JPH02203932A - Method and apparatus for producing ultrafine particles - Google Patents

Method and apparatus for producing ultrafine particles

Info

Publication number
JPH02203932A
JPH02203932A JP1023599A JP2359989A JPH02203932A JP H02203932 A JPH02203932 A JP H02203932A JP 1023599 A JP1023599 A JP 1023599A JP 2359989 A JP2359989 A JP 2359989A JP H02203932 A JPH02203932 A JP H02203932A
Authority
JP
Japan
Prior art keywords
raw material
plasma
ultrafine particles
frequency induction
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1023599A
Other languages
Japanese (ja)
Inventor
Tatsuo Tokiai
健生 時合
Takashi Uesugi
隆 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1023599A priority Critical patent/JPH02203932A/en
Publication of JPH02203932A publication Critical patent/JPH02203932A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance manufacturing efficiency and to perform continuous production, in a method for producing ultrafine particles using high frequency induction plasma, by directly supplying a powdery raw material in a plasma flame. CONSTITUTION:When ultrafine particles are produced using high frequency induction plasma, the emitting orifice of a raw material supply pipe 6 is provided within a high frequency induction coil region 4. Further, the connection part 12 of the plasma generation pipe 2 and a chamber 1 provided under the high frequency induction coil region 4 is formed so that the diameter thereof becomes large toward an outlet. Then, a powdery raw material 7 is directly supplied into a plasma flame 9. As a result, manufacturing efficiency can be enhanced and continuous production becomes possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属、セラミックス等の超微粒子の製造方法
及び製造装置に関し、粉体、粉末冶金、電子材料の機能
性原料粉等の製造に利用することができる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for producing ultrafine particles of metals, ceramics, etc., and is suitable for producing powder, powder metallurgy, functional raw material powder for electronic materials, etc. can be used.

[従来の技術] 高周波誘導プラズマにより発生した1万にの高温熱プラ
ズマに粉末原料(及び反応性ガス)を導入して溶融、蒸
発(場合により反応を)させた後、象、冷して凝固させ
ることにより、超微粒子を製造する方法がある。得られ
た超微粒子は、磁気特性、熱電特性、熱伝導特性、粉体
特性等が良好であるため、超微粒子をそのまま、あるい
はこれを焼結し、各種の機能性材料として広範囲に使用
されている。そして、従来の製造方法に伴う問題点を解
決するための各種の改良方法が提案されている。
[Prior art] Powder raw materials (and reactive gas) are introduced into high-temperature thermal plasma generated by high-frequency induction plasma, melted and evaporated (reacted in some cases), and then cooled and solidified. There is a method of manufacturing ultrafine particles by The obtained ultrafine particles have good magnetic properties, thermoelectric properties, thermal conductivity properties, powder properties, etc., so they are widely used as a variety of functional materials either as they are or by sintering them. There is. Various improvement methods have been proposed to solve the problems associated with conventional manufacturing methods.

例えば、特開昭62−171902号公報に係る窒化ア
ルミニウム微粉末の合成法によれば、原料として金属ア
ルミニウム、アルゴン、窒素、水素、アンモニアめ他に
メタンを使用することにより、微粒子中の不純物酸素を
除去でき、また炭化アルミニラλ微粉末が均一に混合さ
□れた窒′化アルミニウム微粉末が得られる。
For example, according to the method for synthesizing aluminum nitride fine powder according to JP-A-62-171902, impurity oxygen in the fine particles is removed by using metal aluminum, argon, nitrogen, hydrogen, ammonia, and methane as raw materials. can be removed, and fine aluminum nitride powder in which fine aluminum carbide powder is uniformly mixed can be obtained.

また、特開昭63−85007号公報に係る窒化アルミ
ニウム超微粒子の製造方法によれば、磁気ポンプ効果を
抑止するためにプラズマフレーム中に金属アルミニウム
粉末が含まれるキャリアガスを周方向から連続′的に強
制導入すると共に、高純度超微粒子を得るためにキャリ
アガス導入後のプラズマフレーム中のやや温度が低い周
縁部へアンモニアガスを連続的に導入することを特徴と
している。
Furthermore, according to the method for producing ultrafine aluminum nitride particles disclosed in Japanese Patent Application Laid-open No. 63-85007, a carrier gas containing metallic aluminum powder is continuously supplied from the circumferential direction in a plasma flame to suppress the magnetic pump effect. In addition, in order to obtain high-purity ultrafine particles, ammonia gas is continuously introduced into the periphery of the plasma flame, where the temperature is slightly lower after the introduction of the carrier gas.

