JPS59156901A - Improvement of process for recovering metallic oxide - Google Patents

Improvement of process for recovering metallic oxide

Info

Publication number
JPS59156901A
JPS59156901A JP2627883A JP2627883A JPS59156901A JP S59156901 A JPS59156901 A JP S59156901A JP 2627883 A JP2627883 A JP 2627883A JP 2627883 A JP2627883 A JP 2627883A JP S59156901 A JPS59156901 A JP S59156901A
Authority
JP
Japan
Prior art keywords
iron
manganese
oxide
acid
waste acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2627883A
Other languages
Japanese (ja)
Inventor
Tadayoshi Karasawa
柄沢 忠義
Takeshi Ida
伊田 壮
Katsumi Kono
克己 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2627883A priority Critical patent/JPS59156901A/en
Publication of JPS59156901A publication Critical patent/JPS59156901A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/04Magnesia by oxidation of metallic magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compounds Of Iron (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To recover efficiently metallic oxides by adding a metal to a spent acid used to pickle iron in the resence of oxygen, neutralizing the free acid, carring out filtration, and thermally decomposing the resulting purified filtrate. CONSTITUTION:A hot gas contg. oxygen is brought into contact with a spent acid used to pickle iron to concentrate the acid by heating with stirring, a metal such as iron, Mn, Zn or Mg or an alloy thereof is added, and the acid is stirred under heating. The free acid is neutralized (the pH of the liq. is adjusted to 3-4.3), impurities are made insoluble, and the particle size of deposited particles is increased. Iron oxalate, iron carbonate or the like is further added to accelerate the deposition and precipitation of impurities, and the solid impurities are removed by filtration. The resulting purified filtrate is thermally decomposed to recover hydrochloric acid, iron oxide and Mn, Zn or Mg oxide.

Description

【発明の詳細な説明】 本発明は金属塩化物を精製して高純度の塩酸と金属酸化
物を安価に回収する処理法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment method for purifying metal chlorides and recovering high purity hydrochloric acid and metal oxides at low cost.

鉄鋼の酸洗は塩酸によるものが最も一般的である。その
酸洗廃液の熱分解回収方式の主なものに次の三方式があ
る。
The most common method of pickling steel is hydrochloric acid. There are three main methods for recovering pickling waste by thermal decomposition:

1、ケミライト法。1. Chemilite method.

2、ルルギー法。2. Lurgy method.

3、ルスナー法。3. Lussner method.

1、ケミライト法 液を精製して熱媒体に散布し約700”(:で滞留加熱
分解し、高純度のHOIとFe2esを回収する方法で
ある。
1. This is a method of refining the Chemilite method liquid, spraying it on a heat medium, retaining it at about 700" (:) and thermally decomposing it, and recovering high-purity HOI and Fe2es.

酸化鉄は分解ガスと伊流し、サイクロン、電気集しん器
により回収されるのでCIは約0.15%含有する。圧
縮密度は29程度と高い特長を持つ。
Since iron oxide is recovered by flushing with cracked gas, cyclone, and electrostatic concentrator, it contains about 0.15% CI. It has a high compressed density of about 29.

2、ルルギー法 炉底の媒体に廃酸を散布し、加熱の上粒状酸化鉄と塩酸
を回収する方法で、酸化鉄は1〜2mmのl000℃以
」二に加熱された密度の高い粒状物である。
2. Lurgi method A method in which waste acid is sprinkled on the medium at the bottom of the hearth and granular iron oxide and hydrochloric acid are recovered by heating. It is.

粒状物を粉砕すると圧縮密度は3以上を示し活性が低い
When the granules are crushed, the compacted density is 3 or more and the activity is low.

