JPS59159996A - Continuous electrolysis method - Google Patents

Continuous electrolysis method

Info

Publication number
JPS59159996A
JPS59159996A JP3333183A JP3333183A JPS59159996A JP S59159996 A JPS59159996 A JP S59159996A JP 3333183 A JP3333183 A JP 3333183A JP 3333183 A JP3333183 A JP 3333183A JP S59159996 A JPS59159996 A JP S59159996A
Authority
JP
Japan
Prior art keywords
electrolytic
pulse
energized
power source
electrolytic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3333183A
Other languages
Japanese (ja)
Inventor
Tetsuaki Tsuda
津田 哲明
Atsuyoshi Shibuya
渋谷 敦義
Nobukazu Suzuki
鈴木 信和
Kazuo Asano
和夫 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3333183A priority Critical patent/JPS59159996A/en
Publication of JPS59159996A publication Critical patent/JPS59159996A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable electrolysis by normal pulse wave-form with a DC power source by using electrodes each formed by alternately placing electrically conductive zones and nnconductive zones as counter electrodes for a moving material to be teated. CONSTITUTION:Each of counter electrodes 5 for a moving material 4 to be treated is formed by alternately placing electrically conductive zones 6 and nonconductive zones 7 in the moving direction (a) of the material 4 so as to regulate the intermittent current supply ratio to a prescribed value. The material 4 is intermittently electrified by supplying DC to the counter electrodes 5, and electrolysis is carried out with electric current having normal pulse wave-form in the same manner as pulse electrolysis with a pulse power source.

Description

【発明の詳細な説明】 この発明は、電解電源に直流を用いてパルス電解処理を
可能とする連続電解処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous electrolytic treatment method that uses direct current as an electrolytic power source and enables pulsed electrolytic treatment.

電解電源にパルス電流を使用したメッキ金属は、直流電
源を使用した場合に較べて、電解条件、メッキ浴条件、
メッキ金属の種類等に応じて、適正なピーク電流密度と
通電断続比率とを選択することによってメッキ皮膜のレ
ベリング性の低下、ポロシティの低下、硬度の上昇、ミ
クロクランキング性の低下、磁気特性の改善等があって
良好な皮膜が得られるというメリットがあることは周知
の通りである。上記メリットをもつパルスメッキは、バ
ッチ式電解プロセスにおいては、エレクトロニクス技術
の進歩によって大型の工業用パルス電源が実用化されつ
つある段階にある。しかし工業用連続電解処理にパルス
メッキを適用する例としては、特開昭54−37039
号公報及び特開昭57−116798号公報による連続
電気メツキ方法の開示がある等して上記メリットを享受
すべく研究開発が進められているが、未だ一般的に実用
化されるまでには至っていない。
Plating metal using pulsed current as the electrolytic power source requires less electrolytic conditions, plating bath conditions, and
By selecting an appropriate peak current density and current discontinuity ratio depending on the type of plating metal, etc., it is possible to reduce the leveling property of the plating film, reduce the porosity, increase the hardness, reduce the micro-cranking property, and improve the magnetic properties. It is well known that there is an advantage that a good film can be obtained due to improvements. Pulse plating, which has the above-mentioned advantages, is at a stage where large-scale industrial pulse power sources are being put into practical use in batch-type electrolytic processes due to advances in electronics technology. However, as an example of applying pulse plating to industrial continuous electrolytic treatment,
Research and development efforts are underway to enjoy the above-mentioned advantages, such as the disclosure of continuous electroplating methods in Japanese Patent Publication No. 57-116798, but it has not yet been put into practical use in general. not present.