4れらの従来の超微粒子の製造方法で使用する製造装置
においては、第2図に示すように、原料供給管26は、
高周波誘導コイル帯域24を構成するワークコイル24
A〜24Zより上に位置するように設けられ、この吐出
口25から下方のプラズマフレーム29に粉末原料27
を供給するようにしている。また、石英製のプラズマ発
生管22は、□上部から下部の出口23まで径が等しい
円筒状に形成されている。
4. In the manufacturing apparatus used in these conventional methods for manufacturing ultrafine particles, as shown in FIG. 2, the raw material supply pipe 26 is
Work coil 24 constituting high frequency induction coil band 24
The powder raw material 27 is provided to be located above A to 24Z, and the powder raw material 27 is delivered from this discharge port 25 to the plasma flame 29 below.
We are trying to supply the following. Further, the plasma generation tube 22 made of quartz is formed into a cylindrical shape with the same diameter from the upper part to the outlet 23 at the lower part.

丸1L1 [発明が解決しようとする課題] 上述し、たような従来の製造装置を使用して超微粒子を
製造すると、導入された粉末原料27又は生成した超微
粒子28がプラズマ発生管22に付着して加熱されたプ
ラズマ発傅管22が冷却されるため、管22が温度履歴
サイクルを受けて変質し、破壊され、その結果、装置の
連続運転が困難になる虞れがあった。また、このような
粉末原料27又は微粒子28のプラズマ発生管22への
付着を考慮して原料供給量を抑えると、原料の大量処理
ができず、従って生産能率が低くなるという問題点が生
じていた。
Circle 1L1 [Problems to be Solved by the Invention] When ultrafine particles are manufactured using the conventional manufacturing apparatus as described above, the introduced powder raw material 27 or the generated ultrafine particles 28 adhere to the plasma generation tube 22. Since the heated plasma blast tube 22 is cooled, the tube 22 undergoes a temperature history cycle, deteriorates in quality, and is likely to be destroyed, resulting in difficulty in continuous operation of the apparatus. Furthermore, if the amount of raw material supplied is suppressed in consideration of the adhesion of such powder raw materials 27 or fine particles 28 to the plasma generation tube 22, a problem arises in that a large amount of raw materials cannot be processed, and therefore production efficiency is reduced. Ta.

本発明は、生産能率を向上させることができ、また連続
生産を可能とする超微粒子の製造方法及び製造装置を提
供することを目的とする。
An object of the present invention is to provide a method and apparatus for producing ultrafine particles that can improve production efficiency and enable continuous production.

[課題を解決するための手段] 本発明は、高周波誘導プラズ□マを用いた超微粒子の製
造方法において、粉末原料をプラズマフレーム中に直□
接供給することを特徴とする。
[Means for Solving the Problems] The present invention provides a method for producing ultrafine particles using high-frequency induced plasma, in which a powder raw material is directly placed in a plasma flame.
It is characterized by supplying

前記粉末原料は、1種類の金属単体粉末<’M g、Z
r、Cr、W、AI、Fe等)、複数種の金属単体の混
合粉末、合金粉末(Tic、WC等)、セラミックス粉
末(A l 203、A I N、、’S”””i N
、B”’N 、 S’ i C、B 4 C等)等任意
である。
The powder raw material is one type of simple metal powder <'M g, Z
r, Cr, W, AI, Fe, etc.), mixed powders of multiple types of single metals, alloy powders (Tic, WC, etc.), ceramic powders (Al 203, A I N,,'S"""i N
, B'''N, S' i C, B 4 C, etc.).

この製造方法を実施するため゛の高周波誘導プラズマを
用いた超微粒子の製造装置“において、原料供”給管の
吐出口を高周波誘導コイル帯域内に設けたことを特徴と
する。
In order to carry out this manufacturing method, the apparatus for producing ultrafine particles using high-frequency induction plasma is characterized in that the discharge port of the raw material supply pipe is provided within the zone of the high-frequency induction coil.

この原料供給管から、粉末原料と共に、あるいは別の供
給管から所要のプラズマ発生ガスを供給することができ
る。また、必要によりキャリアガス□あるいは反応ガス
としての牽゛素、アンモニア等も同時に供給してもよい
A required plasma generating gas can be supplied from this raw material supply pipe together with the powder raw material or from another supply pipe. Further, if necessary, a carrier gas □ or a reaction gas such as hydrogen, ammonia, etc. may be supplied at the same time.