3、ルスナー法 廃酸を 焼炉中に@霧し、上昇高温気流と熱交換し、次
いで高温 割体の部位で加熱されて熱分解し、ガスと少
量のFe2rsは炉外のサイクロンで補集され、塩酸は
塩酸吸収塔で吸収される。Fe、05の主体は炉底で更
に加熱され残qの塩酸を蒸発させ、ついで炉外に排出さ
れる。
3. Rusner process waste acid is misted into the furnace, where it exchanges heat with the rising high-temperature air stream, and then heated and thermally decomposed at the high-temperature splitting body, and the gas and a small amount of Fe2rs are collected by a cyclone outside the furnace. Hydrochloric acid is absorbed in a hydrochloric acid absorption tower. The main body of Fe, 05 is further heated at the bottom of the furnace to evaporate the remaining q of hydrochloric acid, and then discharged to the outside of the furnace.

以上示した三方式の塩酸、酸化鉄の分解回」ν装置4は
それぞれの特徴を持つ完成された装置である。
The above-mentioned three methods of hydrochloric acid and iron oxide decomposition apparatus 4 are complete apparatuses each having their own characteristics.

本発明の実施に当っては、どの回収方式でも通用できる
が、木酸、S i2CIb、AlC1,、その他の不純
物を含んだ廃液として排出されたものである。βi、 
ALり爆4ヒ牙枦工直字オレ材榔し’I−Llろ。
In carrying out the present invention, any recovery method can be used, but the waste liquid is discharged as a waste liquid containing wood acid, Si2CIb, AlCl, and other impurities. βi,
AL ri Baku 4 hi ga ashiko direct character ore materials sashimi 'I-Llro.

廃酸の一般的な組成は次のようなものである。The general composition of waste acid is as follows.

HCl      1301(g / 1lFeC1z
    884  : FeCl3    0  : 1120    2366  : この廃液は次の如く処理されて回収酸と酸化鉄が回収さ
れる。
HCl 1301(g/1lFeC1z
884: FeCl3 0: 1120 2366: This waste liquid is treated as follows to recover recovered acid and iron oxide.

↓ 塩酸 この工程によると廃酸は熱交換塔で、ロースタ−からの
排ガスで濃縮されてからロースタ−で分解される。ロー
スタ−の上部は450〜500°Cであり大部分の水が
蒸発し、次いで中部では600−750°Cの熱により
FeCl2が熱分解し、HQIは同しく上昇気流として
塩酸吸収塔へ4人され、pc2o、は炉底より排出する
↓ Hydrochloric acid According to this process, waste acid is concentrated in the heat exchange tower using the exhaust gas from the roaster, and then decomposed in the roaster. The temperature in the upper part of the roaster is 450-500°C, and most of the water evaporates, and then in the middle part, FeCl2 is thermally decomposed by the heat of 600-750°C, and HQI is also transferred to the hydrochloric acid absorption tower as an updraft. and pc2o is discharged from the bottom of the furnace.

2F cc +2+2H20+0z3A=Fe、03+
41(c 1−−−−(+)S 12CI6+3820
+02%=2S i O2+6HCI −−−−(2)
2A I O13+3H20=A I io3+61−
1 CI        (3)採取した酸化鉄にはS
 102として0.3−0.01wt%、AI、03は
0.1〜0.O1程度含有するものとなる。回収酸中の
FeCl2は1.4〜0−08wt%である。
2F cc +2+2H20+0z3A=Fe, 03+
41(c 1----(+)S 12CI6+3820
+02%=2S i O2+6HCI -----(2)
2A I O13+3H20=A I io3+61-
1 CI (3) The collected iron oxide contains S
102 is 0.3-0.01 wt%, AI, 03 is 0.1-0. It will contain about 1 O1. FeCl2 in the recovered acid is 1.4 to 0-08 wt%.

先ず本発明では高純度の酸化鉄を得るため、液のN製を
行なう。その精製法を次表に示した。
First, in the present invention, in order to obtain high-purity iron oxide, a liquid is prepared using nitrogen. The purification method is shown in the table below.

廃酸の濃縮(熱交換塔) 廃酸の濃縮はロースタ−より排出の高熱ガスと熱交換す
るのが一般的であり合理的である。
Concentration of waste acid (heat exchange tower) It is common and rational to concentrate waste acid by exchanging heat with high-temperature gas discharged from a roaster.

