JPS59154753A - Separator for alkaline cell - Google Patents

Separator for alkaline cell

Info

Publication number
JPS59154753A
JPS59154753A JP58028482A JP2848283A JPS59154753A JP S59154753 A JPS59154753 A JP S59154753A JP 58028482 A JP58028482 A JP 58028482A JP 2848283 A JP2848283 A JP 2848283A JP S59154753 A JPS59154753 A JP S59154753A
Authority
JP
Japan
Prior art keywords
separator
thin film
resistance
parts
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58028482A
Other languages
Japanese (ja)
Inventor
Takashi Sawazaki
沢崎 隆
Akio Nojiri
昭夫 野尻
Nobumitsu Yamanaka
信光 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58028482A priority Critical patent/JPS59154753A/en
Publication of JPS59154753A publication Critical patent/JPS59154753A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve alkali resistance and alkali oxidation resistance, etc. by machining a mixture of polyolefin resin, extractable organic material, inorganic fine powder, and non-ion surface active agent into a thin film and subjecting it to extracting treatment. CONSTITUTION:To 100pts.wt. of synthetic resin made of polyolefin resin or added with hydrophilic resin, about 50-250pts.wt. of extractable organic material such as di-2-ethyl hexyl phthalate, about 100-350pts.wt. of inorganic such as titanium oxide, and a proper quantity of non-ion surface active agent are added and kneaded. After this mixture is machined into a thin film shape, the extractable organic material is subjected to extracting treatment to form a separator by using a proper organic solvent. This separator for an alkaline cell has alkali resistance, alkali oxidation resistance, and heat resistance, and is excellent in the electric and mechanical performance, thereby the cell life is improved when it is assembled into a cell.

Description

【発明の詳細な説明】 本発明は、微多孔薄膜からなるアルカリ゛屯池用セパレ
ータに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a separator for an alkaline tank comprising a microporous thin film.

従来、多孔寅アルカリ゛祇池用セパンータとしては、耐
アルカリ性、銅アルカリ酸化性、耐熱性を有し、且つ適
当な機械的性能を有するポリオレフィン樹脂を素材とし
た膜に適当な方法で多数の孔を設けたもの、又耐アルカ
リ性材の微粉末を乳化■合や焼結の方法により多数の孔
を設けたもの等がある。然し、此等のセパレータは親水
性が不充分であり又孔径が大き過ぎるものもあって、金
属イオン透過阻止性が低下して薄膜物性に弱点を有し1
、且つ製造方法が複雑で、コスト市となり、実用上不適
当であった。
Conventionally, as a porous alkali sepanter, a film made of a polyolefin resin that has alkali resistance, copper alkali oxidation resistance, heat resistance, and appropriate mechanical performance is made by forming a large number of pores by an appropriate method. There are also those with a large number of holes formed by emulsifying or sintering fine powder of alkali-resistant material. However, these separators have insufficient hydrophilicity and some have too large pore sizes, resulting in poor metal ion permeation blocking properties and weak film properties.
, and the manufacturing method was complicated and expensive, making it unsuitable for practical use.

又無機微粉体に液状の被抽出性有機物を混合吸おさせて
粉末状乃至顆粒状体とし、次にこれをポリオレフィン樹
脂に混練して、薄膜(=成形し、次に該成形物を抽出処
理することよりなる多孔体のフィルムは公知であるが、
該成形物をつくるとき上記の如き混合吸着と混練の2段
階の混合作業を行うから製造工程はふえることとなる。
In addition, a liquid extractable organic substance is mixed and sucked into an inorganic fine powder to form a powder or granule, which is then kneaded with a polyolefin resin to form a thin film (=formed), and then the molded product is subjected to extraction treatment. A porous film consisting of
When producing the molded article, the two-step mixing operation of adsorption and kneading as described above is performed, which increases the number of manufacturing steps.

