JPS59162057A - Ink-jet print head - Google Patents

Ink-jet print head

Info

Publication number
JPS59162057A
JPS59162057A JP3375583A JP3375583A JPS59162057A JP S59162057 A JPS59162057 A JP S59162057A JP 3375583 A JP3375583 A JP 3375583A JP 3375583 A JP3375583 A JP 3375583A JP S59162057 A JPS59162057 A JP S59162057A
Authority
JP
Japan
Prior art keywords
ink
contact angle
nozzle
roughness
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3375583A
Other languages
Japanese (ja)
Other versions
JPH0435344B2 (en
Inventor
Yasuo Yamagishi
康男 山岸
Katsuji Ko
勝治 胡
Toshiaki Narisawa
成沢 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3375583A priority Critical patent/JPS59162057A/en
Publication of JPS59162057A publication Critical patent/JPS59162057A/en
Publication of JPH0435344B2 publication Critical patent/JPH0435344B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm

Abstract

PURPOSE:To stabilize injection of atomized ink particles and to make cost-down available, by controlling to a specific angle retarding contact angle and advancing contact angle of ink respecting a plane roughness of nozzle surrounding surface. CONSTITUTION:A nozzle surrounding surface 24 is roughened and the roughness is controlled in such a way that a retarding contact angle of ink to a plane becomes 0 deg. and an advancing contact angle less than 10 deg.. And, as a layer thickness of ink depends on dispersing condition of ink, etc. around a nozzle, its controlling becomes difficult and as the thickness d decreases with a decrease of the advancing contact angle theta of ink, by controlling the angle theta the first ink injection becomes available without any disturbance and if the angle theta is less than 10 deg., then a stabilized injection becomes available. Suppose the contact angle of contact angle of ink to mirror finished or non-mirror finished plane is theta0 and theta1 respectively and roughness coefficient r, then costheta1=rcostheta0 and when rcostheta0>= 1, actually theta1=0 and ink invites expansion wetness. Consequently, for an optimum condition, theta1 is desirable to approach 0 deg. infinitely. Thus, a stabilized injection of ink particles becomes available.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明はインクジェットプリントヘッドの改良に関する
ものでおる。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to improvements in ink jet print heads.

(2)技術の背景 従来より電子計算装置等の出力装置の一つとしてインク
ジェットプリンタが用いられている。このインクジェッ
トプリンタは第1図に示す如くプラテンlの上を通過す
る記録用紙2に対し、微小圧M(約1 m )離れた位
置より噴射ノズルをもつ記録ヘッド3を左右に移動しな
がら適時にインクを噴射して文字・記号等を印字するシ
リアルグリンタである。
(2) Background of the Technology Inkjet printers have been used as one of the output devices of electronic computing devices and the like. As shown in Fig. 1, this inkjet printer prints a recording head 3 with an ejection nozzle from a position a minute pressure M (approximately 1 m) away from a recording paper 2 passing over a platen 1 while moving left and right at the appropriate time. This is a serial printer that prints characters, symbols, etc. by jetting ink.

第2図はドロップオンデマンド型のインクジェそれぞれ
示す。同図において、4はノズル、5は圧力室、6は圧
力室よシノズルに通ずる導通路、7はインク室、8はイ
ンク室よシ圧力室へ通ずるインク供給路であり、これら
は金属又はセラミ。
FIG. 2 shows each drop-on-demand type inkjet. In the figure, 4 is a nozzle, 5 is a pressure chamber, 6 is a conduction path leading from the pressure chamber to the nozzle, 7 is an ink chamber, and 8 is an ink supply path leading from the ink chamber to the pressure chamber. .

りの板9にエツチング等によシ加工されている。The plate 9 is etched or otherwise etched.

10はこの板90両側にはシ合わされた金属、セラミッ
ク、ガラス等の板、11は圧力室内のインクに圧力を加
えるための圧電素子である。
Reference numeral 10 designates plates made of metal, ceramic, glass, etc., which are fitted together on both sides of this plate 90, and 11 designates a piezoelectric element for applying pressure to the ink within the pressure chamber.