ロースタ−での燃焼炎は若干酸化性にしているのが一般
である。しかし、0□分即ち空気が過剰で月高温に過ぎ
ると、HCI又はFeC1□が酸化されC1□又はFe
01Bが発生し、時にNOxまで増加し芳しくない。そ
れでなるべく低温で且余剰酸素の少ない状態で焙焼され
ることが望まれる。しかし我々が除去しようとするSi
、AI等は、浴液を昇温し且酸素の存在のもとに撹拌す
ることによって、遊離酸の存在下でも、これらの5J1
A1等が不溶化の傾向を示すことに注目したのである。
The combustion flame in a roaster is generally slightly oxidizing. However, at 0□ minutes, that is, when the air is excessive and the temperature exceeds the temperature, HCI or FeC1□ is oxidized and C1□ or Fe
01B is generated and sometimes increases to NOx, which is not good. Therefore, it is desired that the roast be roasted at as low a temperature as possible and in a state with little surplus oxygen. However, the Si we are trying to remove
, AI, etc., can be prepared even in the presence of free acids by raising the temperature of the bath liquid and stirring in the presence of oxygen.
They focused on the fact that A1 etc. showed a tendency to become insolubilized.

RIIち、FeCl2はFeC1,!lに、S i2c
 I*+JS 1Z02 (011101の形態のよう
な51202 (OH)2に挙するものが生じているも
のと考えられ、これが次畳の処理に効果的に作用するの
で 1吉1ある。要゛スるに廃酸に酸素を含む熱ガスを
接触させJ]撹拌すると液は昇温し、酸化と不溶性物質
の生成ならびにその粒成長を促す作用を持つのである。
RII, FeCl2 is FeC1,! l, S i2c
I*+JS 1Z02 (It is thought that something listed in 51202 (OH)2 like the form of 011101 is occurring, and this is a good thing because it effectively affects the processing of the next tatami. When hot gas containing oxygen is brought into contact with the waste acid and stirred, the temperature of the liquid rises, which has the effect of promoting oxidation, the production of insoluble substances, and the growth of their grains.

この濃縮液は遊離酸が多いのにかかわらず尚且わずかな
がら不溶化が進んでいるということは、この不純物は不
安定であることを意味する。
Although this concentrated solution contains a large amount of free acid, the fact that insolubilization has progressed slightly means that this impurity is unstable.

したがって液中の遊離酸が少な?・プれば不純物の不俗
化が急進するはずである。しかし、塩酸回収を行なう必
要上中和することはできないので次表に示す状態までa
縮し、水の蒸発及び塩酸の蒸発即ち回収を図る。
Therefore, is there less free acid in the liquid?・If people were to become more profane, the profanity of impurities would rapidly increase. However, because it is necessary to recover hydrochloric acid, it is not possible to neutralize it, so the condition shown in the following table is not reached.
The water is evaporated and the hydrochloric acid is evaporated or recovered.

I C1189kg/h H201826kg/ l+ FeCl2970kg/h F e C! 3105kg/b 上記表中Fe0I3が発生している。この3価の鉄はサ
イクロンを通過した酸化鉄が溶解したものと塩化鉄が酸
化した分も含まれている。
I C1189kg/h H201826kg/l+ FeCl2970kg/h Fe C! 3105kg/b In the above table, Fe0I3 is generated. This trivalent iron also includes dissolved iron oxide that passed through the cyclone and oxidized iron chloride.

中和工程。Neutralization process.

上記熱交濃縮藪には遊離酸が存在する。即ち、水と塩酸
は共沸点で両者共蒸発するので酸比率で遊離酸が存在す
る。
Free acid is present in the heat exchange thicket. That is, since water and hydrochloric acid both co-evaporate at the azeotropic point, free acids are present in the acid ratio.

不純物抽除の目的を持つ本発明では中和工程が必要であ
る。
In the present invention, which has the purpose of extracting impurities, a neutralization step is necessary.

