる。粒
の大きさはガスの種類、圧力で相違し、加熱状態、容器
の大きさ、原料とへルジャー内壁との距離などにも関係
する。この製造方式は1回の生産量が約10■程度なの
で実験的な規模を出ない。
Then, remove the Pelger and collect the stuck fine powder with a brush. In this way, about 10 times a fine powder is obtained. The size of the particles differs depending on the type of gas and the pressure, and is also related to the heating conditions, the size of the container, and the distance between the raw material and the inner wall of the herger jar. This manufacturing method can only produce about 10 square meters at a time, so it is not on an experimental scale.

第2図は耐火物るつぼを用いた高周波加熱方式による金
属微粉末製造装置で1′は気密外被で、排気口4を介し
て真空排気装置に接続される。3は製造しようとする微
粉末の原料となる単体金属又は合金であり、誘導加熱炉
のるつは11内に置かれ、誘導加熱炉のコイル10によ
り誘導加熱される。
FIG. 2 shows an apparatus for manufacturing fine metal powder using a high-frequency heating method using a refractory crucible, and numeral 1' denotes an airtight jacket, which is connected to a vacuum evacuation device via an exhaust port 4. Reference numeral 3 denotes a single metal or an alloy that serves as a raw material for the fine powder to be manufactured, which is placed in the melting point 11 of the induction heating furnace and heated by induction by the coil 10 of the induction heating furnace.

12は冷却装置を構成する円錐状冷却板で、その周囲に
配設されたパイプ12′により水冷される。6はガス噴
出装置で、ガス噴出ノズル板6゛を有する。ガス噴出装
置6には加熱ガス供給装置7から加熱ガスが供給され、
この加熱ガス供給装置は加熱源8を備える。この装置で
は、第1図の装置と同様に先ず外被1゛は排気口4を介
して真空排気装置により排気され、その後ヘリウム、ア
ルゴンガスなどが導入される。運転開始に先立って誘導
加熱炉のコイル10に高周波電流を流し、単体金属又は
合金3を誘導加熱してこれを溶解する。その後加熱ガス
供給装置7は作動され、カス流9ば装置7内で加熱源8
により加熱された後、ガス噴出装置6のノズル板6′の
ノスルより噴出する。加熱溶融し煙状となった単体金属
又は合金3はごのガス流によって冷却装置へ運搬される
。そして、冷却板12で冷却されてここに微粉末となっ
て耐着する。この微粉末は例えばワイヤーブラシ付文き
棒13により掻き落された後、漏斗14を介して貯槽1
5へ収容される。しかしながら、この装置は次のような
欠点を有する。即ち、この方法では熔融面の温度が不均
一になるので粒度分布が広くなり、均一な粒子を作製す
ることが難かしく、また、微粒子が発生する面積が狭い
ので発生量が少なく大量生産できない。さらに、この方
法は、耐火物るつぼ11と反応しない単体金属又は合金
の溶解の場合に好適であるが、るつぼ11と反応する金
属の場合は適用できないという欠点があった。゛本発明
は、この点を改良するもので、その−実7i16例を第
3図について説明する。この図で第1゜2図の装置の各
部分に対応する部分には同様な符号が付けである。
Reference numeral 12 denotes a conical cooling plate constituting a cooling device, which is water-cooled by a pipe 12' disposed around the conical cooling plate. Reference numeral 6 denotes a gas ejection device, which has a gas ejection nozzle plate 6'. Heated gas is supplied to the gas blowing device 6 from a heated gas supply device 7,
This heated gas supply device includes a heating source 8 . In this apparatus, like the apparatus shown in FIG. 1, the jacket 1' is first evacuated by a vacuum exhaust device through the exhaust port 4, and then helium, argon gas, etc. are introduced. Prior to the start of operation, a high frequency current is passed through the coil 10 of the induction heating furnace to induction heat the single metal or alloy 3 and melt it. Thereafter, the heating gas supply device 7 is activated, and the waste stream 9 is heated by the heating source 8 in the device 7.
After being heated, it is ejected from the nozzle of the nozzle plate 6' of the gas ejection device 6. The single metal or alloy 3 which has been heated and melted into a smoky state is transported to a cooling device by the gas flow of the iron. Then, it is cooled by the cooling plate 12 and becomes a fine powder and adheres to the cooling plate 12. After this fine powder is scraped off by, for example, a wire brushed scraper 13, it is passed through a funnel 14 to a storage tank 1.
It is accommodated in 5. However, this device has the following drawbacks. That is, in this method, the temperature of the melting surface becomes uneven, resulting in a wide particle size distribution, making it difficult to produce uniform particles.Also, since the area where fine particles are generated is small, the amount of generation is small, making mass production impossible. Furthermore, this method is suitable for melting single metals or alloys that do not react with the refractory crucible 11, but has the disadvantage that it cannot be applied to metals that react with the crucible 11. The present invention improves this point, and a practical example thereof will be explained with reference to FIG. In this figure, parts corresponding to the parts of the apparatus shown in FIGS. 1-2 are given the same reference numerals.