また、この超微粒子の製造装置において、前記高周波誘
導コイル帯域より下方のプラズマ発注管とチャンバーと
の連結部を、その径が出口に向かって大となるように形
成したことを特徴とする。
Further, in this ultrafine particle manufacturing apparatus, the connecting portion between the plasma ordering tube and the chamber below the high-frequency induction coil band is formed such that its diameter increases toward the exit.

この連結部の具体的形状は、椀状、円錐状等任意である
The specific shape of this connecting portion is arbitrary, such as a bowl shape or a conical shape.

[作用] 本発明によれば、原料供給管の吐出口を高周波誘導コイ
ル帯域内に設けて、粉末原料をプラズマフレーム中に直
接供給するようにしたので、プラズマ発生管内における
粉末原料の吐出位置及び生成された超微粒子の降下位置
が相対的に低くなる。
[Function] According to the present invention, the discharge port of the raw material supply pipe is provided within the high frequency induction coil band so that the powder raw material is directly supplied into the plasma flame, so that the discharge position of the powder raw material within the plasma generation tube and The descending position of the generated ultrafine particles becomes relatively low.

この結果、粉末原料の吐出時及び超微粒予め降下時に、
粉末原料及び超微粒子が円周方向に拡散してもプラズマ
発生管に付着することがなくなる。
As a result, when the powder raw material is discharged and the ultrafine particles are pre-dropped,
Even if the powder raw material and ultrafine particles are diffused in the circumferential direction, they will not adhere to the plasma generation tube.

また、このように構成することによって、プラズマフレ
ームのよめ安定化が図れる。
Furthermore, with this configuration, the plasma flame can be improved and stabilized.

そして、本製造装置において、高周波誘導コイル帯域よ
り下方の連結部を、その径が出口に向かって大となるよ
うに形成すれば、上記構成に加えて、更に粉末原料及び
超微粒子のプラズマ発生管への付着現象を防止し、粉末
原料の大量、かつ連続処理が可能になる。
In this manufacturing apparatus, if the connecting portion below the high-frequency induction coil band is formed so that its diameter increases toward the exit, in addition to the above configuration, the plasma generating tube for the powder raw material and ultrafine particles can be This prevents the phenomenon of adhesion to powder materials and enables continuous processing of large quantities of powdered raw materials.

[実施例] 第1図を参照して本発明の一実施例に係る超微粒子の製
造装置を説明する。
[Example] Referring to FIG. 1, an apparatus for producing ultrafine particles according to an example of the present invention will be described.

この製造装置は、チャンバー1と、このチャンバー1の
上部中央に設けられた石英製のプラズマ発生管2とを有
し、チャンバー1の側面には図示しない超微粒子捕集装
置と排気装置を備えている。
This manufacturing device has a chamber 1 and a quartz plasma generation tube 2 provided at the center of the upper part of the chamber 1, and is equipped with an ultrafine particle collection device and an exhaust device (not shown) on the side of the chamber 1. There is.

プラズマ発生管2の側面には、アルゴンガス等のプラズ
マガス供給口11が設けられている。
A plasma gas supply port 11 such as argon gas is provided on the side surface of the plasma generation tube 2 .

このプラズマ発生管2は、高周波誘導コイル帯域4を構
成するワークコイル4A〜4Zが外周に沿って複数回巻
装される円筒部2Aより成り、この下に出口3に向かっ
て径が次第に大きくなっているプラズマ発生管2とチャ
ンバー1との連結部12を有する。なお、この連結部1
2の形状は、図示の椀状以外にも、円錐状等でもよい。
This plasma generation tube 2 consists of a cylindrical part 2A around which work coils 4A to 4Z constituting a high-frequency induction coil band 4 are wound multiple times along the outer periphery. The plasma generating tube 2 has a connecting part 12 between the plasma generating tube 2 and the chamber 1. In addition, this connecting part 1
The shape of 2 may be a conical shape or the like other than the illustrated bowl shape.

出口3近傍には、外周に沿って、蒸発した粉末原料7の
冷却用ガス(アルゴンガス等)の導入孔10を設けてお
く。
In the vicinity of the outlet 3, an introduction hole 10 for cooling gas (argon gas, etc.) for the evaporated powder raw material 7 is provided along the outer periphery.

