JPS59159924A - Combustion heating furnace and heating method without causing oxidation utilizing said furnace - Google Patents

Combustion heating furnace and heating method without causing oxidation utilizing said furnace

Info

Publication number
JPS59159924A
JPS59159924A JP3288083A JP3288083A JPS59159924A JP S59159924 A JPS59159924 A JP S59159924A JP 3288083 A JP3288083 A JP 3288083A JP 3288083 A JP3288083 A JP 3288083A JP S59159924 A JPS59159924 A JP S59159924A
Authority
JP
Japan
Prior art keywords
heating
space
combustion
furnace
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3288083A
Other languages
Japanese (ja)
Inventor
Yutaka Suzuki
豊 鈴木
Hiroyuki Takashima
高島 啓行
Katsuhiko Kaburagi
鏑木 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3288083A priority Critical patent/JPS59159924A/en
Publication of JPS59159924A publication Critical patent/JPS59159924A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To permit continuous heating without causing oxidation with low-grade fuel by segmenting and separating the space in a furnace to a combustion space for forming a flame and a heating space for heating an object to be heated by using a solid surface having many gas passages. CONSTITUTION:Fuel and air are supplied separately through inlet connecting pipe parts 1, 2 to a burner 3 and are mixed in a mixing pipe part 4. The inside of the furnace is partitioned to a combustion space 7 and a heating space 6 by means of a ceramic honeycomb 5 constituted of a solid surface having many gas passages. The gaseous mixture is burned in the space 7. The heat generated by the combustion in the space 7 heats the honeycomb 5 itself to a high temp. thereby accelerating the combustibility of the fuel. An object to be heated is placed in the space 6 and since the space 6 is segmented and separated from the space 7, the combustion condition in the space 7 does not fluctuate even if there is minor fluctuation in the temp. and stable continuous combustion with the low- grade fuel is made possible.

Description

【発明の詳細な説明】 本発明は、燃料の燃焼熱を利用して、被加熱物を加熱す
る加熱炉、特に低質の燃料の有効利用が図られ伝熱効率
が高く、経済的に有利となる燃焼加熱炉およびそれを利
用した無酸化加熱法の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a heating furnace that uses the combustion heat of fuel to heat an object to be heated, and in particular makes effective use of low-quality fuel, has high heat transfer efficiency, and is economically advantageous. This invention relates to improvements in combustion heating furnaces and non-oxidative heating methods using them.

燃焼加熱炉の形式としては、直火焚方式と間接加熱方式
とがあり、従来、被加熱物を加熱する直火焚加熱炉にお
いては、火炎を形成させる燃焼空間に被加熱物が載置さ
れることが一般的である。これは、火炎からの直接的伝
熱の効果により、伝熱効率を高めようとするためである
。このとき、燃料として理論火炎温度の高いコークス炉
ガス、LPG、重油などの良質な燃料を用いると、良好
な燃焼火炎が得られる。しかし高炉の排ガスで代表され
るような、理論火炎温度が2000℃以下と低い、低質
な燃料では、火炎と被加熱物が共存するため、火炎から
被加熱物への伝熱の結果、火炎温度が低下し、燃焼を継
続させることはむすかしい。このため、上述のような良
質の燃料と混合して用いるか、あるいは良質な燃料を燃
焼させる保安トーチなどを常時別途に使用せざるをえな
かった。なお、被加熱物が炉壁を構成する水管等である
ボイラーとしての燃焼加熱炉の場合、低質ガスの利用に
関して同様な問題がある。
There are two types of combustion heating furnaces: a direct-fired method and an indirect heating method. Conventionally, in a direct-fired heating furnace that heats the object to be heated, the object to be heated is placed in a combustion space where a flame is formed. It is common that This is to improve heat transfer efficiency through the effect of direct heat transfer from the flame. At this time, if a high quality fuel such as coke oven gas, LPG, or heavy oil having a high theoretical flame temperature is used as the fuel, a good combustion flame can be obtained. However, with low-quality fuels such as blast furnace exhaust gas, which has a low theoretical flame temperature of 2000°C or less, the flame and the object to be heated coexist, and as a result of heat transfer from the flame to the object, the flame temperature increases. decreases, making it difficult to continue combustion. For this reason, it has been necessary to mix it with the above-mentioned high-quality fuel, or to always use a separate safety torch that burns high-quality fuel. In addition, in the case of a combustion heating furnace as a boiler in which the object to be heated is a water pipe or the like constituting the furnace wall, there is a similar problem regarding the use of low-quality gas.

一方、加熱炉は用途によっては無酸化状態での加熱(つ
まり無酸化加熱)が要求されることがある。
On the other hand, heating furnaces may be required to perform heating in a non-oxidizing state (that is, non-oxidizing heating) depending on the application.