このように構成されたグリントヘッドは1個の文字を数
百のドツトで印字するため精度良くインクを噴射する必
要がある。
Since the glint head configured in this way prints one character with hundreds of dots, it is necessary to eject ink with high precision.

(3)従来技術と問題点 従来このドロラグオンデマンド型プリントヘッドにおい
ては、精度良くインクを噴射するためにノズル面を濡れ
にくくすることに注意が払われてきた。ノズル面が濡れ
易いと第3図aのようにノズル4の周囲の一部にインク
12が付着し、噴射粒子13の尾が付着したインク12
に表面張力で引かれるためインクの方向が所定の方向か
らずれ、複数のノズルを有するヘッドではドツトの位置
ずれを生じ印字品質が低下する。また第3図すの如くイ
ンク12の付着が多くなると噴射時にインク粒子13は
付着したインクの層内での摩擦抵抗によシ噴射速度が低
下し、遂には噴射不能に陥る。
(3) Prior Art and Problems Conventionally, in this drag-on-demand print head, attention has been paid to making the nozzle surface difficult to wet in order to eject ink with high precision. If the nozzle surface is easily wetted, the ink 12 will adhere to a part of the periphery of the nozzle 4, as shown in FIG.
Since the ink is pulled by surface tension, the direction of the ink deviates from a predetermined direction, and in a head having a plurality of nozzles, the dots become misaligned and print quality deteriorates. Further, as shown in FIG. 3, when the amount of adhesion of ink 12 increases, the ejection speed of the ink particles 13 decreases due to frictional resistance within the layer of adhering ink during ejection, and eventually ejection becomes impossible.

そこで従来はノズル面を濡れにくくするため、ノズル面
を鏡面に仕上げた上にシリコン系やフッ素系のグリース
を塗布する方法や、第4図の如くノズル4の周囲を卸ま
せる方法が行なわれている。
Conventionally, in order to prevent the nozzle surface from getting wet, methods have been used, such as finishing the nozzle surface to a mirror finish and applying silicone-based or fluorine-based grease, or lowering the area around the nozzle 4 as shown in Figure 4. There is.

しかし前者のグリースを塗布する方法には次のような欠
点がある。その第1はグリース類は摩擦で簡単にはがれ
る。そのため紙送シのミスによる記録用紙とノズルの接
触等を考慮すると、グリースの塗布はしばしば行なう必
要かあシ作業が繁雑となる。第2は撥水表面は一般に電
気伝導性が低いため、帯電し易く、そのため室内圧浮遊
している#ll維くずや記録用紙から出るほこり等がノ
ズル面に付着しやすくなる。とれらのほこりがノズル近
傍に付着すると、それに噴射粒子の尾が引かれ第3図a
と同様な現象が生ずる。第3は伺らかの原因でインクが
ノズル面に付着するとインクが乾きインク中の固形分(
染料など)か新しい表面を形成し、その部分だけ濡れ易
く彦り第3図aと同様な現象が生ずる。第4はノズル面
を鏡面研磨するため製造コストが高くなる。
However, the former method of applying grease has the following drawbacks. First, grease can be easily peeled off by friction. Therefore, considering the possibility of contact between the recording paper and the nozzle due to paper feeding errors, it is necessary to apply grease frequently, and the reeding work becomes complicated. Second, since water-repellent surfaces generally have low electrical conductivity, they are easily charged, and therefore #ll fibers floating in the room pressure, dust from recording paper, etc. tend to adhere to the nozzle surface. When this dust adheres to the vicinity of the nozzle, the tail of the ejected particles is drawn to it, as shown in Figure 3a.
A similar phenomenon occurs. The third reason is that when ink adheres to the nozzle surface, the ink dries and the solid content in the ink (
(dye, etc.) forms a new surface, and only that part becomes easily wetted, resulting in a phenomenon similar to that shown in Figure 3a. Fourth, since the nozzle surface is mirror-polished, the manufacturing cost increases.