例えば、連続高速電解処理ラインにパルスメッキを採用
しようとする場合、前記高速電解処理ラインに適用し得
るような大型パルス電源が試作開発段階であシ、入手が
困難という問題もあるが、次のような基本的な問題点を
抱えている・すなわち、パルス電源での発生パルス波形
は、電源より導電線等を経て電解セルに至るまでの間に
、導電線等のインダクタンス等によシゆがめられ、前記
電源での発生パルス波形を電解処理時まで維持すること
かできず、ゆがめられたパルス波形で電解処理か行われ
ることとなる。従ってパールス波形というよりはむしろ
擬似交流もしくは直流に擬似交流を重畳したような崩れ
た波形で電解処理することとなり、パルスメッキのもつ
上記のメリットが減殺されてし捷うという問題である。
For example, when trying to adopt pulse plating for a continuous high-speed electrolytic treatment line, there is the problem that a large pulse power source that can be applied to the high-speed electrolytic treatment line is still at the prototype development stage and is difficult to obtain. In other words, the pulse waveform generated by a pulse power source is distorted by the inductance of the conductive wire etc. from the power source through the conductive wire etc. to the electrolytic cell. However, the pulse waveform generated by the power source cannot be maintained until the electrolytic treatment, and the electrolytic treatment is performed with a distorted pulse waveform. Therefore, rather than using a pulsed waveform, the electrolytic treatment is performed using a corrupted waveform such as a pseudo alternating current or a pseudo alternating current superimposed on a direct current, and the above-mentioned advantages of pulse plating are diminished.

第1図(はパルス電源よシ導電線等を経て電解槽に至る
までの等価電気回路の一例を示した図である。図におい
て、(1)、(1)はパルス電源端子、(2)は導電線
、(3)は電解槽であり、面はパルス電源の電圧、L)
、のは導電線(ケーブル、ブスバー等)のインダクタン
ス、卸、面は導電線の固有抵抗、コネクタ一部の接触抵
抗等の合計、(C)、曲は電解反応(アノード反応、カ
ソード反応)の電気二重層容量、(r)は電解液のオー
ム抵抗、濃度過電圧に対応した物質移動抵抗、電解反応
の分極抵抗等の合計である。
Fig. 1 is a diagram showing an example of an equivalent electric circuit from a pulse power supply to an electrolytic cell via conductive wires, etc. In the figure, (1), (1) are pulse power supply terminals, (2) is the conductive wire, (3) is the electrolytic cell, and the plane is the voltage of the pulse power supply, L)
, is the inductance of the conductive wire (cable, bus bar, etc.), the surface is the specific resistance of the conductive wire, the sum of the contact resistance of a part of the connector, etc., (C), and the curve is the electrolytic reaction (anode reaction, cathode reaction). The electric double layer capacity (r) is the sum of the ohmic resistance of the electrolytic solution, the mass transfer resistance corresponding to concentration overvoltage, the polarization resistance of electrolytic reaction, etc.

このような回路中の導電線のインダクタンス・電解反応
のキャパシタンス(容量)によって、第2図G)に示す
パルス電源(1)、(1)で発生したパルス波形(9)
は、電解処理時においては例えば第2図(ロ)に示すよ
うなゆがんだ波形いとなる。かかるパルス波形のゆがみ
は、オソーオフタイムのデユティサイクル(交流の周波
数に和尚する〕が増大する程著しくなる。まだ電源と電
解槽の距離が遠い場合は、導電線のブスバーのもつイン
ダクタンスの寄与が特に犬となり、波形のゆがみは甚だ
しくなる。またイ・目平行して隣接する導電線間では磁
気干渉が起り易く、波形が崩れる問題もある。
Due to the inductance of the conductive wire in the circuit and the capacitance of the electrolytic reaction, the pulse waveform (9) generated by the pulse power source (1), (1) shown in Fig. 2G) is generated.
During electrolytic treatment, the waveform becomes distorted as shown in FIG. 2 (b), for example. This distortion of the pulse waveform becomes more significant as the duty cycle of the off-time (as it changes to the frequency of the alternating current) increases.If the distance between the power supply and the electrolytic cell is still long, the contribution of the inductance of the bus bar of the conductive wire will increase. In particular, the distortion of the waveform becomes severe, and magnetic interference tends to occur between conductive wires that are parallel to each other and the waveform becomes distorted.