従来、直火焚加熱炉で被加熱材、例えば鋼材の直接無酸
化加熱を行う場合、燃料と空気をあらかじめ予混合しバ
ーナへ供給する方法(予混合方式)と燃料と空気を個別
にバーナに供給してバーナ先端部で混合させ燃焼する方
法(バーナ先端混合方式)があり、燃焼はいずれも当量
空気比以下で行い非酸化性燃焼ガスを生成させ、得られ
た高温ガスで無酸化加熱を行っていた。しかしながら、
従来の直接無酸化加熱の欠点は、予混合方式では燃料供
給側へ逆火の危険性があり、一方、バーナ先端混合式で
は空気比を大幅に当量以下にするとススを発生するため
に当量比をあまり小さく出来ず、従って燃焼ガスの無酸
化性は、稀薄となり、無酸化加熱の有効性の程度を減じ
ている。しかも、これらの従来法はいずれも鋼材への伝
熱は燃焼火炎から直接にそして一部は炉壁を介して間接
に行われるが、火炎から直接伝熱される量は炎温度が低
いため火炎の輻射能が小さく、効率が悪い。なお、従来
、無酸化加熱の方法としては、ラジアントチューブ等の
よる間接加熱方法が広(用いられているが、かかる方式
の場合にも、ラジアントチューブの耐用温度以上の加熱
ができないこと(耐熱鋼製ラジアントチューブを用いる
場合、950°Cが限界)、またラジアントチューブの
排ガス温度はほぼ炉内温度と同じ温度であるために熱損
失が大きい等の問題がみられる。
Conventionally, when performing direct non-oxidation heating of materials to be heated, such as steel, in a direct-fired heating furnace, there are two methods: premixing fuel and air in advance and supplying it to the burner (premixing method), and feeding the fuel and air separately to the burner. There is a method in which the gas is supplied, mixed at the tip of the burner, and then combusted (burner tip mixing method), in which combustion is performed at a ratio below the equivalent air ratio to generate non-oxidizing combustion gas, and the resulting high-temperature gas is used to perform non-oxidizing heating. I was going. however,
The disadvantages of conventional direct non-oxidation heating are that with the premixing method, there is a risk of backfire on the fuel supply side, while with the burner tip mixing method, if the air ratio is significantly lower than the equivalent, soot is generated, so the equivalence ratio is lowered. cannot be made too small, and therefore the non-oxidizing nature of the combustion gas is diluted, reducing the degree of effectiveness of non-oxidizing heating. Furthermore, in all of these conventional methods, heat is transferred to the steel directly from the combustion flame and partially indirectly through the furnace wall, but the amount of heat transferred directly from the flame is low due to the low flame temperature. Radioactivity is low and efficiency is low. Conventionally, as a non-oxidation heating method, indirect heating methods using radiant tubes, etc. have been widely used. When using manufactured radiant tubes, the limit is 950°C), and since the exhaust gas temperature of the radiant tubes is approximately the same as the temperature inside the furnace, there are problems such as large heat loss.

かくして、本発明は上述のような従来技術のいくつかの
問題点を一挙に解決し低質の燃料の有効利用を図るとと
もに、高炉ガス等の低質燃料でもって直接無酸化加熱を
可能ならしめる燃焼加熱炉更にはそれを利用したすくれ
た直接無酸化加熱法を提供することである。
Thus, the present invention solves several of the problems of the prior art as described above at once, aims to effectively utilize low-quality fuel, and provides combustion heating that enables direct non-oxidation heating with low-quality fuel such as blast furnace gas. It is an object of the present invention to provide a furnace and a direct non-oxidation heating method using the furnace.