そして、プラズマ発生管2の中央には、吐出口5が高周
波誘導コイル帯域4内に位置するように原料供給管6を
設ける。この際、第1周円のワークコイル4Aから最後
のワークコイル4zまでの距離をH1第1周目のワーク
コイル4Aからプラズマ発生管2の吐出口5までの距離
をhとしたとき、h>1/3Hとするのが、粉末原料7
及び生成・した超微粒子8のプラズマ発生管2内面への
付着を防止する上で好ましい。また、吐出口5は、高周
波誘導コイル帯域4を越えて下方迄挿入することもでき
るが、高周波誘導コイル帯域4内がよく、少なくともプ
ラズマフレーム9内である必要がある。しかし、あまり
深く挿入すると、粉末原料7とプラズマとの接触時間が
少なくなって微粒子化に影響があるため好ましくない。
A raw material supply pipe 6 is provided at the center of the plasma generation tube 2 so that the discharge port 5 is located within the high frequency induction coil band 4. At this time, when the distance from the work coil 4A of the first circumference to the last work coil 4z is H1 and the distance from the work coil 4A of the first circumference to the discharge port 5 of the plasma generation tube 2 is h, h> Powder raw material 7 is 1/3H.
This is also preferable in terms of preventing the generated ultrafine particles 8 from adhering to the inner surface of the plasma generating tube 2. Further, the discharge port 5 can be inserted beyond the high-frequency induction coil zone 4 and even below, but it is preferable to insert it within the high-frequency induction coil zone 4, and it is necessary to insert it at least within the plasma flame 9. However, if it is inserted too deeply, the contact time between the powder raw material 7 and the plasma will be shortened, which will affect the formation of fine particles, which is not preferable.

なお、原料供給管6として使用する材質は、プラズマの
出力によって異なる。例えば、低出力の20〜30kW
程度では銅製の水冷管でもよいが、高出力に対応させる
ためには高融点材料である窒化ホウ素(BN)等の管を
用いるのがよい。また、原料供給管6の直径は、30価
以下とするのがよい。
Note that the material used for the raw material supply pipe 6 differs depending on the plasma output. For example, low output 20~30kW
To some extent, a water-cooled pipe made of copper may be used, but in order to cope with high output, it is better to use a pipe made of a material with a high melting point, such as boron nitride (BN). Further, the diameter of the raw material supply pipe 6 is preferably 30 or less.

上記構成に係る製造装置を使用して、次のように各実施
例に係る超微粒子を製造した。
Using the manufacturing apparatus having the above configuration, ultrafine particles according to each example were manufactured as follows.

m± 上記製造装置において、内径57mmのプラズマ発生管
2及び外径20mm、導入径2 mmの水冷式銅製原料
供給管6を使用し、吐出口5が第1周円のワークコイル
4Aから12mm下方に位置するように原料供給管6を
プラズマ発生管2内に設けた。
m± In the above manufacturing apparatus, a plasma generation tube 2 with an inner diameter of 57 mm and a water-cooled copper raw material supply tube 6 with an outer diameter of 20 mm and an introduction diameter of 2 mm are used, and the discharge port 5 is located 12 mm below the work coil 4A of the first circumference. The raw material supply pipe 6 was provided inside the plasma generation tube 2 so as to be located at .

このプラズマ発生管2内にプラズマフレーム9を発生さ
せ、このプラズマフレーム9中に直接粉末原料7である
鉄シリサイドFeSi2粉末を供給して、溶融、蒸発さ
せ、そしてArガスで象、冷凝固させることによりFe
Si2超微粒子8を製造した。製造時の具体的な諸条件
は下記の通りである。
A plasma flame 9 is generated in the plasma generation tube 2, and iron silicide FeSi2 powder, which is the powder raw material 7, is directly supplied into the plasma flame 9, melted and evaporated, and then irradiated with Ar gas and cooled and solidified. By Fe
Si2 ultrafine particles 8 were produced. The specific conditions during manufacturing are as follows.

RFパワー   ・・・・・・・・・・・・26kW粉
末原料供給量 ・・・・・・・・・・・・150 g 
/minプラズマAr流量・・・・・・・・・・・・7
51/m1nH2流量    ・・・・・・・・・・・
・2I!/mjn処理時間    ・・・・・・・・・
・・・20時間なお、プラズマAr流量とは、粉末原料
7のキャリア用ガスと側面から供給するArガスの総量
である。また、H2は、RFプラズマ炉1内に供給し、
アルゴンプラズマの温度制御とプラズマを安定化させる
作用を有する。
RF power: 26 kW Powder raw material supply: 150 g
/min Plasma Ar flow rate...7
51/m1nH2 flow rate...
・2I! /mjn processing time ・・・・・・・・・
...20 hours The plasma Ar flow rate is the total amount of the carrier gas for the powder raw material 7 and the Ar gas supplied from the side. Further, H2 is supplied into the RF plasma furnace 1,
It has the effect of controlling the temperature of argon plasma and stabilizing the plasma.