これらパルス波形のゆがみ防止の対策としては、パルス
電源と電解槽との距離を近接させる方法、また4・目平
行して隣接する導電線間の間隔を調整する導電線同士が
平行と万らないような配線経路等の対策が採られている
が、この対策とて装置の3次元空間的設置スペースの敷
地、娼家条件その他の解決困難な制約のため実施が円滑
に進まず、パルス電源による電解の連続電解処理への導
入実用化は極めて困難というのが実状である。
Measures to prevent these pulse waveform distortions include methods of bringing the pulse power source and electrolytic cell closer together, and adjusting the distance between adjacent conductive wires to ensure that the conductive wires are parallel to each other. Measures such as wiring routes have been taken, but implementation has not proceeded smoothly due to difficult-to-resolve constraints such as the three-dimensional installation space of the device, brothel conditions, etc. The reality is that it is extremely difficult to introduce and put this into practical use in continuous electrolytic treatment.

本発明はパルス電解処理における上記の諸問題を一挙に
解決し、ゆがみのない正常なノ々ルス波形の電流で安定
してパルス電画を行うことを可能とする連続電解処理方
法の提供を目的とする。
The purpose of the present invention is to provide a continuous electrolytic processing method that solves the above-mentioned problems in pulsed electrolytic processing all at once, and makes it possible to stably perform pulsed electrophotography using a current with a normal Norls waveform without distortion. shall be.

本発明者らは、回路の導電線のインダクタンス等による
パルス波形のゆがみ発生を防止して、N6ルス電屏を行
い得る電解処理方法の開発を意図して種々実験研究を重
ねた。その結果、電解電源に直流を用い、走行する被処
理材の対極として被処理材進行方向に通電帯と非通電帯
とが交互に配された電極を用いることにより、走行被処
理材の各部が断続的に通電され、ゆがみのない所定のパ
ルス波形の電流で電解処理することができるという新し
い事実を知見した。
The present inventors have conducted various experimental studies with the intention of developing an electrolytic treatment method that can perform N6 lasing while preventing distortion of the pulse waveform due to the inductance of conductive wires in the circuit. As a result, by using direct current as the electrolytic power source and using an electrode in which energized bands and non-energized bands are arranged alternately in the direction of movement of the moving target material as a counter electrode to the moving target material, each part of the moving target material is A new fact has been discovered that electrolytic treatment can be performed using a current that is applied intermittently and has a predetermined pulse waveform without distortion.

すなわち、パルス電解は第3図の説明図に示すヨウに、
パルス電流により被処理材の進行方向に通電時間(Tよ
)と非通電時間(T2)とが交互に配され、通電時1f
fl (T□〕では通電時の電解電流密度(ip)で電
解を行い、非通電時間(T2)では電解が行われず、全
体としては電解電流密度の時間平均値(i)で電解を行
う方法である。そこで例えば第4図G)の断面図、(ロ
)の平面図に示す如く被処理材(4)K対する対極(5
)(5)を、被処理材の走行方向(a)に通電帯(6)
と非通電帯(7)とを交互に組合せだ構造となし、この
組合せを走行方向に必要個数(n)だけ配置する。この
対極(5)(5)に直流を通すと、走行被処理材の各部
は断続的に通電され、第3図に示したようなパルス波形
となる。そして第4図の通電帯(6)の長さ0、非通電
帯(7)の長さく9)と第3図に示した通電時間(T1
)と非通電時間(’r2)との関係をそれぞれ次式■■
を満足するように設定するとともに、 パルス電解の通電時間(T□〕→’ ” 嵐O”81L
×103ライン運度M (msec)・・・・・・・・■ パルx4ぴqc以1電時間(T2)→弗通砥悄Ω艮ぶり
×103ライン想■ Cm5ec)・・・・・・・・■ 電解電流密度(ip)を次式■を満足する領とする。
In other words, pulse electrolysis is as shown in the explanatory diagram of Fig. 3.
The pulse current alternates energizing time (T) and non-energizing time (T2) in the direction of movement of the material to be treated, and when energizing, 1f
In fl (T□), electrolysis is performed at the electrolytic current density (ip) during energization, and during non-energized time (T2), no electrolysis is performed, and as a whole, electrolysis is performed at the time average value (i) of the electrolytic current density. Therefore, for example, as shown in the cross-sectional view in Fig. 4G) and the plan view in Fig. 4(B), the counter electrode (5) is
)(5), and the energized band (6) in the traveling direction (a) of the material to be treated.
and non-energized bands (7) are alternately combined, and a required number (n) of these combinations are arranged in the running direction. When a direct current is passed through the counter electrodes (5) (5), each part of the traveling workpiece is intermittently energized, resulting in a pulse waveform as shown in FIG. The length of the energized band (6) in Figure 4 is 0, the length of the non-energized band (7) is 9), and the energization time (T1) shown in Figure 3.
) and the non-energizing time ('r2) are expressed by the following formula
At the same time, set pulse electrolysis energization time (T□〕→' ``Arashi O''81L)
×103 line operation M (msec)・・・・・・■Pal x4 pqc to 1 electric time (T2) → 弗通砥悄Ω艮buri×103 line thought■ Cm5ec)・・・・・・...■ Set the electrolytic current density (ip) to a range that satisfies the following formula (■).