1′は気密外被で排気口4を介して真空排気装置に接続
される。3は製造しようとする超微粉末の原料となる単
体金属又は合金であり、交番電磁力を発生する浮揚溶解
用高周波誘導加熱コイル16により浮揚誘導加熱される
。17は加熱溶融し煙状となった車体金属又は合金を回
収するサイクロン回収器で、18は円筒フィルター19
が取り付けであるフィルター回収容器である。20は原
料供給用ホッパーで超微粉末の原料となる単体金属又は
合金3を粒22のような形でフィーダー21を介して供
給するものである。23は超微粉末の原料となる単体金
属又は合金が3が交番電磁力で浮揚させられるまで支え
ている石英ロット棒で、24は交番電磁力を切った際に
溶融金属を受は止める銅鋳型である。
1' is an airtight jacket and is connected to a vacuum evacuation device via an exhaust port 4. Reference numeral 3 denotes a single metal or alloy that is a raw material for the ultrafine powder to be manufactured, and is subjected to levitation induction heating by a levitation melting high-frequency induction heating coil 16 that generates alternating electromagnetic force. Reference numeral 17 is a cyclone collector for collecting heated and melted car body metal or alloy, and reference numeral 18 is a cylindrical filter 19.
is the filter collection container that is attached. Reference numeral 20 denotes a raw material supply hopper which supplies a single metal or alloy 3, which is a raw material for ultrafine powder, in the form of grains 22 via a feeder 21. 23 is a quartz rod that supports the single metal or alloy that is the raw material for the ultrafine powder until 3 is levitated by alternating electromagnetic force, and 24 is a copper mold that receives the molten metal when the alternating electromagnetic force is turned off. It is.

この装置では、第1,2図の装置と同様に先ず外被1′
は排気口4を介して真空排気装置により排気され、その
後、アルゴン、ヘリウムガスなどが導入される。運転開
始に先立って超微粉末の原料となる単体金属又は合金3
の塊を石英ロット棒23で支え、浮揚熔解用高周波誘導
加熱コイル16に高周波電流を流し、単体金属又は合金
3を誘導加熱してこれを浮揚溶解し、石英口・ノド棒2
3を下げる。また、原料供給用ホンパー20の中には超
微粉末の原料となる粒22を入れておき、必要に応じて
フィーダー21を介して供給し、連続作業を行なう。
In this device, as in the devices of FIGS. 1 and 2, first the outer jacket 1'
is exhausted by a vacuum exhaust device through the exhaust port 4, and then argon, helium gas, etc. are introduced. Prior to the start of operation, the single metal or alloy 3 that will be the raw material for the ultrafine powder
The lump is supported by the quartz rod rod 23, and a high frequency current is passed through the high frequency induction heating coil 16 for flotation melting to induction heat the single metal or alloy 3 to levitate and melt it.
Lower 3. In addition, grains 22 to be used as a raw material for ultrafine powder are placed in the raw material supply pumper 20, and are supplied via a feeder 21 as needed to perform continuous operation.

その後、ガス流9により加熱溶融し煙状となった単体金
属又は合金3はこのガス流によってサイクロン回収器1
7に運ばれ、そこで回収され、さらにフィルター回収容
器18内の円筒フィルター】9によって回収される。ま
た、交番電磁力を切った際に熔融金属は銅鋳型24中に
鋳造される。
Thereafter, the single metal or alloy 3, which has been heated and melted by the gas flow 9 and becomes smoky, is transferred to the cyclone collector 1 by this gas flow.
7, where it is collected, and further collected by a cylindrical filter 9 in a filter collection container 18. The molten metal is also cast into the copper mold 24 when the alternating electromagnetic force is turned off.