得られたFe5iz超微粒子8は、1500人前後の粒
径を有していた。
The obtained Fe5iz ultrafine particles 8 had a particle size of about 1,500 particles.

この製造装置により、150 g /min という大
量の粉末原料7を処理することができた。そして、製造
時において従来のような原料粉末7及び化成した超微粒
子8のプラズマ発生管2内面への付着は発生しなかった
。また、吐出口5が高周波誘導コイル帯域4内に位置す
るように銅製原料供給管6をプラズマ発生管2内に設け
たにも拘らず、比較的低出力であり、且つ、原料供給管
6を水冷式としたため、原料供給管6の溶解は発生せず
、従って管材の溶解による超微粒子8への汚染も生じな
かった。加えて、原料供給管6が高周波誘導コイル帯域
4内に位置しているが、安定なプラズマフレーム9が得
られた。
This manufacturing apparatus was able to process a large amount of powder raw material 7 at a rate of 150 g/min. During manufacturing, the raw material powder 7 and the chemically formed ultrafine particles 8 did not adhere to the inner surface of the plasma generating tube 2 as in the conventional case. Furthermore, although the copper raw material supply pipe 6 is provided in the plasma generation tube 2 so that the discharge port 5 is located within the high frequency induction coil zone 4, the output is relatively low, and the raw material supply pipe 6 is Since the system was water-cooled, the raw material supply pipe 6 did not dissolve, and therefore the ultrafine particles 8 were not contaminated by dissolution of the pipe material. In addition, although the raw material supply pipe 6 was located within the high frequency induction coil zone 4, a stable plasma flame 9 was obtained.

一実1L性」− 上記製造装置において、内径80mmのプラズマ発生管
2及び外径9胴、導入径1.5+nn+の窒化ホウ素(
BNi製の原料供給管6を使用し、吐出口5が第1同口
のワークコイル4Aから21 +nm下方に位置するよ
うに原料供給管6をプラズマ発生管2内に設けた。
- In the above manufacturing equipment, a plasma generating tube 2 with an inner diameter of 80 mm, an outer diameter of 9 cylinders, and boron nitride (with an introduction diameter of 1.5+nn+)
A raw material supply pipe 6 made of BNi was used, and the raw material supply pipe 6 was provided in the plasma generation tube 2 so that the discharge port 5 was located 21 + nm below the first work coil 4A.

このプラズマ発生管2内にプラズマフレーム9を発生さ
せ、このプラズマフレーム9中どこ直接粉末原料7tあ
るタンゲス夢ンカーバイド(WC)粉末を供給して、W
C超微粒子8を製造した。製造時の具体的な諸条件は下
記の通りである。
A plasma flame 9 is generated in this plasma generation tube 2, and 7 tons of tungsten carbide (WC) powder is directly supplied into the plasma flame 9.
C ultrafine particles 8 were produced. The specific conditions during manufacturing are as follows.

RFパワー   ・・・・・・・・・・・・79kW粉
末原料供給量 ・・・・・・・・・・・・210 g 
/ min”□:□プラズマAr流量・・・・・・・・
・・・・105427m1nH2流量    ・・・・
・・・・・・・・11 l/min処理時間    ・
・・・・・・・・・・・22時間得られti Wc超微
粒子8は、1000人前後の粒径を有していた。
RF power: 79 kW Powder raw material supply: 210 g
/ min"□:□Plasma Ar flow rate...
...105427m1nH2 flow rate ...
・・・・・・・・・11 l/min processing time ・
......The ti Wc ultrafine particles 8 obtained after 22 hours had a particle size of about 1000 particles.

上記実施例1と同様、この製造装置によっても、210
 g /min という大量の粉末原料7を処理するこ
とができた。そして、製造時において粉末原料7及び生
成した超微粒子8のプラズマ発生管2内面への付着は発
生しなかった。また、吐出口5が高周波誘導コイル帯域
4内に位置するように原料供給管6をプラズマ発生管2
内に設け、RFパワーが高出力であったにも拘らず、B
N製原料供給管6を使用したため、原料供給管6の溶解
は発生せず、従って管材の溶解による超微粒子8への汚
染も生じなかった。加えで、原料供給管6が高周波誘導
コイル帯域4内に位置しているが、安定なプラズマフレ
ーム9が得られた。
As in Example 1 above, this manufacturing apparatus also produces 210
It was possible to process a large amount of powder raw material 7 at a rate of 1 g/min. During manufacturing, the powder raw material 7 and the generated ultrafine particles 8 did not adhere to the inner surface of the plasma generation tube 2. In addition, the raw material supply pipe 6 is connected to the plasma generation tube 2 so that the discharge port 5 is located within the high frequency induction coil zone 4.
Although the RF power was high, B
Since the raw material supply pipe 6 made of N was used, no dissolution of the raw material supply pipe 6 occurred, and therefore no contamination of the ultrafine particles 8 due to dissolution of the pipe material occurred. In addition, although the raw material supply pipe 6 was located within the high frequency induction coil zone 4, a stable plasma flame 9 was obtained.