また後者のノズル周囲を自ませる方法は前者の欠点を軽
減することはできるが完全ではなく、ノズル面の局部的
な濡れによる噴射方向の乱れを生ずる。またノズル面(
第4図14.15)を鏡面研磨する必要があると共に精
度良くこの窪みを形成しなくてはならないという加工上
の問題がある。
The latter method of making the area around the nozzle curved can alleviate the drawbacks of the former method, but it is not perfect and causes disturbances in the jet direction due to local wetting of the nozzle surface. Also, the nozzle surface (
There is a processing problem in that it is necessary to mirror-polish the surface (FIG. 4, 14.15) and also to form the recess with high precision.

即ちノズルの中心点と窪みの中心点か一致しないとその
分、噴射方向がずれるし、また窪みの深さが異なるとイ
ンク噴射に必要なパルスエネルギ(圧電素子等に印加)
が異なってしまうため高精度の加工が必要となる。従っ
て製造コストが高くなる。
In other words, if the center point of the nozzle and the center point of the recess do not match, the ejection direction will shift accordingly, and if the depth of the recess differs, the pulse energy required for ink jetting (applied to piezoelectric elements, etc.)
Since the values differ, high-precision machining is required. Therefore, manufacturing costs increase.

(4)発明の目的 本発明は上記従来の問題点に鑑み、インク粒子の噴射を
安定に行なうことができ、且つ安価に製造できるインク
ジェ、トゲリントへッrを提供することを目的とするも
のである。
(4) Purpose of the Invention In view of the above-mentioned conventional problems, it is an object of the present invention to provide an inkjet and a togellint printer that can stably jet ink particles and can be manufactured at low cost. be.

(5)発明の構成 そしてこの目的は本発明によれば、圧力室内のインクを
必要に応じて加圧し、微小ノズルからインク滴を噴射し
て記録媒体上に記録を行なうインクジェットグリントへ
ッげにおいて、前記ノズルの周囲面の粗さを核部に対す
るインクの後退接触角が0度であシ、かつ前進接触角が
10度以下となるようにしたことを特徴とするインクジ
ェットプリントヘッドを提供することによって達成され
る。
(5) Structure and object of the invention According to the present invention, an inkjet glint headge that records on a recording medium by pressurizing ink in a pressure chamber as necessary and jetting ink droplets from a minute nozzle. To provide an ink jet print head, wherein the roughness of the peripheral surface of the nozzle is such that the receding contact angle of the ink to the core portion is 0 degrees, and the advancing contact angle is 10 degrees or less. achieved by.

(6)発明の実施例 以下本発明実施例を図面によって詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第5図は本発明によるインクジェットプリントヘッドを
説明するだめの要部断面図である。同図において、20
はヘッド本体、21は圧力室、22はインク導通路、2
3はノズル、24はノズルの周囲面をそtぞれ示す。
FIG. 5 is a sectional view of a main part of the inkjet print head according to the present invention. In the same figure, 20
2 is a head main body, 21 is a pressure chamber, 22 is an ink conduction path, 2
3 indicates a nozzle, and 24 indicates a peripheral surface of the nozzle.

本実施例はノズルの周囲面24を鏡面とせず粗面とした
ものである。そしてその粗さは、核部に対するインクの
後退接触角が0度であり、かつ前進接触角が10度以下
となるようにしたものである。
In this embodiment, the peripheral surface 24 of the nozzle is not a mirror surface but a rough surface. The roughness is such that the receding contact angle of the ink to the core portion is 0 degrees and the advancing contact angle is 10 degrees or less.

このように形成された本実施例が安定な噴射を行なうこ
とができる理由を次に説明する。
The reason why this embodiment formed in this way can perform stable injection will be explained below.

一般に濡れには次の3つの型がある。Generally, there are three types of wetting:

0)拡張濡れ・・・固体表面に液体が濡れ拡がる。0) Expanded wetting: Liquid wets and spreads on the solid surface.