ここに本発明の要旨とするところは; (1)燃料の燃焼により直接に被加熱物に伝熱を行なわ
しめる燃焼加熱炉において、多数のガス通路を有する固
体面により炉内空間を、火炎を形成させる燃焼空間と被
加熱物を加熱する加熱空間とに区画分離したことを特徴
とする燃焼加熱炉; (2)燃料の燃焼により直接にかつ無酸化状態で被加熱
物に伝熱を行なわしめる加熱法であって、多数のガス通
路を有する固体面により炉内空間を火炎を形成させる燃
焼空間と、被加熱物を加熱する加熱空間とに区画分離し
、前記燃焼空間において、燃料を当量空気比以下で燃焼
させて前記固体面を高温度の輻射熱源とすることを特徴
とする直接無酸化加熱法;および (3)燃料の燃焼により連続的に直接にかつ無酸化状態
で被加熱物に伝熱を行なわしめる加熱法であって、多数
のガス通路を有する固体面により区画分離された1以上
の燃焼空間および加熱空間を備えた無酸化加熱帯域と、
該加熱帯域の下流側に設けられた空気吹込み帯域とを設
け、前記燃焼空間において燃料を当量空気比以下で燃焼
させて前記固体面を高温度の輻射熱源として前記加熱空
間において被加熱物を加熱するとともに、得られた無酸
化性高温ガスを前記空気吹込み帯域において空気吹込み
により完全燃焼することを特徴とする、連続直接無酸化
加熱法である。
The gist of the present invention is as follows: (1) In a combustion heating furnace that directly transfers heat to an object to be heated by burning fuel, a solid surface having a large number of gas passages is used to cover the interior space of the furnace with flames. A combustion heating furnace characterized by being separated into a combustion space to be formed and a heating space to heat an object to be heated; (2) Heat transfer to the object to be heated directly and in a non-oxidized state by combustion of fuel; A heating method in which the interior space of the furnace is divided into a combustion space where flames are formed and a heating space where the object to be heated is heated using a solid surface having a large number of gas passages. A direct non-oxidative heating method characterized by burning the solid surface at a temperature below a specific temperature and using the solid surface as a high-temperature radiant heat source; and (3) directly and directly applying to the object to be heated in a non-oxidizing state by burning fuel; A heating method for effecting heat transfer, comprising an oxidation-free heating zone comprising one or more combustion spaces and heating spaces separated by a solid surface having a large number of gas passages;
an air blowing zone provided on the downstream side of the heating zone, the fuel is combusted in the combustion space at an equivalent air ratio or less, and the object to be heated is heated in the heating space using the solid surface as a high temperature radiant heat source. This is a continuous direct non-oxidative heating method characterized by heating and completely combusting the obtained non-oxidizing high temperature gas by blowing air in the air blowing zone.

このように、本発明によれば、火炎は低温の被加熱物に
直接接触する割合が小さくなるため、被加熱物への直接
的な伝熱量が減少する。したがって、燃焼時の火炎温度
が上昇し、高炉ガスのような低質な燃料を燃焼させる場
合にも、火炎温度が十分高いため燃焼は安定に継続され
る。本発明の場合、被加熱物への総合的伝熱量は、被加
熱物が火炎に直接に接触する割合が減少するので、火炎
からの直接的伝熱量は減少するが、高温の燃焼ガスが前
記固体面、例えばセラミックス製の有孔仕切板を通過す
ることによって、該仕切板が十分に高温となり、かかる
仕切板からの固体放射伝熱量が大きく寄与して、そのよ
うな仕切板がない場合に比べて、一般に大きくなる。
As described above, according to the present invention, the proportion of the flame that directly contacts the low-temperature object to be heated is reduced, so that the amount of heat directly transferred to the object to be heated is reduced. Therefore, the flame temperature during combustion increases, and even when burning low-quality fuel such as blast furnace gas, the flame temperature is sufficiently high and combustion continues stably. In the case of the present invention, the overall amount of heat transferred to the heated object is reduced because the proportion of the heated object in direct contact with the flame is reduced, so the amount of direct heat transferred from the flame is reduced. By passing through a solid surface, for example a perforated ceramic partition plate, the partition plate becomes sufficiently hot, and the solid radiation heat transfer from such a partition plate contributes significantly, so that in the absence of such a partition plate, the temperature of the partition plate becomes sufficiently high. It is generally larger in comparison.

本発明で用いる仕切板としては、上述のようにセラミッ
クスなどの耐熱性材料からなり、多孔板状、ハニカム状
、海綿状、多孔質状などの形状で、多数のガス流路を有
するもので、かつ被加熱物と火炎とが直接に接触する割
合が、できるだけ少ないものが望ましい。また、本発明
で良質の燃料を用いた場合は、仕切板はさらに高温とな
り、被加熱物への総合伝熱効率は向上する。
As mentioned above, the partition plate used in the present invention is made of a heat-resistant material such as ceramics, has a shape such as a perforated plate, a honeycomb shape, a cavernous shape, or a porous shape, and has a large number of gas flow paths. In addition, it is desirable that the proportion of direct contact between the object to be heated and the flame be as small as possible. Furthermore, when high-quality fuel is used in the present invention, the partition plate becomes even hotter, and the overall heat transfer efficiency to the object to be heated is improved.

また、無酸化加熱を行なう場合、本発明によれば、(i
)燃料と空気を個別にバーナへ供給しバーナ内部に設け
た燃焼空間とその出口にもうけた有孔仕切板(好ましく
はセラミックスハニカム)の内部で当量空気比以下で燃
焼を行わせ、かくして得られた燃焼熱をセラミックスハ
ニカムに伝熱させてこれを高温の輻射熱源とするのであ
って、このいわば輻射バーナは、燃料と空気をバーナ先
端で混合させるために前述の予混合方式の如き燃料の供
給側への逆火は皆無である。
Further, according to the present invention, when non-oxidizing heating is performed, (i
) Fuel and air are separately supplied to the burner, and combustion is performed at an equivalent air ratio or less within the combustion space provided inside the burner and a perforated partition plate (preferably a ceramic honeycomb) provided at the outlet of the combustion space. The combustion heat transferred to the ceramic honeycomb is used as a high-temperature radiant heat source.This so-called radiant burner uses a fuel supply method such as the premixing method described above to mix fuel and air at the tip of the burner. There was no backfire to the side.