北笠貰 第2図に示ず従来の製造装置において、内径51mmd
)プラズマ発生管22及び外径20胴、導入径2 mm
の銅製原料供給*26を使用し、吐出口25が第1同口
のワークコイル24Aから15mm上方に位置するよう
に原料供給管26をブラズオ発生簀22内に設けた。
In the conventional manufacturing equipment (not shown in Figure 2), the inner diameter was 51mmd.
) Plasma generation tube 22 and outer diameter 20 shell, introduction diameter 2 mm
A raw material supply pipe 26 made of copper was used, and the raw material supply pipe 26 was provided in the Brazuo generation cage 22 so that the discharge port 25 was located 15 mm above the work coil 24A of the first same port.

このプラズマ発生管22内にプラズマブレームン9を発
生させ、このプラズマフレーム29の上分から福末原料
27である秩シリサイドFe5i”z物末番供給して、
Fe’5izl微粒子28を製造した。製造時の具体的
な諸条件は下記の通りである。
Plasma flame 9 is generated in this plasma generation tube 22, and Chichi silicide Fe5i"z, which is the Fukusue raw material 27, is supplied from the upper part of this plasma flame 29.
Fe'5izl fine particles 28 were produced. The specific conditions during manufacturing are as follows.

RFパワー   ・・・・・・・・・・・・2 ’6 
k W粉末原料供給量 ・・・・・・・・・・・・15
−Og /minプラズマAr流量・・・・・・・・・
・・・75ffi/m1nH8流量    ・・・・・
・・・・・・・21/min処理時間    ・・・・
・・・・・・・・セ0時間  ・ ニー1□□′□得ら
れたFe’Siz超微粒子′28は、1400人前後の
粒径を有していた。
RF power ・・・・・・・・・・・・2 '6
kW Powder raw material supply amount ・・・・・・・・・・・・15
-Og/min plasma Ar flow rate...
・・・75ffi/m1nH8 flow rate ・・・・・・
・・・・・・21/min processing time ・・・・・・
...Se 0 hours - Knee 1□□'□The obtained Fe'Siz ultrafine particles '28 had a particle size of about 1400 particles.

□ 上記実施例1と同様に150 g /minの大量
の粉末原料27を処理したところ、供給し□た粉末原料
27と生成した超微粒子2日がプラズマ発生管22内面
に付着し、プラズマ発生管22が温i!艙歴サイクルを
受ける結果□、・プラズマ発生管22に破損の広れが生
じた。そして、原料の処理量をlO′・Og/1lli
n に落とした場合には、プラズマ発生管22への粉末
原料27の付着は生じなかった。
□ When a large amount of powder raw material 27 was processed at a rate of 150 g/min in the same manner as in Example 1, the supplied powder raw material 27 and the generated ultrafine particles adhered to the inner surface of the plasma generation tube 22, causing the plasma generation tube to deteriorate. 22 is hot! As a result of being subjected to the vessel history cycle, damage spread to the plasma generation tube 22. Then, the processing amount of raw material is 1O'・Og/1lli
n, the powder raw material 27 did not adhere to the plasma generating tube 22.

従って、従来の峻造装置によれば、上記実施例のような
大量処理は無却であった。なお、本比較例の場合、原料
供給管26は高周波誘導コイル帯域24より上方に設置
すられているので、当然原料供給管26の熔解も管材の
超微粒子28への汚染も生じなかった。しかし、プラズ
マブレーム29は不安定で、得られた超微粒子28中に
は、かなりの未処理の原料である粗粒の存在が認められ
た。
Therefore, with the conventional steepening device, it was impossible to process a large amount as in the above embodiment. In the case of this comparative example, since the raw material supply pipe 26 was installed above the high-frequency induction coil zone 24, naturally neither melting of the raw material supply pipe 26 nor contamination of the ultrafine particles 28 of the tube material occurred. However, the plasma blaze 29 was unstable, and the presence of a considerable amount of coarse particles, which were unprocessed raw materials, was observed in the obtained ultrafine particles 28.