この場合のエネルギ変化W、はW1=rL(cosθ−
1)である。但しrLは液体の表面張力、θは接触角。
The energy change W in this case is W1=rL(cosθ−
1). However, rL is the surface tension of the liquid, and θ is the contact angle.

  。  .

(ロ)浸漬濡れ・・・液体中に固体が浸る。この場合の
エネルギ変化WiはW1=rLcasθである。
(b) Immersion wetness: A solid is immersed in a liquid. The energy change Wi in this case is W1=rLcasθ.

(−ウ  付着濡れ・・・液体が滴として固体面上に付
着する。この場合のエネルギ変化W1けWa=rL((
2)θ+1)である。
(-C Adhesive wetting...Liquid adheres to the solid surface as droplets.In this case, the energy change W1×Wa=rL((
2) θ+1).

ノズル面に撥水性グリースを塗布しても第3図器のよう
な現象が生ずるのは付着濡れの仕事Waが負にならない
ためである。
Even if water-repellent grease is applied to the nozzle surface, the phenomenon shown in Figure 3 occurs because the work of adhesion and wetting Wa does not become negative.

ところで固体表面は一般に凹凸があるため見かけの接触
角θ2は完全に平滑な面のそれ(θ0)よシも一般に小
さくなる。
By the way, since a solid surface generally has irregularities, the apparent contact angle θ2 is generally smaller than that of a completely smooth surface (θ0).

第6図は固体表面上の液滴のつり合いを示す図であシ、
ILは平滑面、bは粗面の場合をそれぞれ示す。同図に
おいて、30は平滑面、31は粗面、32は液滴を示す
Figure 6 is a diagram showing the balance of droplets on a solid surface.
IL indicates a smooth surface, and b indicates a rough surface. In the figure, 30 is a smooth surface, 31 is a rough surface, and 32 is a droplet.

固体表面の凹凸によって平滑面のr倍の表面積になった
とすると、固体表面上の液滴のつυあいの式は r (r ByO−r s、  ) ”” r LV”
IXIIθrとなる。ただしrev’は液体の飽和蒸気
と平衡関係にある固体の表面張力、rLvOは液体の飽
和蒸気と平衡関係にある液体の表面張力、rsLは固体
と液体との間の界面張力である。
Assuming that the surface area of the solid surface is r times that of a smooth surface due to the unevenness of the solid surface, the equation for the relationship between droplets on the solid surface is r (r ByO−rs, ) ”” r LV”
IXIIθr. However, rev' is the surface tension of the solid in equilibrium with the saturated vapor of the liquid, rLvO is the surface tension of the liquid in equilibrium with the saturated vapor of the liquid, and rsL is the interfacial tension between the solid and the liquid.

第6図器でr B vo== r g L + r I
、yocO5θであるから、r=cosθンーθ。であ
る。r ) 1であるから、θ。<900ならば表面が
粗くなると見かけの接触角θ、は減小し、θ。〉90°
ならばθ、は増加する。撥水処理をしていない通常のス
テンレスや、ガラス又はニブキシ樹脂等のノズル材料に
対する通常のインク(水性、油性のインク)の接触角は
90°以下であるから、θ。NOoの場合はOo〈θ、
〈θ。(900となる。ところで固体表面に凹凸がある
場合θ。NOoの時には液体は自発的には凹部に入らな
いが、一旦この障壁をのシ越えて凹部に入ると固/液界
面の面積が気/液界面の面積より大きい(気液界面は凹
凸が少ない)ため、液体は固液界面と離れにくくなる。
In Figure 6, r B vo== r g L + r I
, yocO5θ, so r=cosθ-θ. It is. r ) 1, so θ. <900, the apparent contact angle θ decreases as the surface becomes rougher. 〉90°
Then, θ, increases. Since the contact angle of normal ink (water-based or oil-based ink) with nozzle materials such as normal stainless steel, glass, or niboxy resin that has not been subjected to water-repellent treatment is 90° or less, θ. In the case of NOo, Oo〈θ,
〈θ. (900. By the way, if the solid surface has irregularities, θ. At NOo, the liquid does not spontaneously enter the recess, but once it crosses this barrier and enters the recess, the area of the solid/liquid interface increases. /Since the area is larger than that of the liquid interface (the gas-liquid interface has less irregularities), it becomes difficult for the liquid to separate from the solid-liquid interface.