そして第4図に示した対極(5) (5)に上記■式を
満足する直流を通電すると、走行する被処理材(4)の
各部は、第3図に示したパルス電源によるパルス電解と
同様に、電解電流密度(ip)ならびに通電時間(T1
〕と非通電時間(T2)とからなるパルス波形の電流で
電解処理されることとなる。しかも、電解電流に直流を
用いているから、パルス電源からの通電のように回路の
導電線等のインダクタンス等によるパルス波形のゆがみ
も発生せず、パルス電源での発生パルス波形と同じ波形
での電′!N、処理を行い得るという知見を得た。
When the counter electrode (5) (5) shown in Fig. 4 is energized with a direct current that satisfies the above formula (2), each part of the moving target material (4) undergoes pulse electrolysis by the pulsed power supply shown in Fig. 3. Similarly, electrolytic current density (ip) and current application time (T1
] and a non-energizing time (T2). Moreover, since direct current is used for the electrolytic current, there is no distortion of the pulse waveform due to the inductance of conductive wires in the circuit, unlike when electricity is supplied from a pulse power source, and the pulse waveform is the same as that generated by a pulse power source. Den'! N. We found that the treatment can be carried out.

本発明は上記知見を基にしてなされたものであって、そ
の要旨とするところは、連続電解処理において、走行す
る被処理材の対極として、被処理材進行方向に通電帯と
非通電帯とが交互に配された電極を用い、電解電源とし
て直流電流を用いることにより、走行及処理材の各部が
断続的に通電されるようにして電解処理することを特徴
とする連続電解処理方法にある。
The present invention has been made based on the above knowledge, and the gist thereof is that in continuous electrolytic treatment, an energized band and a non-energized band are arranged in the direction of movement of the moving target material as opposite electrodes of the traveling target material. A continuous electrolytic treatment method characterized in that the electrolytic treatment is performed by using electrodes arranged alternately and by using direct current as an electrolytic power source so that each part of the traveling and treated material is intermittently energized. .

次に本発明の電解処理方法を図面に基いて説明する。Next, the electrolytic treatment method of the present invention will be explained based on the drawings.

第5図は、横型メッキ槽において本発明方法を実MfA
l−だ連続電解処理ラインの一例を示す模式図である。
Figure 5 shows an actual MfA in which the method of the present invention is applied in a horizontal plating tank.
FIG. 1 is a schematic diagram showing an example of a continuous electrolytic treatment line.

鋼帯(8)は入側コンダクタ−ロールにより陰極に印加
されてメッキ浴αり中に導入され、浴中のジンクロール
αυ、Uつに案内されてメッキ槽内を進行し、出側コン
ダクタ−ロール(至)から出て行く。
The steel strip (8) is introduced into the plating bath α by applying a voltage to the cathode by the inlet conductor roll, is guided by the zinc rolls αυ and U in the bath, advances through the plating bath, and is passed through the outlet conductor roll. Go out of the roll.