[発明の効果] 本発明によれば、高品質超微粒子の大量生産及び装置の
連続運転が可能になる。
[Effects of the Invention] According to the present invention, mass production of high-quality ultrafine particles and continuous operation of the apparatus are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に係る超微粒子の製造装置の要部断面図
、第2図は従来例に係る超微粒子の製造装置の要部断面
図である。 2.22・・・プラズマ発生管、3.23・・・出口、
4.24・・・高周波誘導コイル帯域、5,25・・・
吐出口、6.26・・・原料供給管、7 料、8,28・・・超微粒子、9 レーム、12・・・連結部。 27・・・粉末原 29・・・プラスマフ
FIG. 1 is a sectional view of a main part of an apparatus for producing ultrafine particles according to an embodiment, and FIG. 2 is a sectional view of a main part of an apparatus for producing ultrafine particles according to a conventional example. 2.22...Plasma generation tube, 3.23...Exit,
4.24...High frequency induction coil band, 5,25...
Discharge port, 6.26... Raw material supply pipe, 7 Material, 8, 28... Ultrafine particles, 9 Rem, 12... Connection portion. 27... Powder original 29... Plus muff

Claims (3)

【特許請求の範囲】[Claims] (1)高周波誘導プラズマを用いた超微粒子の製造方法
において、粉末原料をプラズマフレーム中に直接供給す
ることを特徴とする超微粒子の製造方法。
(1) A method for producing ultrafine particles using high-frequency induced plasma, characterized in that a powder raw material is directly supplied into a plasma flame.
(2)高周波誘導プラズマを用いた超微粒子の製造装置
において、原料供給管の吐出口を高周波誘導コイル帯域
内に設けたことを特徴とする超微粒子の製造装置。
(2) An apparatus for producing ultrafine particles using high-frequency induction plasma, characterized in that the discharge port of the raw material supply pipe is provided within the band of a high-frequency induction coil.
(3)第2請求項記載の超微粒子の製造装置において、
前記高周波誘導コイル帯域より下方のプラズマ発生管と
チャンバーとの連結部を、その径が出口に向かって大と
なるように形成したことを特徴とする超微粒子の製造装
置。
(3) In the ultrafine particle manufacturing apparatus according to the second claim,
An apparatus for producing ultrafine particles, characterized in that a connecting portion between the plasma generating tube and the chamber below the high-frequency induction coil band is formed such that its diameter increases toward the exit.
JP1023599A 1989-01-31 1989-01-31 Method and apparatus for producing ultrafine particles Pending JPH02203932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023599A JPH02203932A (en) 1989-01-31 1989-01-31 Method and apparatus for producing ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1023599A JPH02203932A (en) 1989-01-31 1989-01-31 Method and apparatus for producing ultrafine particles

Publications (1)

Publication Number Publication Date
JPH02203932A true JPH02203932A (en) 1990-08-13

Family

ID=12115066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023599A Pending JPH02203932A (en) 1989-01-31 1989-01-31 Method and apparatus for producing ultrafine particles

Country Status (1)

Country Link
JP (1) JPH02203932A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405095B1 (en) * 2001-02-27 2003-11-10 안강호 Method for manufacturing unagglomerated fine particles using electro-hydrodynamic spray in flame or furnace
KR100442015B1 (en) * 2000-04-18 2004-07-30 안강호 Apparatus for manufacturing ultra-fine particles using electrospray device and method thereof
KR100446923B1 (en) * 2001-06-22 2004-09-01 인하대학교 산학협력단 A method for converting a rough shaped silica powder into spherical silica powder
JP2007503973A (en) * 2003-08-28 2007-03-01 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials
JP2008285700A (en) * 2007-05-15 2008-11-27 Sumitomo Metal Mining Co Ltd Molybdenum ultrafine powder, and method for producing the same
JP2009531258A (en) * 2006-03-29 2009-09-03 ノースウエスト メテック コーポレイション Method and apparatus for producing nano and micro powders using axial injection plasma spraying
WO2010067782A1 (en) * 2008-12-11 2010-06-17 東ソー株式会社 Ceramic beads with smooth surfaces and manufacturing method thereof
JP2013068585A (en) * 2011-09-20 2013-04-18 Ls Nova Co Ltd Removal of contaminated radioactive substance
JP2013513483A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Method of forming a catalyst with reduced mobility of nanoactive materials
JP2014515792A (en) * 2011-04-27 2014-07-03 マテリアルズ アンド エレクトロケミカル リサーチ コーポレイション Low cost processing method to produce spherical titanium and spherical titanium alloy powder
KR101436498B1 (en) * 2011-10-20 2014-09-01 한국기계연구원 Apparatus for preparing 500 ㎚-10 ㎛ sized fine spherical powder using plasma
JP2015086413A (en) * 2013-10-29 2015-05-07 大陽日酸株式会社 Method of producing composite superfine particle
JP2015178449A (en) * 2015-03-09 2015-10-08 株式会社Ls Nova removal of contaminated radioactive material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266139A (en) * 1986-05-12 1987-11-18 Sumitomo Cement Co Ltd Apparatus for preparing powder material for high density sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266139A (en) * 1986-05-12 1987-11-18 Sumitomo Cement Co Ltd Apparatus for preparing powder material for high density sintered body