この結果、第7図に示すようにして薄く均一なインク層
33が形成される。このようにノズル周囲にインク層3
3が形成された場合、このインク層は、インクの噴射時
にインク粒子に引すられるため通常数十〜数百発のイン
ク噴射によシインク層は次第に薄くなシ、ある一定の厚
さになる。噴射を中止して観察すると0図のような薄い
インク)m33’になっていることが確認できる。この
とき例えば空気中のほこシなどが付着した場合、6図の
如くインク粒子34の径に比較して十分率さな#1と9
35であればインク粒子と一緒に飛んで行ってしまう。
As a result, a thin and uniform ink layer 33 is formed as shown in FIG. In this way, an ink layer 3 is formed around the nozzle.
3 is formed, this ink layer is attracted by ink particles when ink is ejected, so the ink layer gradually becomes thinner and reaches a certain thickness after several tens to hundreds of ink ejections. . When the jetting is stopped and observed, it can be confirmed that the ink is thin (m33') as shown in Figure 0. At this time, for example, if dust in the air adheres, #1 and #9 have a sufficient diameter compared to the diameter of the ink particles 34 as shown in Figure 6.
If it is 35, it will fly away together with the ink particles.

ところで第7図においてはa図のような状態でもインク
か噴射する°ことを前提としている。a図の状態でイン
クが噴射するか否かは、噴射するインク粒子(正確には
ノズル内のインクの流速)と、インク層の厚さdによる
。粒子の速度が小さい程、またdが大きい程噴射しにく
くなる。また粘度や表面張力か大きい程噴射しにくくな
る。通常オンデマンド型インクジェットグリンタでは、
インクの粘度け3〜15est、表面張力は40〜60
 dyV−1噴射粒子の速度は3ルへ程度である。粘度
7ests表面張力50 dyn/cm、粒子速度3 
misで粒子化実験を行なったところ、インク噴射に障
害とならないインク層の厚さdは約20μm程度であっ
た。インク層の厚さは、ノズル周囲のインクの広り等に
影響されるため、この厚さを制御することは困難である
が厚さdはノズル周囲面に対するインクの接触角θ(こ
の場合は前進接触角)が小さい程小さくなるので、θを
制御することで実質的に最初のインク噴射に対して障害
とならないようにすることは可能であシ、我々はθを目
00以下であれば実質的に安定な噴射が可能であること
を見出した@ところでヘッド製造上はノズル面を鏡面仕
上げするよりも、より粗い仕上げで済ませる方が経済的
であり、本発明によればそれは可能である。鏡面仕上げ
した面と、しない面に対するインクの接触角をそれぞれ
θ。、θ1とし、粗さ係数をrとすると瀉θ1 ” r
(2)θ0である。第8図にrと01の関係を示す。図
よJ)rcosθ。≧1では、実際にはθ1=θ°とな
シインクは拡張濡れを起す。拡張濡れが起る場合、その
強さに応じて適切な方法を講じる必要かある。拡張濡れ
か弱い場合にはインクタンクの位置を下げるだけで充分
であるが、強すぎる場合にはインクが外部へ漏れる恐れ
がある。
Incidentally, FIG. 7 assumes that ink is ejected even in the state shown in FIG. a. Whether or not the ink is ejected in the state shown in Figure a depends on the ink particles to be ejected (more precisely, the flow velocity of the ink in the nozzle) and the thickness d of the ink layer. The smaller the velocity of the particles and the larger d, the more difficult it becomes to spray the particles. Also, the higher the viscosity and surface tension, the more difficult it is to spray. Normally, on-demand type inkjet printers
Ink viscosity: 3-15est, surface tension: 40-60
The velocity of the dyV-1 jet particles is on the order of 3 liters. Viscosity 7ests Surface tension 50 dyn/cm, Particle velocity 3
When a particle formation experiment was conducted using mis, the thickness d of the ink layer that did not interfere with ink jetting was about 20 μm. The thickness of the ink layer is affected by the spread of the ink around the nozzle, so it is difficult to control this thickness, but the thickness d is determined by the contact angle θ of the ink with the surrounding surface of the nozzle (in this case, The smaller the forward contact angle (advancing contact angle) is, the smaller it becomes, so by controlling θ, it is possible to substantially prevent the first ink ejection from becoming an obstacle. We have discovered that substantially stable jetting is possible.@By the way, in terms of head manufacturing, it is more economical to finish the nozzle surface with a rougher finish than with a mirror finish, and this is possible according to the present invention. . The contact angle of the ink on the mirror-finished surface and the non-mirror-finished surface is θ, respectively. , θ1 and the roughness coefficient is r, then θ1 ” r
(2) θ0. FIG. 8 shows the relationship between r and 01. Figure J) r cos θ. ≧1, the sink actually causes extended wetting when θ1=θ°. When extended wetting occurs, it is necessary to take appropriate measures depending on its intensity. If the expansion wetness is weak, it is sufficient to lower the position of the ink tank, but if the expansion wetness is too strong, there is a risk that ink may leak to the outside.