(ii)上記輻射バーナの輻射熱源になるセラミックス
ハニカムは耐用温度が2000℃以上あり、鋼材加熱を
行う上で温度制約がなく、したがって鋼材の溶融も可能
となるのである。
(ii) The ceramic honeycomb that serves as the radiant heat source of the radiant burner has a withstand temperature of 2000° C. or more, and there are no temperature restrictions when heating steel materials, so it is possible to melt steel materials.

(iii )バーナ先端とセラミックスハニカムとの間
に区画された燃焼空間の内部で燃料が燃焼するために、
高負荷燃焼すなわち高温燃焼が可能となり、この部分の
温度は十分に1000℃を超える。また燃焼空間が狭い
ために燃料と空気は強度の乱流となりその混合は促進さ
れ低い空気比でもススの発生なしに低質燃料の燃焼を行
うことができる。
(iii) Because the fuel burns inside the combustion space defined between the burner tip and the ceramic honeycomb,
High-load combustion, that is, high-temperature combustion, becomes possible, and the temperature of this portion sufficiently exceeds 1000°C. Furthermore, since the combustion space is narrow, the fuel and air create a strong turbulent flow, which promotes their mixing, making it possible to burn low-quality fuel without generating soot even at a low air ratio.

(iv)eA焼熱は一旦セラミソクスハニカムに伝熱し
これを高温度の固体輻射熱源にし、次いてこれから輻射
伝熱するた、めに、火炎から直接伝熱される場合にくら
べてその伝熱量は数倍大きく鋼材への伝熱効率は従来よ
りも向上する。
(iv) In eA firing, heat is first transferred to the ceramic honeycomb, which becomes a high-temperature solid radiant heat source, and then radiant heat is transferred from there. Therefore, the amount of heat transferred is smaller than that when heat is transferred directly from a flame. Heat transfer efficiency to steel materials is improved several times more than before.

さらに、上述のような輻射バーナを備えた無酸化加熱装
置によって鋼材の連続無酸化加熱を行う場合、鋼材の搬
送方向と逆の方向に、すなわち下流の方向に装置内の温
度勾配を形成させる。即ち鋼材の抽出側に上記輻射バー
ナを複数個配置して無酸化加熱帯域を形成し、無酸化加
熱後これらのバーナからの燃焼ガスを下流の鋼材挿入側
へ流出させる。このとき加熱帯域から排出される燃焼ガ
スは鋼材と熱交換し、最終的に炉外に排出される燃焼ガ
スの温度はラジアントチューブ等の場合にくらべ十分に
低くなるため、系全体の熱損失が著しく少なくなる。好
ましくは、上記加熱帯域の下流に空気吹込み帯域を設は
燃焼ガスの完全燃焼を行う。かかる構成をとる場合、低
質の燃料を使っても連続的に無酸化加熱を行うことがで
きる。
Furthermore, when continuous non-oxidation heating of steel materials is performed using a non-oxidation heating device equipped with a radiant burner as described above, a temperature gradient is formed within the device in a direction opposite to the conveyance direction of the steel materials, that is, in a downstream direction. That is, a plurality of the above-mentioned radiant burners are arranged on the steel material extraction side to form a non-oxidation heating zone, and after non-oxidation heating, the combustion gas from these burners flows downstream to the steel material insertion side. At this time, the combustion gas discharged from the heating zone exchanges heat with the steel material, and the temperature of the combustion gas finally discharged outside the furnace is sufficiently lower than in the case of radiant tubes, etc., so the heat loss of the entire system is reduced. significantly less. Preferably, an air blowing zone is provided downstream of the heating zone to achieve complete combustion of the combustion gases. When such a configuration is adopted, non-oxidative heating can be performed continuously even if low-quality fuel is used.

次に、添付図面に関連させて本発明をさらに説明する。The invention will now be further described in connection with the accompanying drawings.