ここで、本発明による一実施例を示してみる。Here, one embodiment according to the present invention will be shown.

本発明装置を用いて鉄とパラジウムについて超微粉末を
製造してみると下表のような結果が得られた。
When ultrafine powders of iron and palladium were produced using the apparatus of the present invention, the results shown in the table below were obtained.

以上、詳述したように本発明の方法又は装置によれば均
一な超微粉末を効率よく製造できるという効果がある。
As described above in detail, the method or apparatus of the present invention has the effect of efficiently producing uniform ultrafine powder.

本発明によれば、製造しようとする超微粉末の原料とな
る合金又は単体金属3の表面は同一雰囲気中にさらされ
ているので、その表面温度分布が均一である。このため
に製造された超微粉末の粒度の均一なものが得られる。
According to the present invention, the surface of the alloy or single metal 3 that is the raw material for the ultrafine powder to be manufactured is exposed to the same atmosphere, so that the surface temperature distribution is uniform. For this purpose, the produced ultrafine powder has a uniform particle size.

また、浮揚熔解法を行なっているので、超微粉末の原料
となる合金又は単体金属3のすべての表面より超微粉末
が蒸発してくるので、超微粉末を大量に効率良く製造で
きる。
In addition, since the flotation melting method is used, the ultrafine powder evaporates from all surfaces of the alloy or single metal 3 that is the raw material for the ultrafine powder, so it is possible to efficiently produce a large amount of the ultrafine powder.

さらに、溶解に耐火物るつぼ11を用いていないので、
それと反応する金属の場合にも適用でき、種々の単体金
属及び合金について超微粉末を製造できる。大量生産に
当っては本装置を連続運転する必要があり、これには超
微粉末の原料となる合金又は単体金属の粒22を連続ま
たは半連続で供給する必要があるときには、のために原
料供給用ホンパー20及びフィーダー21を設けてお(
こともできる。
Furthermore, since the refractory crucible 11 is not used for melting,
It can also be applied to metals that react with it, and ultrafine powders can be produced for various single metals and alloys. For mass production, it is necessary to operate this device continuously, and when it is necessary to continuously or semi-continuously supply alloy or single metal grains 22 that are the raw material for ultrafine powder, the raw material A supply pumper 20 and a feeder 21 are provided (
You can also do that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ペルジャ一方式による従来の金属微粉末製造
装置を示す概略図、第2図は耐火物るつぼを用いた高周
波加熱方式による従来の金属微粉末製造装置を示す断面
図であり、第3図は、本発明に係る金属微粉末製造装置
を示す概略図である。 3−〜−−−−単体金属又は合金、16−−−−−−高
周波誘導加熱コイル、17−−−−−サイクロン回収器
、18−−−−−−フィルター回収器。 出願人  田中貴金属工業株式会社
FIG. 1 is a schematic diagram showing a conventional fine metal powder manufacturing apparatus using a Pelger type, and FIG. 2 is a sectional view showing a conventional fine metal powder manufacturing apparatus using a high frequency heating method using a refractory crucible. FIG. 3 is a schematic diagram showing a metal fine powder manufacturing apparatus according to the present invention. 3-----Single metal or alloy, 16---High frequency induction heating coil, 17---Cyclone collector, 18---Filter collector. Applicant Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1)蒸発させる単体金属または合金を高周波誘導加熱コ
イルにより発生する交番電磁力により空間中に浮揚して
加熱溶解し、蒸発させられて煙状となった単体金属また
は合金を搬送ガスでサイクロン回収器、さらにフィルタ
ー回収容器へ運び、単体金属または合金の超微粉末を得
るようにした超微粉末の製造方法。 2)浮揚式高周波誘導加熱装置と蒸発させる単体金属ま
たは合金を供給する供給装置と前記の加熱装置による加
熱により煙状となった単体金属または合金を回収容器へ
運ぶガスを噴出するガス噴出装置と、前記ガスによって
運ばれた超微粉末を゛回収するサイクロン回収装置及び
フィルター回収装置と、前記各装置を収容する気密外被
を有し、前記の浮揚式高周波誘導加熱装置が単体金属ま
たは合金の蒸発に適した条件を得るように調節可能にし
た超微粉末の製造装置。
[Claims] 1) A single metal or alloy to be evaporated is levitated in space by an alternating electromagnetic force generated by a high-frequency induction heating coil, heated and melted, and the single metal or alloy is evaporated into a smoke-like state. A method for producing ultrafine powder in which ultrafine powder of a single metal or alloy is obtained by transporting it to a cyclone collector and then to a filter recovery container using a carrier gas. 2) A floating high-frequency induction heating device, a supply device for supplying a single metal or alloy to be evaporated, and a gas jetting device for spouting gas to carry the single metal or alloy that has become smoky due to heating by the heating device to a collection container. , a cyclone recovery device and a filter recovery device for recovering the ultrafine powder carried by the gas, and an airtight jacket housing each of the devices; Ultrafine powder production equipment that can be adjusted to obtain conditions suitable for evaporation.
JP3551783A 1983-03-04 1983-03-04 Method and device for ultrafine powder Pending JPS59162204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3551783A JPS59162204A (en) 1983-03-04 1983-03-04 Method and device for ultrafine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3551783A JPS59162204A (en) 1983-03-04 1983-03-04 Method and device for ultrafine powder