従って理想的にはθ、が限りなく0度に近い事か望まし
いが、実際にはθ、=0°となる付近Krを設定するの
が良い。
Therefore, it is ideal that θ is as close to 0 degrees as possible, but in reality it is better to set Kr near θ=0 degrees.

次KAB2個の条件の異なるヘッドについて、α、βの
2種類の撹乱を4えた場合の実験例を説明する。
Next, an experimental example will be described in which two types of disturbances α and β are added to heads with two different KAB conditions.

試料及び試験条件は ヘッドA:第9図aに示す如く、円筒ピエゾ素子40を
インザートモールドしたヘラP筐体41に厚さ0.25
調、ノズル径60μmのアルミナ充填ニーキシ樹脂製ノ
ズル板42を貼シ付けたもの。
The sample and test conditions were as follows: Head A: As shown in Fig. 9a, a spatula P housing 41 with a thickness of 0.25 mm was inserted into which a cylindrical piezo element 40 was insert-molded.
A nozzle plate 42 made of alumina-filled nixy resin and having a nozzle diameter of 60 μm is attached.

へ、ドB :@9図すに示す如く、インク流路(ノズル
部会)を工、チングしたガラス板43にガラス平板44
を貼シ合わせ、圧力室外部にぎニジ素子45貼シ付けた
ものでノズル形状は半径40μmの半月形。
To, Do B: @9 As shown in Figure 9, the glass plate 44 is attached to the glass plate 43 on which the ink flow path (nozzle section) has been carved and etched.
The nozzle shape is a half-moon shape with a radius of 40 μm.

撹乱α:連続噴射を行ないながら一二ゾ素子に印加する
電圧をしだいに下げて行き、噴射しきい値電圧以下に下
げてから再び所定電圧まで戻す。
Disturbance α: While performing continuous injection, the voltage applied to the 12-zo element is gradually lowered, lowered to below the injection threshold voltage, and then returned to the predetermined voltage again.

撹乱β:連続噴射を行ないながらノズル前面をティッシ
ーイーノや−で擦り前後の噴射状態を比較する口 次表はインクノズル周囲の而粗さを変えて、ノズル面に
対するインクの接触角を変えた場合の噴射安定性を撹乱
α、βを各50回与えて評価した結果である。
Disturbance β: Rub the front surface of the nozzle with a tissue paper while performing continuous jetting to compare the jetting conditions before and after.The roughness around the ink nozzle was changed to change the contact angle of the ink to the nozzle surface. These are the results of evaluating the injection stability in the case where disturbances α and β were applied 50 times each.

