JPS59155963A - High sensitive thyristor - Google Patents

High sensitive thyristor

Info

Publication number
JPS59155963A
JPS59155963A JP3030283A JP3030283A JPS59155963A JP S59155963 A JPS59155963 A JP S59155963A JP 3030283 A JP3030283 A JP 3030283A JP 3030283 A JP3030283 A JP 3030283A JP S59155963 A JPS59155963 A JP S59155963A
Authority
JP
Japan
Prior art keywords
layer
thyristor
type emitter
type
emitter layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3030283A
Other languages
Japanese (ja)
Inventor
Tadayoshi Saito
斉藤 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3030283A priority Critical patent/JPS59155963A/en
Publication of JPS59155963A publication Critical patent/JPS59155963A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/7404Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device
    • H01L29/7408Thyristor-type devices, e.g. having four-zone regenerative action structurally associated with at least one other device the device being a capacitor or a resistor

Abstract

PURPOSE:To enable to set the gate trigger current of a high sensitive thyristor with favorable precision by a method wherein a low resistance layer is laminated on the junction surface of a P type base layer and an N type emitter layer, and the P type base layer and the N type emitter layer are short-circuited. CONSTITUTION:A P type base layer 3 is formed on an Si substrate, and an N type emitter layer 4 is formed in the layer 3. A low resistance layer 9 consisting of a poly-Si layer is laminated on the junction surface of the layer 3 and the layer 4 thereof. A CVD SiO2 film to act as a surface protective film is laminated on the layer 9 thereof. According to this construction, by making resistance of the layer 9 to variable, the gate trigger current of the thyristor thereof can be set with favorable precision.

Description

【発明の詳細な説明】 (1)発明の属する分野 本発明は、PNPN4層よりなる高感度サイリスタのゲ
ート特性に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to gate characteristics of a high-sensitivity thyristor made of four PNPN layers.

(2)従来の技術の説明 従来の高感度サイリスタは、概ね第1図に示゛    
   すような構造を有している。第1図に於て、最下
層のP型エミッタ層1はサイリスタのアノードと称する
ものである。P型エミッタ層1の上面に、N型ベース層
2が配置され、N型ベース層2の上にP型ベース層3が
配置され、P型ベース層3にはN型不純物の選択拡散に
より%N型エミッタ層4が設けられている。これは、サ
イリスタのカソードと称するものである。P型エミッタ
層1の表面には、アノード電極7.N型エミツタ層4の
表面には、カソード電極5、P型ベース層3には、ゲー
ト電極6がそれぞれ設けられている。サイリスタの電気
的特性のうち重要なものの一つとしてゲー・トトリガ電
流・(以下、Igtと略す)が挙げられる。従来の高感
度サイリスクに於ては、通常数μA程度以下と言う発生
状況が一般的である。実用上から判断し、Igtは高感
度サイリスタとしての機能を損うことなく、又、誤動作
を起こしにくいという面から数十μA程度が望まれてい
る。
(2) Description of conventional technology A conventional high-sensitivity thyristor is generally shown in Figure 1.
It has such a structure. In FIG. 1, the lowest P-type emitter layer 1 is called the anode of the thyristor. An N-type base layer 2 is arranged on the upper surface of the P-type emitter layer 1, a P-type base layer 3 is arranged on the N-type base layer 2, and the P-type base layer 3 is doped with % by selective diffusion of N-type impurities. An N-type emitter layer 4 is provided. This is called the cathode of the thyristor. On the surface of the P-type emitter layer 1, an anode electrode 7. A cathode electrode 5 is provided on the surface of the N-type emitter layer 4, and a gate electrode 6 is provided on the P-type base layer 3, respectively. One of the important electrical characteristics of a thyristor is the gate trigger current (hereinafter abbreviated as Igt). In conventional high-sensitivity psi-risks, the occurrence situation is usually about several μA or less. Judging from a practical standpoint, Igt is desired to have a value of about several tens of μA without impairing its function as a high-sensitivity thyristor and to prevent malfunctions.

従従来、Tgtのスクリーニングなる手段により。Conventionally, by means of Tgt screening.

良品を選別していたため、歩留が低く、コスト高となっ
ていた。そこで、サイリスタとして他の特性を損うこと
な(Igtを大きくする方法として、P型ベース層30
表面近傍に、例えはイオン注入、N型不純物の低濃拡散
方法により、低濃度のP層を設け、該低濃度P層を通じ
て、サイリスタのトリガ特性に寄与しない無効電流を流
し、Igtを増大させる方法が提案されている。しかし
、この方法は、Pイー1表面に低濃度層を設けるため、
保護酸化膜や被覆樹脂中に含まれる不純物の影響を受け
やすく、ゲート特性が不安定であると言う欠点を有して
いた。
Because good products were selected, yields were low and costs were high. Therefore, as a method of increasing Igt without impairing other characteristics as a thyristor, it is recommended to
A low concentration P layer is provided near the surface by, for example, ion implantation or a low concentration diffusion method of N-type impurities, and a reactive current that does not contribute to the triggering characteristics of the thyristor is caused to flow through the low concentration P layer to increase Igt. A method is proposed. However, this method provides a low concentration layer on the surface of PE1,
It has the disadvantage that it is easily affected by impurities contained in the protective oxide film and coating resin, and the gate characteristics are unstable.