即ち遊離酸の存在は不純物の不溶化を阻害する。例えは
遊離酸があると次のような不都合が起る。遊離酸Xは不
溶化している炭酸塩と反応し M’zCO3+2HX   2M’X十002+H20
−−−−4式となりこのCO2はc a c O3と反
応し、Ca C03+OOz + HzOOa”+2H
lj 03−−−−5j幻の反応を起こしCaCO3は
酸性炭酸イオンとCaとしてnwrする。又アルカリ類
、又は炭酸アンモニウム等によって中14Jを進めると
Na、に等はそのイオンが溶液中に残存してしまう。
That is, the presence of free acid inhibits the insolubilization of impurities. For example, the presence of free acids causes the following disadvantages. The free acid X reacts with the insolubilized carbonate to form M'zCO3+2HX 2M'X10002+H20
----4 formula, this CO2 reacts with c a c O3, Ca C03 + OOz + HzOOa" + 2H
lj 03----5j A phantom reaction occurs, and CaCO3 is converted into acidic carbonate ion and Ca. Further, when the medium 14J is advanced with alkalis, ammonium carbonate, etc., ions of Na, Ni, etc. remain in the solution.

又、炭酸アルカリは002ガス、N1]1等が残留して
不純物をも再溶解してしまう。
In addition, in the alkali carbonate, 002 gas, N1]1, etc. remain and impurities are also redissolved.

これらの事から中和は金属により中和の極限まで進める
ことが好ましい。通常ピクリン液に金属の接触を図ると
、3価の鉄は容易に2価に還元される。しかし遊離酸が
濃縮され多mとなっているのでこれを中和し、円1値を
4付近まで上昇させるためには加熱昇温と撹拌が必要で
ある。即ちpHが3.8以上になると液のyH3度の増
加に反し、酸濃度が減少することになるので反応速度が
急減するので特にそれが必要である。
For these reasons, it is preferable to proceed with neutralization to the maximum level using a metal. Normally, when a metal comes into contact with a picrin solution, trivalent iron is easily reduced to divalent iron. However, since the free acid is concentrated and has a large amount of m, heating and stirring are necessary to neutralize it and raise the Yen 1 value to around 4. That is, when the pH becomes 3.8 or higher, the acid concentration decreases, contrary to the increase in yH3 of the solution, and the reaction rate sharply decreases, so this is especially necessary.

この中和が4前後即ち金属で中和した場合の最高値に属
する円l属と酸素の存在によってFe  (OH)2の
発生と共に不溶化物質の縮合又は重合による粁成長並び
に復合化が進み、あるいはゲータイトと不溶化物とが随
伴し、ろ過分側又は遠心分離を容易ならしめる効果があ
る。
This neutralization is around 4, which is the highest value when neutralized with a metal, and due to the presence of oxygen, Fe (OH) 2 is generated and the growth of moss and decomposition due to condensation or polymerization of the insolubilized substance progresses, or Goethite and insolubilized substances accompany it, which has the effect of facilitating filtration or centrifugation.

この状態にある液に本発明では気に修酸鉄、炭酸鉄、炭
酸グワニジン等を単独又は複合させて添加し、不純物の
析出沈澱を促進させる。この添加物質は過剰に添加して
も、ろ過助剤の役割を持つので差しつかえない。
In the present invention, iron oxalate, iron carbonate, guanidine carbonate, etc. are added to the liquid in this state, singly or in combination, to promote precipitation of impurities. Even if this additive substance is added in excess, there is no problem since it acts as a filter aid.

ろ過は、ろ過物質の粒成長速度とろ過能率を考RBシて
、ろ過物質の径を0.5μ程度に設定し、ろ過速孔な0
.7μとし、活性炭ZLl&±、パルプ等のフィルター
エイトを用いる。ろ過器は逆洗付とする。又ろ過性とは
別方式の遠心分離機を用いてもよし)。
For filtration, consider the grain growth rate and filtration efficiency of the filtration material, set the diameter of the filtration material to about 0.5μ, and
.. 7μ, and use filter eight such as activated carbon ZLl&±, pulp, etc. The filter shall be equipped with backwashing. Also, a centrifugal separator with a different type of filtration may be used).