表 表よfiA、Bへ、ド共前進接触角か10°以下で後退
接触角がθ°の場合は噴射回数及び噴射速度が良好であ
ることがわかる。
From the table fiA and B, it can be seen that when both the advancing contact angle is 10° or less and the receding contact angle is θ°, the number of injections and the injection speed are good.

(7)  発明の効果 以上、詳細Krl51明したように本発明のインクジェ
ットプリントヘッドは、ノズルの周囲面の粗さを鏡面よ
り粗くすることによシ、インク粒子の噴射を安定して行
なうことを可能とし、かつ安価に製造できるといった効
果大なるものである。
(7) Effects of the Invention, Details Krl51 As explained above, the inkjet print head of the present invention is capable of stably ejecting ink particles by making the roughness of the peripheral surface of the nozzle rougher than a mirror surface. This has great effects in that it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインクジェットプリンタを説明するための図1
第2図は従来のドロラグオンデマンド型のインクジェッ
トプリントへ、ドを説明するための図、第3図はそのノ
ズル部における不具合を説明するための図、第4図はそ
の対策を施したノズル部を説明するための図、第5図は
本発明によるインクジェットプリントヘッドを説明する
ための図、第6図は固体表面上の液滴のつシ合いを示す
図、第7図は本発明のインクジェットプリンタヘッドの
動作時のインクの状態を示す図、第8図は固体表面の粗
さ係数とインクの接触角との関係を示した図、第9図は
実験用プリンタヘッドを説明するための図である。 図面において、20はへ、ド本体、21は圧力室、22
はインク導通路、23はノズル、24社ノズルの周囲面
をそれぞれ示す。
Figure 1 is a diagram for explaining an inkjet printer.
Figure 2 is a diagram to explain the problem with conventional drag-on-demand type inkjet printing, Figure 3 is a diagram to explain a problem in the nozzle, and Figure 4 is a nozzle that has taken countermeasures. FIG. 5 is a diagram for explaining the inkjet print head according to the present invention, FIG. 6 is a diagram showing the combination of droplets on a solid surface, and FIG. 7 is a diagram for explaining the inkjet print head according to the present invention. Figure 8 is a diagram showing the state of ink during operation of an inkjet printer head, Figure 8 is a diagram showing the relationship between the roughness coefficient of a solid surface and the contact angle of ink, and Figure 9 is a diagram for explaining the experimental printer head. It is a diagram. In the drawing, 20 is the body, 21 is the pressure chamber, and 22 is the main body.
23 shows an ink conduction path, 23 shows a nozzle, and 24 shows the surrounding surface of the nozzle.

Claims (1)

【特許請求の範囲】 1、 圧力室内のインクを必要に応じて加圧し、微小ノ
ズルからインク滴を噴射して記録媒体上に記録を行なう
インクジェ、ドブリントへ、ドにおいて、前記ノズルの
周囲面の粗さを、数面に対するインクの後退接触角が0
度であシ、かつ前進接触角が10度以下となるようにし
たことを特徴とするインクジェットプリントヘッド。 2、前記前進接触角が0度ではない特許請求の範囲第1
項記載のインクジェットプリントヘッド。
[Scope of Claims] 1. An inkjet printer that pressurizes ink in a pressure chamber as necessary and jets ink droplets from a minute nozzle to record on a recording medium. Roughness is defined as the receding contact angle of the ink on several surfaces is 0.
An inkjet print head characterized in that the angle of contact is 10 degrees or less and the advancing contact angle is 10 degrees or less. 2. Claim 1 in which the advancing contact angle is not 0 degrees
The inkjet print head described in Section 1.
JP3375583A 1983-03-03 1983-03-03 Ink-jet print head Granted JPS59162057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3375583A JPS59162057A (en) 1983-03-03 1983-03-03 Ink-jet print head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3375583A JPS59162057A (en) 1983-03-03 1983-03-03 Ink-jet print head

Publications (2)

Publication Number Publication Date
JPS59162057A true JPS59162057A (en) 1984-09-12
JPH0435344B2 JPH0435344B2 (en) 1992-06-10