(3)発明の目的 本発明の目的は、これらの欠点を除去した半導体装置を
提供することにある。
(3) Object of the invention An object of the invention is to provide a semiconductor device that eliminates these drawbacks.

(4)発明の特徴 本発明の特徴は、P型ベース層とN型エミツタ層との接
合表面に低抵抗層を積層させ、該低抵抗層を介してゲー
ト・カソード間に無効電流を流しv Igtを増大させ
ることにある。
(4) Features of the invention The feature of the invention is that a low resistance layer is laminated on the junction surface of the P type base layer and the N type emitter layer, and a reactive current is passed between the gate and the cathode through the low resistance layer. The aim is to increase Igt.

(5)実施例 以下に、図面を用いて本発明の詳細な説明する。(5) Examples The present invention will be described in detail below using the drawings.

第2図は、本発明の実施例のゲート付近の断面拡大図で
あって、3は、150μmから300μm程度の厚さの
Si基板にGa又はBを30μmから80μm程度の深
さに拡散して設けたP型ベース層、4は、P型ベース層
3に酸化膜をマスクとしてリンを10μmから50μm
程度の深さに選択拡散して設けたN型エミツタ層である
。9は、LPCVD法により積層させた6000Xの厚
さをもつポリシリ成長層である。10は、ポリシリ層上
に積層したCVD S i 02であり、底面保護膜と
して作用する。ポリシリ層の抵抗は、リン拡散によりコ
ントロールが容易であることを利用し、数10オームか
ら数10にΩまで可変できる。
FIG. 2 is an enlarged cross-sectional view of the vicinity of the gate of the embodiment of the present invention, and 3 is a Si substrate with a thickness of about 150 μm to 300 μm, in which Ga or B is diffused to a depth of about 30 μm to 80 μm. The provided P-type base layer 4 is formed by applying phosphorus to a thickness of 10 μm to 50 μm using an oxide film as a mask on the P-type base layer 3.
This is an N-type emitter layer provided by selective diffusion to a depth of approximately 9 is a polysilicon growth layer having a thickness of 6000× laminated by the LPCVD method. 10 is a CVD Si 02 layered on the polysilicon layer, which acts as a bottom protective film. The resistance of the polysilicon layer can be varied from several tens of ohms to several tens of ohms by utilizing the fact that it is easily controlled by phosphorus diffusion.

第3図は、ゲート部の等価回路である。ここで、ゲート
・カソード間のダイオードの順方向特性において、順電
圧が、通常0.6.V程度の拡散電位に達した時、サイ
リスタはターンオンし、この時のダイオード順電流Ig
tがサイリスタのゲートトリガ電流である。本発明では
、ポリシリ層の抵抗は、第3図のRC,Kに相当するも
のである。°ここで、RGKは、次式により与えられる
FIG. 3 is an equivalent circuit of the gate section. Here, in the forward characteristic of a diode between the gate and the cathode, the forward voltage is usually 0.6. When the diffusion potential of about V is reached, the thyristor turns on, and the diode forward current Ig at this time
t is the gate trigger current of the thyristor. In the present invention, the resistance of the polysilicon layer corresponds to RC and K in FIG. °Here, RGK is given by the following equation.

Rsは、PNダイオード部抵抗を意味し、VD/Igt
iより求めている。
Rs means PN diode resistance, VD/Igt
I'm looking for more than i.

RGK = Vn−Rs/ (Rs・IGT −VD)
そこで、Vo==0.6V 、 Rs=60I(Ωの時
、TGTを50μ人に設定しようとする時、RGKは約
15にΩ程度に設定すれば良い。
RGK = Vn-Rs/ (Rs・IGT-VD)
Therefore, when Vo==0.6V and Rs=60I (Ω), when trying to set TGT to 50μ, RGK should be set to about 15Ω.

第4図は、第3図等価回路のIgt特性を示している。FIG. 4 shows the Igt characteristics of the equivalent circuit of FIG. 3.

すなわち、本サイリスタのIgtは、Tgt = Ig
tl + Ig、t2で表わされ、ポリシリ層を流れる
無効電流Igtlを制御すること、すなわちリン濃度の
コントロールにより、抵抗を可変することにより本サイ
リスタのIgtを精度良く、設定できる。
That is, Igt of this thyristor is Tgt = Ig
Igt of the present thyristor can be set with high accuracy by controlling the reactive current Igtl expressed as tl + Ig, t2, which flows through the polysilicon layer, that is, by controlling the phosphorus concentration, and by varying the resistance.