Publications (1)

Publication Number Publication Date
JPS59162204A true JPS59162204A (en) 1984-09-13

Family

ID=12443941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3551783A Pending JPS59162204A (en) 1983-03-04 1983-03-04 Method and device for ultrafine powder

Country Status (1)

Country Link
JP (1) JPS59162204A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248416A (en) * 1987-05-13 1988-10-14 Tokyo Tungsten Co Ltd Device for recovering metal fine powder
JPH03178332A (en) * 1989-12-04 1991-08-02 Agency Of Ind Science & Technol Preparation of ultrafine particle
JP2007054832A (en) * 2005-08-23 2007-03-08 Samsung Electronics Co Ltd Nanoparticle generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943864A (en) * 1972-09-01 1974-04-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943864A (en) * 1972-09-01 1974-04-25

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248416A (en) * 1987-05-13 1988-10-14 Tokyo Tungsten Co Ltd Device for recovering metal fine powder
JPH0576323B2 (en) * 1987-05-13 1993-10-22 Tokyo Tungsten Kk
JPH03178332A (en) * 1989-12-04 1991-08-02 Agency Of Ind Science & Technol Preparation of ultrafine particle
JP2007054832A (en) * 2005-08-23 2007-03-08 Samsung Electronics Co Ltd Nanoparticle generator
JP4542069B2 (en) * 2005-08-23 2010-09-08 三星電子株式会社 Nano particle generator

Similar Documents

Publication Publication Date Title
US4246208A (en) Dust-free plasma spheroidization
EP0427379B1 (en) Method for producing titanium particles
WO2019024421A1 (en) Method for preparing target material and target material
CN110480024A (en) A method of CuCrZr spherical powder is prepared based on VIGA technique
US4416600A (en) Apparatus for producing high purity metal powders
CN106392089A (en) Preparation method of aluminum alloy powder for additive manufacturing
JPH05228363A (en) Device and method for producing ceramic or cermet powdery substance
CN106216703A (en) A kind of preparation method of 3D printing spherical aluminum alloy powder
JPH02203932A (en) Method and apparatus for producing ultrafine particles
EP0358162B1 (en) Apparatus for producing metal powder
EP0471798B1 (en) Induction skull melt spinning of reactive metal alloys
JPH0798965B2 (en) Apparatus and method for atomizing titanium-based materials
JPS6046305A (en) Alloy powder manufacturing process and device
US5120352A (en) Method and apparatus for making alloy powder
CN107470642A (en) A kind of powder preparation method
US3380904A (en) Confining the reaction zone in a plasma arc by solidifying a confining shell around the zone
JPS59162204A (en) Method and device for ultrafine powder
JPS61291907A (en) Apparatus for producing fine particles
CA1057508A (en) Metal powder production by direct reduction in an arc heater
JPH0625717A (en) Method and device for producing globular grain by high-frequency plasma
JPH06279812A (en) Apparatus for producing and classifying powder
JP4231283B2 (en) High purity magnesium oxide fine powder production apparatus and high purity magnesium oxide fine powder production method using the same
US3114626A (en) Production of refractory metals
JPH11242098A (en) Device and method for melting and ingot-making
JPH03180432A (en) Melting method and melting device of metal