第1図は本発明において使用する燃焼バーナの略式断面
図であり、燃料と空気はそれぞれ燃料人口接管部1およ
び空気人口接管部2を経て別々にバーナ3に供給されて
いる。このようにして供給された燃料と空気は、上記両
接管部の先端に配置された混合管部4内部で、混合され
、次いて多数のガス通路を有する固体面を構成するセラ
ミックスハニカム5により後述する加熱空間6から区画
分離される燃焼空間7の内部で燃焼される。この燃焼空
間7での燃焼発熱は、セラミックスハニカム5自体を高
温度に加熱して輻射熱源とするとともにこの燃焼空間7
を高温に保持して燃料の燃焼性を促進する働きも行う。
FIG. 1 is a schematic cross-sectional view of a combustion burner used in the present invention, in which fuel and air are separately supplied to a burner 3 via a fuel interface 1 and an air interface 2, respectively. The fuel and air supplied in this way are mixed inside the mixing pipe section 4 disposed at the tips of both of the above-mentioned contacting pipe sections, and then a ceramic honeycomb 5 constituting a solid surface having a large number of gas passages will be described later. The combustion occurs inside a combustion space 7 that is separated from the heating space 6 in which the fuel is heated. The heat generated by combustion in this combustion space 7 heats the ceramic honeycomb 5 itself to a high temperature and uses it as a radiant heat source.
It also works to maintain the fuel at a high temperature and promote the combustibility of the fuel.

セラミックスハニカム5の下流側には被加熱物が載置さ
れている加熱空間6が設けられている。加熱空間6は前
記燃焼空間7と高温のセラミックスハニカム5によって
区画分離されているために、多少の温度変動、即ち温度
低下があってもそれによって燃焼空間7の燃焼条件を変
動させることはない。すなわち常に安定した連続燃焼が
低質燃料についても可能となるのである。
A heating space 6 in which an object to be heated is placed is provided downstream of the ceramic honeycomb 5. Since the heating space 6 is separated from the combustion space 7 by the high-temperature ceramic honeycomb 5, even if there is some temperature fluctuation, that is, a temperature drop, the combustion conditions in the combustion space 7 will not change. In other words, stable continuous combustion is possible even with low-quality fuel.

第2図は本発明に係る加熱炉20の略式断面図であり、
これは、パッケージボイラー型の水冷モデル炉である。
FIG. 2 is a schematic sectional view of a heating furnace 20 according to the present invention,
This is a package boiler type water-cooled model furnace.

図示例の場合第1図の変更例としてのバーナ21を組込
んでいる。
In the illustrated example, a burner 21 as a modification of the one shown in FIG. 1 is incorporated.

加熱炉20は図からも明らかなように、数多くのガス通
路を設けた固体面、つまりセラミノクスハらカム22に
より燃焼空間23と加熱空間24とに仕切られている。
As is clear from the figure, the heating furnace 20 is partitioned into a combustion space 23 and a heating space 24 by a solid surface provided with numerous gas passages, that is, a ceramic cam 22.

なお、図示例にあっては炉壁25ば冷却水を矢印方向に
流すことによって冷却されている。導管26.27から
燃料および空気をそれぞれバーナ先端の混合部28に供
給し、次いてそれらを燃焼空間23内で燃焼する。
In the illustrated example, the furnace wall 25 is cooled by flowing cooling water in the direction of the arrow. Conduits 26 , 27 feed fuel and air, respectively, to a mixing section 28 at the burner tip, where they are then combusted in the combustion space 23 .

第3図は、連続無酸化加熱を行なう連続加熱炉30の略
式断面図であり、この連続加熱炉3oは無酸化加熱帯域
31と完全燃焼を行う空気吹込み帯域32とから成り、
無酸化加熱帯域31には第1図に示す輻射バーナと同様
のバーナ33が5個対になって設けられている。無酸化
加熱帯域31の下流側に配置された空気吹込み帯域32
には空気吹込口34が複数個設けられており、加熱帯域
31で被加熱物を無酸化加熱した無酸化性高温ガス、す
なわち空気当量比の小さい燃焼ガスにさらに酸素を吹込
むことによって完全燃焼を行い、被加熱物の予備加熱を
おこなうとともに熱の有効利用を図っている。熱交換帯
域35を経てから炉外に排出される排ガスは排ガスダク
ト36を経て排出される。図示例の加熱炉を使った場合
、被加熱物としての鋼材37は図中、向がって右方の扉
38から連続的に炉内に挿入され、熱交換帯域34およ
び完全燃焼を行う空気吹込み帯域32を経て予熱され、
次いで無酸化加熱帯域31に送られて所定温度にまで無
酸化加熱が行なわれる。
FIG. 3 is a schematic cross-sectional view of a continuous heating furnace 30 that performs continuous non-oxidation heating, and this continuous heating furnace 3o consists of a non-oxidation heating zone 31 and an air blowing zone 32 that performs complete combustion.
Five burners 33 similar to the radiant burners shown in FIG. 1 are provided in the non-oxidizing heating zone 31 in pairs. Air blowing zone 32 located downstream of non-oxidizing heating zone 31
is provided with a plurality of air blowing ports 34, and complete combustion is achieved by further blowing oxygen into the non-oxidizing high temperature gas obtained by non-oxidizing heating of the object to be heated in the heating zone 31, that is, the combustion gas with a small air equivalence ratio. This is done to preheat the object to be heated and to utilize the heat effectively. The exhaust gas discharged outside the furnace after passing through the heat exchange zone 35 is discharged through an exhaust gas duct 36. When using the illustrated heating furnace, a steel material 37 as an object to be heated is continuously inserted into the furnace through a door 38 on the right side in the figure, and a heat exchange zone 34 and air for complete combustion are introduced into the furnace. preheated via the blowing zone 32;
Next, it is sent to a non-oxidizing heating zone 31 where non-oxidizing heating is performed to a predetermined temperature.