その際鋼帯(8)は、ジンクロールαηαυ間で銅帯(
8)の上下に配された通電帯と非通電帯からなる電極(
5)(5)(陽極)K直流を通して発生したパルス波形
の電流で電解される。
At that time, the steel strip (8) is inserted between the zinc rolls αηαυ and the copper strip (
8) An electrode (
5) (5) (Anode) Electrolyzed by pulse waveform current generated through K direct current.

上記電極(5)(5)の構造ならびに配置についてはさ
きに第4図に基いて述べた通りであり、これらの電極<
5)(5)に前述の如くに電解電流密度(1p)の直流
を通電すると、電流密度(ip)ならびに通電時間(T
ρと非通電時間〔T2〕とからなるパルス波形の電流で
電解処理が行われる。
The structure and arrangement of the above electrodes (5) and (5) are as described earlier based on FIG.
5) When direct current is applied to (5) at an electrolytic current density (1p) as described above, the current density (ip) and the current application time (T
Electrolytic treatment is performed with a current having a pulse waveform consisting of ρ and a non-current-conducting time [T2].

電極の構造としては上記の他に、例えば第6図の断面図
に示す如く、電極(5)の被処理材(4)に対面する側
の表面に長さ方向に並列する溝α■を穿設し、抜溝α3
)に絶縁物α→を嵌め込んで、通電帯と非通電帯とを交
互に設けた構造としてもよい。捷た電極における通電帯
(6)と非通電帯(7)の配置の方法たついては、第4
図←)に示した他に、例えば第7図(イ)に示すように
非通電帯(7)を電極の巾方向に山型に所定間隔に並列
させるかまだは例えば第7図(ロ)〕に示すように非通
電帯(7)を電極の巾方向に蛇行させて所定間隔に並列
させる等して、通電帯(6)と非通電帯(7)を交互に
配置させても差し支えない。
In addition to the structure described above, for example, as shown in the cross-sectional view of FIG. Set and remove groove α3
) may be fitted with an insulator α→ to provide a structure in which energized bands and non-energized bands are provided alternately. The method of arranging the energized band (6) and non-energized band (7) in the cut electrode is described in Section 4.
In addition to what is shown in Figure 7 (A), it is also possible to arrange the non-conducting bands (7) in a chevron shape in the width direction of the electrode at predetermined intervals, for example as shown in Figure 7 (B). It is also possible to alternately arrange the energized bands (6) and non-energized bands (7) by meandering the non-energized bands (7) in the width direction of the electrode and arranging them in parallel at predetermined intervals, as shown in ]. .

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

第1表に示す条件で、銅帯の連続Zn4気メッキを行っ
た。
Continuous Zn4 gas plating of the copper strip was performed under the conditions shown in Table 1.

第    1    表 この際本発明法に基いて、電解電源に直流を用い、被メ
ッキ材の対極として第4図に示す電極を用いて、電解電
流密度(ipχ電極の通電帯の長さ0、非通電帯の長さ
くX)を以下に示す条件に調整して電気メッキを行い本
発明例としだ。
Table 1 At this time, based on the method of the present invention, using direct current as the electrolytic power source and using the electrode shown in FIG. 4 as the counter electrode of the material to be plated, the electrolytic current density (ip Electroplating was carried out by adjusting the length of the energizing band (X) to the conditions shown below to obtain an example of the present invention.

また比較のため、従来法として電源にパルス電源を用い
、電解電流密度(ip)、通電時間(T1)、非通電時
間(T2)の値を次に示す条件例調整して電気メッキを
行い比較例とした。
For comparison, electroplating was performed using a conventional method using a pulse power source and adjusting the values of electrolytic current density (ip), energizing time (T1), and non-energizing time (T2) as shown below. As an example.