要するにろ過物質の物性に即したろ別方法を採用すると
よし1゜ろ液は縮合タンク(重合)に導ひかれ鉄くずの
存在のもとにairationを行なう。温度は晶出防
止と反応速度を上げるためなるべく高<80℃程度にす
る。このairationによって金属は溶出し、不純
物の水和物と結合あるいは付着集落を造りろ過容易な状
態に粒成長する。この沈澱物を含む藪をNo、5Cのろ
紙でろ過しそのろ液を熱分解すると、次のような金属酸
化物が得られる。
In short, it is best to adopt a filtration method that suits the physical properties of the filtration material. 1. The filtrate is led to a condensation tank (polymerization) and airation is performed in the presence of iron scraps. The temperature should be as high as possible, <80°C, in order to prevent crystallization and increase the reaction rate. Through this airation, the metal is eluted, combined with hydrated impurities, or forms adhesion colonies, resulting in grain growth in a state that facilitates filtration. When the bush containing this precipitate is filtered through No. 5C filter paper and the filtrate is thermally decomposed, the following metal oxides are obtained.

金属鉄中和  F e20399.7<s i O20
,005〜0.002 A 1203  0.003〜0.00101′o、o
os〜(1,01 MnQ    =0.28 金属マンガン中和 5in2  0.005〜0.003 A I zoa   O,003−0,001CI’ 
    o、oog〜0,01S i 02   0.
004〜0.001A I2O30,002〜0.00
1 1’4nQ    0.25 CI”−o、oos〜0.0] 次に、中和処理を押進める場合について説明する。
Metallic iron neutralization F e20399.7<s i O20
,005~0.002 A 1203 0.003~0.00101'o,o
os~(1,01 MnQ =0.28 Metal manganese neutralization 5in2 0.005~0.003 A I zoa O,003-0,001CI'
o, oog~0,01S i 02 0.
004~0.001A I2O30,002~0.00
1 1'4nQ 0.25 CI"-o, oos~0.0] Next, a case in which the neutralization process is pushed forward will be described.

即ち金属での中和は限界がある。それは遊離酸を中和す
るために金属を添加反応させたものでありその目的は達
成されている。
In other words, there are limits to neutralization with metals. It is an addition reaction of metals to neutralize the free acid, and that purpose has been achieved.

したがって、pHを更に高めるためにはアルカリ類を添
加する必要がある。しかしアムモニア系は時に析出物を
俗解してしまう場合がある。このような場合はソーダ、
加用系を用いる。
Therefore, it is necessary to add alkalis to further increase the pH. However, ammonia-based products are sometimes misunderstood as precipitates. In this case, soda,
Use additive system.

l)v述のようにこの系統を用いると液中に賎留いその
まま大者焼すると酸化物中に混入してしまう。
l) If this system is used as described in v., it will remain in the liquid and if it is fired as is, it will be mixed into the oxide.

それで中和よりろ過板の精製液を心線晶出精製の一連の
工程を径で庁焼すれば史に高純化しSiO□、A ’1
03の外Or、0LINaN Oa、に等の各物質も僅
少に制御することができる。
Therefore, if the purified liquid on the filter plate is subjected to a series of steps of cord crystallization and purification from neutralization, it will be highly purified and SiO□,A'1
Each substance other than 03, 0LINaN Oa, etc. can also be slightly controlled.

その−例を次に示す。An example of this is shown below.