加熱か終了した鋼材は図中、向かって左方の扉39を経
て炉外に抽出される。
The heated steel material is extracted out of the furnace through a door 39 on the left side in the figure.

次に実施によってさらに本発明を説明する。The invention will now be further illustrated by implementation.

災路桝よ 本例では第2図に示す加熱炉を使い、加熱試験を行った
。炉寸法は内直径1100mm、炉長6000mmの円
筒状炉で、側壁は全面水冷した。そして、炉内のバーナ
側1mの個所に、開口直径10mmの多数のガス通路を
備え、開口比30%とした、板厚100mmの耐火物製
の多孔板状の仕切板を設置して、燃焼を行った。この結
果、低質燃料である高炉ガス−の専焼でも、仕切板の温
度は、950〜1000℃となり、燃焼は安定して継続
された。また、本炉における水冷炉体への伝熱量を水量
、ならびに入口および出口水温度の測定により求め、こ
れにより計算される被加熱物としての水冷炉壁が受けた
熱量を第4図にグラフで示す。
In this example, a heating test was conducted using the heating furnace shown in Figure 2. The furnace was a cylindrical furnace with an inner diameter of 1100 mm and a furnace length of 6000 mm, and the side walls were entirely water-cooled. Then, a perforated partition plate made of a refractory plate with a thickness of 100 mm and having a large number of gas passages with an opening diameter of 10 mm and an opening ratio of 30% was installed at a location 1 m from the burner side in the furnace. I did it. As a result, even when exclusively burning blast furnace gas, which is a low-quality fuel, the temperature of the partition plate was 950 to 1000°C, and combustion continued stably. In addition, the amount of heat transferred to the water-cooled furnace body in this reactor was determined by measuring the amount of water and the inlet and outlet water temperatures, and the amount of heat received by the water-cooled reactor wall, which is the object to be heated, calculated from this is shown in a graph in Figure 4. show.

次に比較例として、同一炉において上記仕切板を取り除
き、バーナ先端混合方式の従来のバーナを用いて良質燃
料であるコークス炉ガスを燃焼させた。
Next, as a comparative example, the partition plate was removed from the same furnace, and coke oven gas, which is a high-quality fuel, was burned using a conventional burner with a burner tip mixing system.

その結果、良好な火炎が形成され安定した燃焼が行われ
たが、次に大熱量を一定に保ったまま、高炉ガスを徐々
に混入していき、コークス炉ガスの配合割合を徐々に低
下させていったところ、高炉ガスの混合比94%におい
て、燃焼の継続が不可能になり、高炉ガスの専焼は行え
なかった。この場合にも前述と同様にして水冷炉壁の受
けた熱量を計算によって求め、その結果を同様に第4図
にグラフで示す。図示データからも明らかなように、本
発明による場合、燃料カス組成如何にかかわらず、常に
ほぼ10%程度伝熱量が多い。
As a result, a good flame was formed and stable combustion took place.Next, while keeping the large amount of heat constant, blast furnace gas was gradually mixed in, and the blending ratio of coke oven gas was gradually lowered. However, when the mixing ratio of blast furnace gas was 94%, it became impossible to continue combustion, and exclusive combustion of blast furnace gas could not be performed. In this case as well, the amount of heat received by the water-cooled reactor wall is determined by calculation in the same manner as described above, and the results are similarly shown graphically in FIG. As is clear from the data shown, in the case of the present invention, the amount of heat transfer is always about 10% higher, regardless of the fuel residue composition.

実流血1 本例では第3図に示す加熱炉を使い、無酸化加熱試験を
行った。炉寸法は巾2,100mm高さ500mm長さ
8.000mmであった。輻射バーナは加熱炉の抽出側
の天井に5列5段、また両側壁に5列1段配しこれらの
総燃焼熱量ば3,000 Xl03Kcal/hに達し
た。燃料にはコークス炉ガスを用いた。使用コークス炉
ガスの組成は第1表の通りである。
Actual Bloodshed 1 In this example, a non-oxidation heating test was conducted using the heating furnace shown in Figure 3. The dimensions of the furnace were 2,100 mm wide, 500 mm high, and 8,000 mm long. The radiant burners were arranged in 5 rows and 5 stages on the ceiling on the extraction side of the heating furnace, and in 5 rows and 1 stage on both side walls, and the total combustion heat amount reached 3,000 Xl03Kcal/h. Coke oven gas was used as fuel. The composition of the coke oven gas used is shown in Table 1.