まず、比較例においては第3図に示す波形のパルス電流
を用い、同図の(ip)値を80 k/ dnI″に設
定するとともに、(T□)と(T2)の値を第2表に示
す条件とした。
First, in the comparative example, a pulse current with the waveform shown in Figure 3 was used, the (ip) value in the figure was set to 80 k/dnI'', and the values of (T□) and (T2) were set as shown in Table 2. The conditions were as shown below.

%2表 まだ本発明例においては、前述の式■、■に基き、L=
5−OX3XlO”=150m、β−=20X3X10
’ 3=6Cmmとした電極を用い、通電帯Ωの通電時
間を比較例と同じ(T□)、非通電帯の通過時間(非通
電時間)を同じ<(T2)となるような条件に設定し、
まだ直流の電流値を、前述の式■から電解電流密度(i
p)が比較列と同じ80 A/drn’となるよう設定
した。そして上記本発明例と比較例の電解処理時のパル
ス波形の調査を行った。結果を第8図0)(ロ)に示す
%2 table In the present invention example, based on the above formulas ■ and ■, L=
5-OX3XlO"=150m, β-=20X3X10
' Using electrodes with 3 = 6 Cmm, set the conditions such that the energizing time of the energized band Ω is the same as the comparative example (T□), and the passing time of the non-energized band (non-energized time) is the same < (T2). death,
The current value of the direct current is still determined by the electrolytic current density (i
p) was set to be 80 A/drn', the same as the comparison column. Then, the pulse waveforms during the electrolytic treatment of the above-mentioned examples of the present invention and comparative examples were investigated. The results are shown in Figure 8 0) (b).

第8図(()Hパルス電源での発生パルス波形を示し、
第8図0)は電解処理時のパルス波形を示し、実検で本
発明例の波形を、破線で比較例の波形を示した。
Figure 8 (() shows the pulse waveform generated by the H pulse power supply,
FIG. 8 0) shows the pulse waveform during electrolytic treatment, and the waveform of the example of the present invention is shown in the actual test, and the waveform of the comparative example is shown by the broken line.

第8図(0)に見る通り、比較例てお遁では電解槽ター
ミナルでの実際の電解処理時のパルス波形(は、第8図
(イ)に示す電源での発生パルス波形にくらべて著しく
ゆがめられた波形であった。これに対し、本発明例にお
いては連続電解処理時に移動する波メッキ材のある同一
点が移動するにつれて受けるメッキ電流の時間的変化は
、第8図0)に示すパルス波形と略々同一のゆがみの全
く無い波形であっ4ν また上記本発明例と比較例とにお−で得られたメッキ皮
膜の品質について調査したところ・本発明例のメッキ皮
膜は、比較例にくらべて皮膜の成形加工時のパウダリン
グ(剥離性)性の向上かえられた。
As shown in Figure 8 (0), the pulse waveform during the actual electrolytic treatment at the electrolytic cell terminal in the comparative example Oton is significantly different from the pulse waveform generated at the power supply shown in Figure 8 (A). On the other hand, in the example of the present invention, the temporal change in the plating current received as the same point of the wave plating material moves during continuous electrolytic treatment is shown in Figure 8 (0). The waveform was almost the same as the pulse waveform and had no distortion at all. Powdering (releasability) during the film forming process has been improved compared to the former.