S i 02   0.003 >    N a、0
    0.00+ >Al2O3、0,002’> 
  K、OO,00+ンCrzOB    0.001
 >   Ca OO,001ンOuO0,001) また上記混成物の外、鉄、マンガン、亜鉛、マグネシウ
ム、銅、ニッケル等を任意の構成比率で調製することも
できる。
S i 02 0.003 > N a, 0
0.00+ >Al2O3, 0,002'>
K,OO,00+nCrzOB 0.001
>CaOO,001-OuO0,001) In addition to the above-mentioned mixture, iron, manganese, zinc, magnesium, copper, nickel, etc. can also be prepared in any composition ratio.

これらの混成物の被熱温度について注目すべきことは、
液の分解ゾーンは500〜700”(:であるが、燃焼
炎は1700°Cにも達するので燃焼室をもうけ二次a
irによって1000〜1200°C位に調整しである
。この温度の調整によって炉底にある粉体の被熱温度は
あ表 る程度号えられるので、粉体を各温度に加熱した場合を
示すと次のようになる。
What should be noted about the heating temperature of these composites is that
The liquid decomposition zone is 500 to 700" (:), but since the combustion flame reaches 1700°C, a combustion chamber is created and a secondary a
The temperature was adjusted to about 1000-1200°C using ir. By adjusting this temperature, the temperature at which the powder at the bottom of the furnace is heated can be changed to a certain extent, so the cases where the powder is heated to various temperatures are as follows.

圧縮密度 9006C−一一一強磁性     2・858508
C−一一一磁性なし    2.67800’(ニー 
−−一強磁性     2・64となり仮焼効果が現れ
ている。
Compressed density 9006C-111 ferromagnetic 2.858508
C-111 No magnetism 2.67800' (knee)
---Ferromagnetic 2.64, indicating the calcination effect.

またこの混成物を還元すると高純度の金属粉にすること
ができる。
Furthermore, when this mixture is reduced, it can be made into a highly pure metal powder.

Claims (1)