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442015B1 (en) * 2000-04-18 2004-07-30 안강호 Apparatus for manufacturing ultra-fine particles using electrospray device and method thereof
KR100405095B1 (en) * 2001-02-27 2003-11-10 안강호 Method for manufacturing unagglomerated fine particles using electro-hydrodynamic spray in flame or furnace
KR100446923B1 (en) * 2001-06-22 2004-09-01 인하대학교 산학협력단 A method for converting a rough shaped silica powder into spherical silica powder
JP2007503973A (en) * 2003-08-28 2007-03-01 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials
JP4754488B2 (en) * 2003-08-28 2011-08-24 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
JP2009531258A (en) * 2006-03-29 2009-09-03 ノースウエスト メテック コーポレイション Method and apparatus for producing nano and micro powders using axial injection plasma spraying
JP2008285700A (en) * 2007-05-15 2008-11-27 Sumitomo Metal Mining Co Ltd Molybdenum ultrafine powder, and method for producing the same
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
WO2010067782A1 (en) * 2008-12-11 2010-06-17 東ソー株式会社 Ceramic beads with smooth surfaces and manufacturing method thereof
JP2011068544A (en) * 2008-12-11 2011-04-07 Tosoh Corp Ceramic bead with smooth surface and manufacturing method thereof
US8637154B2 (en) 2008-12-11 2014-01-28 Tosoh Corporation Ceramic beads with smooth surfaces and process for producing the same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
JP2013513483A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Method of forming a catalyst with reduced mobility of nanoactive materials
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
JP2014515792A (en) * 2011-04-27 2014-07-03 マテリアルズ アンド エレクトロケミカル リサーチ コーポレイション Low cost processing method to produce spherical titanium and spherical titanium alloy powder
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
JP2013068585A (en) * 2011-09-20 2013-04-18 Ls Nova Co Ltd Removal of contaminated radioactive substance
KR101436498B1 (en) * 2011-10-20 2014-09-01 한국기계연구원 Apparatus for preparing 500 ㎚-10 ㎛ sized fine spherical powder using plasma
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
JP2015086413A (en) * 2013-10-29 2015-05-07 大陽日酸株式会社 Method of producing composite superfine particle
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JP2015178449A (en) * 2015-03-09 2015-10-08 株式会社Ls Nova removal of contaminated radioactive material

Similar Documents

Publication Publication Date Title
JPH02203932A (en) Method and apparatus for producing ultrafine particles
JPH0691162A (en) Superfine particle producing device
KR20200131906A (en) ODS alloy powder, its manufacturing method by plasma treatment, and its use
JP3965696B2 (en) Powder plasma processing apparatus and powder plasma processing method
US4638488A (en) Fine grains producing apparatus
JPH0375302A (en) Particles whose surface is coated with super fine particles and manufacture thereof
US4889665A (en) Process for producing ultrafine particles of ceramics
JPH0352402B2 (en)
JP2003049201A (en) Spherical powder of metal and metallic compound, and manufacturing method thereof
JPS59166605A (en) Apparatus for preparing ultra-fine particle
JPS5941772B2 (en) Ultrafine powder synthesis furnace
JPH03224625A (en) Device for synthesizing superfine powder
JPS63143937A (en) Plasma reactor for superfine powder manufacture
JPH0458404B2 (en)
JP4545357B2 (en) Method for producing aluminum nitride powder
CN114394604B (en) Preparation method of superhard spherical tungsten boride powder
JPH03180432A (en) Melting method and melting device of metal
JPH02282407A (en) Method and apparatus for manufacturing super fine particle
JPS5950014A (en) Manufacture of silicon powder
CN113695579B (en) High-temperature oxidation-resistant coating for niobium-based alloy surface
JP3557725B2 (en) Manufacturing method of long composite metal tube with hard layer interior
Gromov et al. Methods of Manufacturing the High-Entropy Alloys
JPS6111140A (en) Manufacture of extremely fine particle of high-purity ceramic
JPH02218431A (en) Powder for plasma pulverizing and its supply method
US4755353A (en) Process for producing metal foils