Family

ID=12395238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3375583A Granted JPS59162057A (en) 1983-03-03 1983-03-03 Ink-jet print head

Country Status (1)

Country Link
JP (1) JPS59162057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412861A (en) * 1990-04-28 1992-01-17 Canon Inc Base body for inkjet recording head, inkjet recording head having the base body and inkjet recording apparatus having the recording head
US5784081A (en) * 1994-04-21 1998-07-21 Fujitsu Limited Method of and apparatus for cleaning ink jet head
WO2001008242A1 (en) * 1999-07-21 2001-02-01 E Ink Corporation Preferred methods for producing electrical circuit elements used to control an electronic display
CN105593020A (en) * 2013-09-03 2016-05-18 株式会社理光 Inkjet recording method and inkjet recording device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582397B2 (en) 2014-11-21 2019-10-02 株式会社リコー Inkjet recording method and inkjet recording apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156209A (en) * 1978-05-30 1979-12-10 Xerox Corp Nozzle for pulse pressure drop ejector
JPS5749566A (en) * 1980-09-08 1982-03-23 Seiko Epson Corp Ink jet head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156209A (en) * 1978-05-30 1979-12-10 Xerox Corp Nozzle for pulse pressure drop ejector
JPS5749566A (en) * 1980-09-08 1982-03-23 Seiko Epson Corp Ink jet head

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412861A (en) * 1990-04-28 1992-01-17 Canon Inc Base body for inkjet recording head, inkjet recording head having the base body and inkjet recording apparatus having the recording head
US5784081A (en) * 1994-04-21 1998-07-21 Fujitsu Limited Method of and apparatus for cleaning ink jet head
WO2001008242A1 (en) * 1999-07-21 2001-02-01 E Ink Corporation Preferred methods for producing electrical circuit elements used to control an electronic display
US6413790B1 (en) * 1999-07-21 2002-07-02 E Ink Corporation Preferred methods for producing electrical circuit elements used to control an electronic display
US6521489B2 (en) 1999-07-21 2003-02-18 E Ink Corporation Preferred methods for producing electrical circuit elements used to control an electronic display
CN105593020A (en) * 2013-09-03 2016-05-18 株式会社理光 Inkjet recording method and inkjet recording device

Also Published As

Publication number Publication date
JPH0435344B2 (en) 1992-06-10

Similar Documents

Publication Publication Date Title
JP2656481B2 (en) Inkjet recording head
JPS61235160A (en) Ink jet head
JP3288278B2 (en) Ink jet recording device
US20100156995A1 (en) Liquid droplet ejecting head and liquid droplet ejecting apparatus
JPH06297719A (en) Liquid droplet jet device and production thereof
JP2009220471A (en) Liquid discharging head and liquid discharging device
US7441868B2 (en) Nozzle plate and method of manufacturing the same
JPS59162057A (en) Ink-jet print head
US20020086136A1 (en) Nozzle plate assembly of micro-injecting device and method for manufacturing the same
JP3169954B2 (en) Driving method of inkjet recording apparatus
JPH11291500A (en) Liquid delivery method and liquid delivery head
JPH11188876A (en) Ink jet recording head, and ink jet recording apparatus equipped therewith
JPS60262660A (en) Ink jet recorder
JPH01271250A (en) Ink jet recording head
JPS6328027B2 (en)
JPS58175666A (en) Ink jet printing head
JP3916184B2 (en) Inkjet recording device
JP2009012434A (en) Liquid ejection head, image forming apparatus, and manufacturing method for liquid ejection head
JPS6241111B2 (en)
JP3855496B2 (en) Inkjet recording head and inkjet recording apparatus provided with the same
JPS60124254A (en) Removal of electrostatic charge from nozzle surface of recording head
JPH01237150A (en) Ink jet recording head
JPH11170540A (en) Ink-jet recording head and its manufacture
JPS6024956A (en) Ink jet recorder
JPH06218916A (en) Ink jet device