以上詳述したように、本発明の連続電解処理方法ニヨれ
ば、パルス電源を用いないで常用の直流電源を用い、被
処理材の対極の構造を若干変えるという比較的簡単な手
段で、所定の正常なパルス波形による坂98!埋材のパ
ルス電解処理がり能となるものであるから、本発明は特
に鋼板の犬型運絖高速メツキラインにおけるパルスメッ
キの導入に対して大いに寄与するものである。
As detailed above, the continuous electrolytic treatment method of the present invention uses a regular DC power source without using a pulsed power source, and uses a relatively simple method of slightly changing the structure of the opposite electrode of the material to be treated. Slope 98 due to normal pulse waveform! The present invention greatly contributes to the introduction of pulse plating, especially in dog-shaped high-speed plating lines for steel plates, since it enables the pulse electrolytic treatment of filling materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパルス電源より電解槽に至るまでの等価電気回
路の一例を示しだ配線図、第2図(4)(0)はパルス
波形を示した図、第3図はパルス電7解における通電時
間(Tよ)と非通電時間(T2)と電解電流密度との関
係を示した図、第4図0)(ロ)は本発明方法における
対極の構造の一例を示した図、第5図は本発明方法を実
施した連続電解処理ラインの一例を示した模式図、第6
図は本発明方法の電極構造の他の一例を示した図、第7
図(イ)(ロ)は通電帯と非通電帯の配置方法の一例を
示した図、第8図G)はパルス電源での発生パルス波形
を示した図、第8図(ロ)は電解処理時のパルス波形を
示した図である。 1:パルス電源端子、2:導電線、3:電解槽、4:被
処理材、5:対極、6:通電帯、7:非通電帯、8;鋼
帯、9:入側コンダクタ−ロール、10:メッキ浴、1
1ニシンクロール、12:出側コンダクタ−ロール、1
3:溝、14:絶縁物。 第  1  @ 3 第 2 図 第  3 図 −@ M 第4図 第  5 図 第6図 電 第  7 図 第  8 図 −88澗(msec) □時廖(msec) 自発手続補正書 昭和58年11月25日 特許庁長官 若杉和夫  殿 1 事件の表示 昭和58年特許願第33381号 2 発明の名称 連続電解処理方法 3 補正をする者 事件との関係 特許出願人 住 所  大阪市東区北浜5丁目15番地名称 (21
1)住友金属工業株式会社代表者 熊谷典文 4代理人 6 補正の対象 明細書の「発明の詳細な説明」の欄および図面 7 補正の内容 (1)明細書の第3頁第17行に「(C)、(C′)は
電解反応」とあるをr(C)は電解反応」に補正する。 (2)図面第1図を別紙のとおQ補正する。 以   上
Figure 1 shows an example of the equivalent electric circuit from the pulse power source to the electrolytic cell. Figure 4 shows the relationship between the energizing time (T), the non-energizing time (T2), and the electrolytic current density. The figure is a schematic diagram showing an example of a continuous electrolytic treatment line implementing the method of the present invention.
Figure 7 shows another example of the electrode structure of the method of the present invention.
Figures (A) and (B) are diagrams showing an example of how to arrange energized bands and non-energized bands, Figure 8 (G) is a diagram showing the pulse waveform generated by a pulse power source, and Figure 8 (B) is a diagram showing an example of how to arrange the energized band and non-energized band. It is a figure showing the pulse waveform at the time of processing. 1: Pulse power supply terminal, 2: Conductive wire, 3: Electrolytic bath, 4: Processed material, 5: Counter electrode, 6: Current-carrying band, 7: Non-current-carrying band, 8: Steel strip, 9: Inlet conductor roll, 10: Plating bath, 1
1 herring roll, 12: exit conductor roll, 1
3: Groove, 14: Insulator. Figure 1 @ 3 Figure 2 Figure 3 - @M Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure -88 (msec) □Time Liao (msec) Voluntary procedure amendment November 1988 25th Japan Patent Office Commissioner Kazuo Wakasugi 1 Display of the case Patent Application No. 33381 of 1981 2 Name of the invention Continuous electrolytic treatment method 3 Person making the amendment Relationship to the case Patent applicant Address 5-15 Kitahama, Higashi-ku, Osaka Name (21
1) Sumitomo Metal Industries, Ltd. Representative Norifumi Kumagai 4 Agent 6 "Detailed Description of the Invention" column of the specification subject to amendment and drawing 7 Contents of the amendment (1) In line 17 of page 3 of the specification The phrase "(C) and (C') are electrolytic reactions" is corrected to "r(C) is an electrolytic reaction." (2) Revise Figure 1 of the drawing as shown in the attached sheet. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)連続電解処理において、走行する7%理材の対極
として被処理材進行方向に通電帯と非通電帯とが交互に
配された電極を用い、電解電源として直流電流を用いる
ことによシ、走行被処理材の各部が断続的に通電される
ようにして、電解処理することを特徴とする連続電解処
理方法。
(1) In continuous electrolytic treatment, an electrode in which energized bands and non-energized bands are arranged alternately in the direction of movement of the material to be treated is used as a counter electrode to the moving 7% metal material, and a direct current is used as the electrolytic power source. B. A continuous electrolytic treatment method, characterized in that the electrolytic treatment is carried out by intermittently energizing each part of the traveling material to be treated.
(2)断続通電比率が所定の断続比率となるように、通
電帯と非通電帯とを交互に配置することを特徴とする特
許請求範囲の第1項記載の連続電解処理方法。
(2) The continuous electrolytic treatment method according to claim 1, characterized in that energized bands and non-energized bands are arranged alternately so that the intermittent energization ratio becomes a predetermined intermittent energization ratio.
JP3333183A 1983-02-28 1983-02-28 Continuous electrolysis method Pending JPS59159996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3333183A JPS59159996A (en) 1983-02-28 1983-02-28 Continuous electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3333183A JPS59159996A (en) 1983-02-28 1983-02-28 Continuous electrolysis method