なお、参考までにコークス炉ガスを当量空気以下で燃焼
させた場合の燃焼ガス組成を第5図に示した。
For reference, FIG. 5 shows the combustion gas composition when coke oven gas is combusted at an equivalent amount of air or less.

本例ではかかるコークス炉ガスの燃焼は空気当量比を0
.7(理論空気量の70%)で行った。この場合の燃焼
ガス組成は、H2=11% GO=6.5%C02=5
.5%で還元成分のH2,COは17.5%であった。
In this example, the combustion of such coke oven gas reduces the air equivalence ratio to 0.
.. 7 (70% of the theoretical air amount). The combustion gas composition in this case is H2 = 11% GO = 6.5% CO2 = 5
.. At 5%, the reducing components H2 and CO were 17.5%.

またこのときセラミックスハニカムの表面温度は、燃焼
負荷1,500 Xl03Kcal/ rrfhの状態
で、1 、500°Cであった。このように、輻射バー
ナでの燃焼は、空気当量比を0.7で行い鋼材の酸化が
著しくなる600°C以上となるようにして鋼材の酸化
の抑制を図る一方、加熱炉のほぼ中央部の側壁に4対の
空気吹込口を配置し、ここから還元成分の燃焼に必要な
空気を供給し、H2およびCOを完全に燃焼させた。
At this time, the surface temperature of the ceramic honeycomb was 1,500°C under a combustion load of 1,500 Xl03Kcal/rrfh. In this way, combustion in a radiant burner is carried out at an air equivalence ratio of 0.7 to reach a temperature of 600°C or higher, at which point oxidation of the steel becomes significant, thereby suppressing oxidation of the steel. Four pairs of air inlets were arranged on the side wall of the reactor, from which the air necessary for combustion of the reducing components was supplied, and H2 and CO were completely combusted.

実施例の加熱炉では、鋼材を9  t/hの割合で常温
から、1 、250℃まで加熱した。そのときの熱効率
は60%、さらにスケール生成量は0.1%以下であっ
た。これらは従来の無酸化加熱法に(らべて、熱効率面
で30〜40%向上しており、省エネルギー上の効果は
きわめて大である。
In the heating furnace of the example, the steel material was heated from room temperature to 1,250°C at a rate of 9 t/h. The thermal efficiency at that time was 60%, and the amount of scale produced was 0.1% or less. These methods have improved thermal efficiency by 30 to 40% compared to conventional non-oxidation heating methods, and are extremely effective in terms of energy saving.

m    コークス炉ガス組成 (Vol %)m Coke oven gas composition (Vol%)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明において使用する燃焼バーナの略式断
面図; 第2図は、本発明に係る加熱炉の略式断面図;第3図は
、本発明の別の態様を示す略式断面図;第4図は、実施
例の伝熱量を示すグラフ;および第5図は、コークス炉
ガスの燃焼ガス組成を示すグラフである。 ■・・燃料人口接管部  2・・空気人口接管部3・・
バーナ      4・・混合管部5・・セラミックス
ハニカム 6・・加熱空間     7・・燃焼空間出願人  住
友金属工業株式会社 代理人  弁理士 広 瀬 章 − 仄4図 籟丈戸刀支 (VQ/  に) 菓5図 空氏由曾)L    (理輪空民創
FIG. 1 is a schematic sectional view of a combustion burner used in the present invention; FIG. 2 is a schematic sectional view of a heating furnace according to the present invention; FIG. 3 is a schematic sectional view showing another embodiment of the present invention; FIG. 4 is a graph showing the amount of heat transfer in the example; and FIG. 5 is a graph showing the combustion gas composition of coke oven gas. ■...Fuel population connection part 2...Air population connection part 3...
Burner 4...Mixing tube part 5...Ceramic honeycomb 6...Heating space 7...Combustion space Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Akira Hirose - 4th figure Ryojototochi (VQ/) 5 illustrations Sora Uji Yuso) L (Riwa Sora Tamisou)

Claims (3)