【特許請求の範囲】 /)鉄ピクリン廃酸に鉄、マンガン、亜鉛、マグネシウ
ム等の金属又は合金を加え、酸素の共存のもとに撹拌す
ることによって遊離酸を中和しP113〜4.3の間に
調整して不純物を不溶化し、且粒成長させ、これをろ過
した精製液を加熱分解し、塩酸と酸化鉄及び、酸化マン
ガン、酸化亜鉛、酸化マグネシウム、又はこれらの混成
物又は合成物を回収する廃酸処理方法。 2)鉄ピクリン廃酸と酸素分含有高温排ガスを接触反応
させ、40〜沸騰温の間に加熱+s絹し、鉄、マンガン
、亜鉛、マグネシウム等の金属又はこれらの合金等の一
種又は二種以上を加えて円13〜4.3程度の間に中和
、撹拌することによって不溶化した不純物を粒成長させ
、これをろ過し、そのろ液を加熱分解して塩酸と酸化鉄
、酸化マンガン、酸化亜鉛、酸化マグネシウム又はこれ
らの混成物乃至合成物を回収する廃酸回収処理方法。 J)PIId付近の鉄、マンガン、亜鉛、マグネシウム
又はこれらの合金等を溶解した溶液に炭酸グワニジン、
鉄、マンガン、原塩等の炭酸塩、荷性アルカリ等の何れ
か一種又は二種以上を添加し不純物を不溶化してろ過し
、該精製液を濃IMシ、結晶を晶出させて浅存含有の不
純物を分離排除した結晶又はその溶液を丈吉燻して塩酸
及び鉄とマンガン、亜鉛、マグネシウム等の酸化物又は
これらの被熱混成物を回収することを特徴とする金属塩
化物  ノの精製及び分解処理方法。 グ〕第−項の処理過程中、液温を40−沸III!温の
間において中和する処理を含む側酸処理方法。 5)第一項、第二項の処理A程中金属の鉄、マンガン、
亜鉛、マグネシウム、又はこれらの合金の共存下、酸素
又は空気接触撹拌することによって不溶性物質除去率を
増大させる廃酸処理方法。 乙)第一項、第二項、第三項、第四項の処理過程中炭酸
アルカリアムモニア、水酸化ナトリウム、水酸化カリウ
ム等によっでPl+を4.3〜6に進めて処理する廃酸
処理方法。 7)第一項、第二項の処理過程中、中和後Fe、Mn、
Znの炭酸塩、炭酸アルカリ、炭酸グヮニジン、又は修
酸塩等又はこれらの混成物を混合する第一、第二の各項
の廃酸処理り法。 ざ)鉄ピクリン廃酸と酸素含有高温排ガスを接触させ、
加熱amい鉄、マンガン、亜鉛、マグネシウム等の一種
又は二N以上を加えてpHを4前後に調整し、ついで濃
縮晶出させて該結晶体又はその溶液を加熱分解して、塩
i及び鉄と、マンガン、亜鉛、マグネシウム等の各酸化
物の一種又は二種以上とよりなる被熱混成物を回収する
ことを特徴とする金属塩化物の精製及び分解処理方法。 q)第一項〜第七項の各項のろ過工程を遠心分離機を用
いる廃酸処理方法。 ′0)前記各項のろ退的に液の静置又は粒成長時間を与
える廃酸処理方法。
[Claims] /) Add metals or alloys such as iron, manganese, zinc, and magnesium to iron picric waste acid and stir in the presence of oxygen to neutralize the free acid P113-4.3 The purified liquid is heated and decomposed with hydrochloric acid, iron oxide, manganese oxide, zinc oxide, magnesium oxide, or a mixture or composite thereof. A waste acid treatment method that recovers 2) Catalytic reaction of iron picrin waste acid and oxygen-containing high-temperature exhaust gas, heated + s to a temperature of 40 to boiling temperature, and one or more metals such as iron, manganese, zinc, and magnesium, or alloys thereof, etc. The insolubilized impurities are grown into grains by neutralization and stirring between 13 and 4.3 circles, filtered, and the filtrate is thermally decomposed to form hydrochloric acid, iron oxide, manganese oxide, and oxide. A waste acid recovery treatment method for recovering zinc, magnesium oxide, or a mixture or composite thereof. J) Gwanidine carbonate,
Add one or more of carbonates such as iron, manganese, raw salt, and alkalis to insolubilize impurities, filter, and concentrate the purified liquid to precipitate crystals and leave them in a shallow state. The purification of metal chlorides is characterized in that the crystals or their solutions from which impurities have been separated and removed are smoked with Joyoshi to recover hydrochloric acid and oxides of iron, manganese, zinc, magnesium, etc., or heated hybrids thereof. and decomposition treatment method. [G] During the treatment process in section -, the liquid temperature was raised to 40-boiling III! A side acid treatment method that includes neutralization treatment in a warm room. 5) Metallic iron, manganese,
A waste acid treatment method that increases the removal rate of insoluble substances by stirring in contact with oxygen or air in the coexistence of zinc, magnesium, or an alloy thereof. B) Waste acid that is treated by advancing Pl+ to 4.3 to 6 with alkali carbonate ammonia, sodium hydroxide, potassium hydroxide, etc. during the treatment process of paragraphs 1, 2, 3, and 4. Processing method. 7) During the treatment process of the first and second terms, after neutralization Fe, Mn,
The waste acid treatment method according to each of the first and second items, which comprises mixing Zn carbonate, alkali carbonate, guanidine carbonate, oxalate, etc., or a mixture thereof. ) Bringing iron picrin waste acid into contact with oxygen-containing high-temperature exhaust gas,
The pH is adjusted to around 4 by adding one or more N of hot iron, manganese, zinc, magnesium, etc., and then concentrated and crystallized, and the crystal or its solution is thermally decomposed to dissolve salt and iron 1. A method for purifying and decomposing metal chlorides, which comprises recovering a heat-receiving mixture consisting of one or more oxides of manganese, zinc, magnesium, etc. q) A waste acid treatment method that uses a centrifuge for the filtration steps in each of Items 1 to 7. '0) A waste acid treatment method in which the liquid is allowed to stand still or grains are grown by filtration as described in each of the above items.
JP2627883A 1983-02-21 1983-02-21 Improvement of process for recovering metallic oxide Pending JPS59156901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2627883A JPS59156901A (en) 1983-02-21 1983-02-21 Improvement of process for recovering metallic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2627883A JPS59156901A (en) 1983-02-21 1983-02-21 Improvement of process for recovering metallic oxide