(6)効果の説明 以上説明したように、高感度サイリスタに於て、P型ベ
ース層とN型エミツタ層とを低抵抗層(ポリシリ層)に
て短絡した構造を採用することにより、本サイリスタの
Igtを精度良く設定することが可能となり、歩留り向
上に寄与し、原価低減に大きな効果が期待できる。
(6) Explanation of effects As explained above, this thyristor has a structure in which the P-type base layer and the N-type emitter layer are short-circuited by a low-resistance layer (polysilicon layer). It becomes possible to set Igt with high accuracy, which contributes to improving yield and can be expected to have a significant effect on cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の一般的な高感度サイ1ノスタの断面図
、第2図は、本発明でのサイ1ノスタのゲート付近の断
面拡大図、・第3図は、ゲート付近の等価回路図。第4
図は、第3図にて示しだゲート付近の等価回路図である
。 ′なお、図において、1・・・・・・P型エミッタ層、
2・・・・・・Nuペース層、3・・・・・・pgベー
ス層、4・・・・・・N型エミツタ層、5・・・・・・
カンード電極、6・・・・・・ゲート電極、7・・・・
・・アノード電極、8・・・・・・表面保護酸化膜、9
・・・・・・ポリシリ層による低抵抗層、10・・・・
・・CVD S lozによる表面保護膜、11・・・
・・・ゲート部PNダイオード、である。
Figure 1 is a cross-sectional view of a conventional general high-sensitivity Cy-1 Nostar, Figure 2 is an enlarged cross-sectional view of the Cy-1 Nostar of the present invention near the gate, and Figure 3 is an equivalent circuit near the gate. figure. Fourth
This figure is an equivalent circuit diagram of the vicinity of the gate shown in FIG. 3. 'In addition, in the figure, 1...P-type emitter layer,
2...Nu pace layer, 3...PG base layer, 4...N type emitter layer, 5...
Cando electrode, 6...Gate electrode, 7...
...Anode electrode, 8...Surface protective oxide film, 9
...Low resistance layer made of polysilicon layer, 10...
...Surface protection film by CVD S loz, 11...
...Gate part PN diode.

Claims (1)

【特許請求の範囲】 P型エミッタ層、N型ベース層、P型代−ス層。 N型エミツタ層の4層構造を有する高感度サイリスタに
於て、該P型代−ス層と該N型エミツタ層の接合表面に
低抵抗層を積層し、該P型代−ス層と該N型エミツタ層
とを短絡したことを特徴とする高感度サイリスタ。
[Claims] P-type emitter layer, N-type base layer, P-type substitute layer. In a high-sensitivity thyristor having a four-layer structure including an N-type emitter layer, a low-resistance layer is laminated on the junction surface of the P-type emitter layer and the N-type emitter layer, and the P-type emitter layer and the A high-sensitivity thyristor characterized by short-circuiting the N-type emitter layer.
JP3030283A 1983-02-25 1983-02-25 High sensitive thyristor Pending JPS59155963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3030283A JPS59155963A (en) 1983-02-25 1983-02-25 High sensitive thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3030283A JPS59155963A (en) 1983-02-25 1983-02-25 High sensitive thyristor

Publications (1)

Publication Number Publication Date
JPS59155963A true JPS59155963A (en) 1984-09-05

Family

ID=12299950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3030283A Pending JPS59155963A (en) 1983-02-25 1983-02-25 High sensitive thyristor

Country Status (1)

Country Link
JP (1) JPS59155963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994885A (en) * 1988-07-01 1991-02-19 Sanken Electric Co., Ltd. Bidirectional triode thyristor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559399A (en) * 1978-06-29 1980-01-23 Siemens Ag Arrester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559399A (en) * 1978-06-29 1980-01-23 Siemens Ag Arrester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994885A (en) * 1988-07-01 1991-02-19 Sanken Electric Co., Ltd. Bidirectional triode thyristor

Similar Documents

Publication Publication Date Title
US4117507A (en) Diode formed in integrated-circuit structure
JP3146579B2 (en) Programmable overvoltage protection circuit
KR920000639B1 (en) Gate-controlled bi-directional semiconductor switch device
JP3154480B2 (en) MOS pilot structure for insulated gate transistor
JPS59155963A (en) High sensitive thyristor
US3675091A (en) Planar p-n junction with mesh field electrode to avoid pinhole shorts
JPS60240158A (en) Semiconductor circuit
JPH0220849Y2 (en)
JPH0656890B2 (en) Vertical conductivity type MOS-FET
JP2510972B2 (en) Bidirectional thyristor
JPS58209161A (en) High-sensitivity thyristor
JPS61158175A (en) Planar-type transistor device
JPH06204463A (en) Semiconductor device
JPH0411775A (en) Semiconductor device and manufacture thereof
JPH08237096A (en) Drive circuit for capacitive load
JPS5737872A (en) Semiconductor device
JPS6236917A (en) Integrated circuit device
JP2549104B2 (en) Semiconductor device
JPH01186664A (en) Input circuit
JPH0128689Y2 (en)
JPS60189262A (en) Reversely conductive gate turn-off thyristor
JPS6245707B2 (en)
JPS59159569A (en) Semiconductor device
JPH0526771Y2 (en)
JPH03240240A (en) Semiconductor device