【特許請求の範囲】[Claims] (1)燃料の燃焼により直接に被加熱物に伝熱を行なわ
しめる燃焼加熱炉において、多数のガス通路を有する固
体面により炉内空間を、火炎を形成させる燃焼空間と被
加熱物を加熱する加熱空間とに区画分離したことを特徴
とする燃焼加熱炉。
(1) In a combustion heating furnace that transfers heat directly to the object to be heated by burning fuel, a solid surface with a large number of gas passages heats the interior space of the furnace, the combustion space that forms a flame, and the object to be heated. A combustion heating furnace characterized by being separated into a heating space and a heating space.
(2)燃料の燃焼により直接にかつ無酸化状態で被加熱
物に伝熱を行なわしめる加熱法であって、多数のガス通
路を有する固体面により炉内空間を火炎を形成させる燃
焼空間と、被加熱物を加熱する加熱空間とに区画分離し
、前記燃焼空間において、燃料を当量空気比以下で燃焼
させて前記固体面を高温度の輻射熱源とすることを特徴
とする直接無酸化加熱法。
(2) A heating method in which heat is directly transferred to the heated object in a non-oxidized state by combustion of fuel, and a combustion space in which a flame is formed in the furnace space by a solid surface having a large number of gas passages; A direct non-oxidation heating method characterized in that the object to be heated is divided into a heating space and a heating space, and in the combustion space, fuel is combusted at an equivalent air ratio or less to use the solid surface as a high-temperature radiant heat source. .
(3)燃料の燃焼により連続的に直接にかつ無酸化状態
で被加熱物に伝熱を行なわしめる加熱法であって、多数
のガス通路を有する固体面により区画分離された1以上
の燃焼空間および加熱空間を備えた無酸化加熱帯域と、
該加熱帯域の下流側に設けられた空気吹込み帯域とを設
け、前記燃焼空間において燃料を当量空気比以下で燃焼
させて前記固体面を高温度の輻射熱源として前記加熱空
間において被加熱物を加熱するとともに、得られた無酸
化性高温ガスを前記空気吹込み帯域において空気吹込み
により完全燃焼することを特徴とする、連続直接無酸化
加熱法。
(3) A heating method in which heat is transferred continuously and directly to the heated object in a non-oxidized state by combustion of fuel, which comprises one or more combustion spaces separated by a solid surface having a large number of gas passages. and a non-oxidizing heating zone with a heating space;
an air blowing zone provided on the downstream side of the heating zone, the fuel is combusted in the combustion space at an equivalent air ratio or less, and the object to be heated is heated in the heating space using the solid surface as a high temperature radiant heat source. A continuous direct non-oxidizing heating method, characterized in that the non-oxidizing high temperature gas obtained is completely combusted by air blowing in the air blowing zone.
JP3288083A 1983-03-02 1983-03-02 Combustion heating furnace and heating method without causing oxidation utilizing said furnace Pending JPS59159924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3288083A JPS59159924A (en) 1983-03-02 1983-03-02 Combustion heating furnace and heating method without causing oxidation utilizing said furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3288083A JPS59159924A (en) 1983-03-02 1983-03-02 Combustion heating furnace and heating method without causing oxidation utilizing said furnace

Publications (1)

Publication Number Publication Date
JPS59159924A true JPS59159924A (en) 1984-09-10

Family

ID=12371185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3288083A Pending JPS59159924A (en) 1983-03-02 1983-03-02 Combustion heating furnace and heating method without causing oxidation utilizing said furnace

Country Status (1)

Country Link
JP (1) JPS59159924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274206A2 (en) * 1987-01-07 1988-07-13 British Gas plc Heating stock in a heating chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0274206A2 (en) * 1987-01-07 1988-07-13 British Gas plc Heating stock in a heating chamber

Similar Documents

Publication Publication Date Title
US6102691A (en) Combustion apparatus
US6089855A (en) Low NOx multistage combustor
US5476375A (en) Staged combustion in a porous-matrix surface combustor to promote ultra-low NOx Emissions
JP2001004128A (en) Method and system for improving efficiency and productivity in high-temperature furnace
EP1167877A1 (en) Single-ended self-recuperated radiant tube annulus system
CA2627016A1 (en) Process and apparatus for low-nox combustion
WO2000079182A1 (en) Preheated fuel and oxidant combustion burner
JPH03153528A (en) Dissolving glass with nitrogen oxide reduced in emission level
RU2715004C2 (en) Glass melting furnace with increased efficiency
JPS62500044A (en) recuperator wall
CN104121581A (en) Efficient low-NOx tube type heating furnace low-concentration oxygen-enriched combustion system and combustor
US7980850B2 (en) Self-recuperated, low NOx flat radiant panel heater
CN115574595A (en) Ammonia combustion reduction low NOx emission continuous heating furnace kiln and control method
JPH0579614A (en) Burner contstruction for low calorific gas and burning method therefor
US2876831A (en) Internal-combustion burners
JPS59159924A (en) Combustion heating furnace and heating method without causing oxidation utilizing said furnace
RU2444678C1 (en) Installation for burning fuel heating processing media
US3197184A (en) Apparatus for heating metals to high temperatures
JP3793276B2 (en) Heat storage switching burner
EP0066570B1 (en) High-temperature burner
KR100761211B1 (en) A partial combustion burner for preheating oxygen
RU2099661C1 (en) Method of burning of natural gas in high-temperature industrial furnace
CN111237758A (en) Combustion device for premixed airflow high-speed rotational flow jet flue gas backflow low-nitrogen combustion
JP2001058877A (en) Firing of ceramic material
JPH09229351A (en) Combustion method for heating furnace