Publications (1)

Publication Number Publication Date
JPS59156901A true JPS59156901A (en) 1984-09-06

Family

ID=12188812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2627883A Pending JPS59156901A (en) 1983-02-21 1983-02-21 Improvement of process for recovering metallic oxide

Country Status (1)

Country Link
JP (1) JPS59156901A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315519A (en) * 1987-06-18 1988-12-23 Kemiraito Kogyo Kk Method for recovering waste liquor from acid cleaning of steel
JPH01153532A (en) * 1987-12-10 1989-06-15 Nkk Corp Purification of ferrous ion-containing solution
JPH02164725A (en) * 1988-12-17 1990-06-25 Kemiraito Kogyo Kk Production of iron oxide powder
GB2591259B (en) * 2020-01-22 2022-11-23 Gantry Railing Ltd Clamp device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315519A (en) * 1987-06-18 1988-12-23 Kemiraito Kogyo Kk Method for recovering waste liquor from acid cleaning of steel
JPH0582330B2 (en) * 1987-06-18 1993-11-18 Chemirite Ltd
JPH01153532A (en) * 1987-12-10 1989-06-15 Nkk Corp Purification of ferrous ion-containing solution
JPH02164725A (en) * 1988-12-17 1990-06-25 Kemiraito Kogyo Kk Production of iron oxide powder
GB2591259B (en) * 2020-01-22 2022-11-23 Gantry Railing Ltd Clamp device

Similar Documents

Publication Publication Date Title
CN110304646B (en) Method for efficiently separating fluorine, chlorine and nitrogen components from aluminum ash and co-producing aluminum oxide concentrate
HU204731B (en) Process for producing pure magnesium oxide comprising at least 98 mass per cent of magnesium oxide, suitable particularly for producing ferfactory products
US3980753A (en) Industrial process of preparing magnesia of high purity
CN109534466B (en) Method for preparing water purifying agent containing polymerized aluminum chloride from aluminum ash
CN111926196B (en) Method for recovering zinc from smelting waste residues
WO2023179002A1 (en) Short-process method for preparing high-purity metal arsenic from arsenic-containing solid waste
JPS589815A (en) Manufacture of high purity alumina
CN114620752B (en) Pretreatment method of secondary aluminum ash, water purifying agent and application
JPH10509212A (en) Recovery of metal and chemical value
CN103159263B (en) Treatment method of artificial rutile mother solution
CN102560132A (en) Method for treating selenium alkali residues in antimony pyro-refining
JPS59156901A (en) Improvement of process for recovering metallic oxide
CN102849782B (en) Method for producing high-purity zinc oxide by steel mill smoke dust ash ammonia method decarburization
US6783744B2 (en) Method for the purification of zinc oxide controlling particle size
US5683488A (en) Method for producing an iron feedstock from industrial furnace waste streams
EP0420525A2 (en) Recycling metal containing compositions
CN110357156A (en) The method that vanadium slag short route prepares vanadium dioxide
US3792150A (en) Method of roasting vanadium bearing materials
US5851490A (en) Method for utilizing PH control in the recovery of metal and chemical values from industrial waste streams
CN102040245A (en) Method for preparing chromate by alkaline roasting carbon ferrochrome
US5667555A (en) Method for the removal of calcium by products during the production of an iron feedstock
JPH10130026A (en) Treatment of waste hydrochloric acid
US2363572A (en) Treatment of zinc carbonate ores
EA024717B1 (en) Process for zinc oxide production from ore
CN116666093B (en) Method for preparing soft magnetic Mn-Zn ferrite composite material by step-by-step impurity removal of industrial waste