Publications (1)

Publication Number Publication Date
JPS59159996A true JPS59159996A (en) 1984-09-10

Family

ID=12383572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3333183A Pending JPS59159996A (en) 1983-02-28 1983-02-28 Continuous electrolysis method

Country Status (1)

Country Link
JP (1) JPS59159996A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021023778A1 (en) * 2019-08-05 2021-02-11 Sms Group Gmbh Method and system for electroytically coating a steel strip by means of pulse technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021023778A1 (en) * 2019-08-05 2021-02-11 Sms Group Gmbh Method and system for electroytically coating a steel strip by means of pulse technology
CN114207190A (en) * 2019-08-05 2022-03-18 Sms集团有限公司 Method and device for electrolytically coating electrically conductive strips and/or fabrics by means of impulse technology
CN114207191A (en) * 2019-08-05 2022-03-18 Sms集团有限公司 Method and device for electrolytically coating steel strip by means of pulse technique

Similar Documents

Publication Publication Date Title
US20170335485A1 (en) Method and apparatus for electrolytically depositing a deposition metal on a workpiece
EP0209168B1 (en) Process and apparatus for cleaning by electrochemical pickling with alternating current of specified frequency
US4390407A (en) Electrolytic processing device for belt-shaped metal plates
EP3460102A1 (en) Method of producing an electrocatalyst
US2541275A (en) Apparatus for the electrolytic oxidation of metallic elements
JP4521146B2 (en) Method and apparatus for the electrolysis of electrically conductive structures electrically isolated from each other on the surface of an electrically insulating foil material and the use of said method
KR100729973B1 (en) Method and device for the electrolytic treatment of electrically conducting surfaces of mutually isolated sheet and foil material pieces
JPS59159996A (en) Continuous electrolysis method
JPS59173293A (en) Electrochemical treating method and apparatus of elongated metal product
KR960702541A (en) A method and a device for pickling of stainless steel
US999749A (en) Method of forming coils for electric apparatus.
US3880721A (en) Method for reducing (pseudo-) ohmic overpotential at gas-evolving electrodes
TW200835412A (en) Electroplating pretreatment method of printed circuit board
JP4157441B2 (en) Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet
EP0462371A2 (en) Electrolytic treatment apparatus and method for continuously electrolyzing aluminium products
JPS623240B2 (en)
JPH0313320B2 (en)
EP0362924B1 (en) Apparatus for the continuous electrolytic treatment of wire-shaped objects
JPH0673595A (en) Continuous electroplating device
US5478457A (en) Apparatus for the continuous electrolytic treatment of wire-shaped objects
JP2632235B2 (en) Apparatus and method for continuous electrolytic treatment of aluminum product
JPS63293200A (en) Electroplating method
GB2142654A (en) Pigmentation of aluminium mold material
RU1798393C (en) Method for electrochemical cleaning of long-length steal products
KR100349153B1 (en) An electic plating apparatus, and a method for eliminating band mark on strip using it