尚このようにしてつくられた成形物は親水性が不充分な
のでセパレータとして電池に組立てたとき電池寿命が短
くなる欠点がある。
The molded product produced in this manner has insufficient hydrophilicity, so when assembled into a battery as a separator, the battery life is shortened.

又ポリオレフィン樹脂に無機充填剤を混合し、シートに
成形し2、次龜該レートを抽出処1するこ□とよりな6
多孔質薄、、晒も公知1ある力゛・該シート・で充分な
空孔率を得るためには延伸加工が必要で□・あり、その
結果孔:径が□大メケって金属イオン透過阻止性が低下
しJセパレニタとして薄膜の物性が不充分である。
Alternatively, the polyolefin resin is mixed with an inorganic filler, formed into a sheet, and then the rate is extracted.
In order to obtain sufficient porosity with a well-known force in porous thin sheets, bleaching requires stretching, and as a result, the pores are enlarged in diameter and metal ions permeate. The blocking properties are reduced and the physical properties of the thin film are insufficient as a J separator.

本発明は叙上の点を鍾みてなされたものであって、耐ア
ルカリ性、耐アルカリ酸化性、耐熱性に優れ、適当な機
械的性能を、有し、且つ親水性にも富む−f7 /(L
/ −5を開発し・本j′<li−夕で電池を組立たと
き電池寿命4台性の著′7:!L<向上することを目的
としたものである。則ち、ポリオレフィン樹脂に有機液
状の被抽出性物と無機微粉体と非イオン性界面活性剤と
を添加1シ、・、:それらを直ちに混練して混和物とな
し、該混和物を薄膜状に加工した後、該薄膜を抽出処理
することからなるアルカリ電池用セパレータである。合
成樹脂、被抽出性有機物、無機微粉体、非イオン性界面
活性剤の混和物中の被抽出性有機物は合成樹脂700重
量部(以下部と称す)に対してIO乃至2よ0部であり
、鋸機、微粉体は100乃至3θO部である。又非イオ
、ンり面活性剤も一一に混練するこ、どは9.れによっ
てつくられたセパレータの親水性を祷続させ電池寿命特
性を向上させるためである。
The present invention has been made in consideration of the above points, and has excellent alkali resistance, alkali oxidation resistance, heat resistance, appropriate mechanical performance, and is also rich in hydrophilicity. L
/-5 was developed and the battery life was 4 units when the battery was assembled in the book '7:! The purpose is to improve L<. That is, an organic liquid extractable material, an inorganic fine powder, and a nonionic surfactant are added to a polyolefin resin. This is a separator for alkaline batteries, which is obtained by processing the thin film into a thin film and then subjecting it to extraction treatment. The amount of extractable organic matter in the mixture of synthetic resin, extractable organic matter, inorganic fine powder, and nonionic surfactant is IO to 20 parts per 700 parts by weight of synthetic resin (hereinafter referred to as "parts"). , saw machine, fine powder is 100 to 3θO parts. Also, non-ionic and non-ionic surfactants should be kneaded together in step 9. This is to maintain the hydrophilicity of the separator made by this and improve battery life characteristics.

次に本発明に用いる化学組成について更に詳しく述べる
。ポリオレフィン樹脂とはポリオレフィン樹脂単独又は
これに親水婢樹脂を加えた合成樹脂な菖い、ポリオレフ
ィン樹脂には低密度、中密度および高密度のf?、エチ
レン1.ならび1ニプロビレンホモボリマー、z、j、
レン・プ、ロビレンランダム共亜合体、エチレン・テ、
シビンンブ、ロック共重合体、ポリブテン/なく・、の
・・′7種又はコ種以上の混合物を用い、これらのメ、
/l/’)インデックスMIは120/〜/θが好まし
い。MIが0.07より小さい樹脂は混練ならびに成形
□時に靴動性が悪ぐ、またMIがIOより大きいものは
薄膜に成形したときの機械的性能が悪くなる。
Next, the chemical composition used in the present invention will be described in more detail. Polyolefin resin is a synthetic resin consisting of polyolefin resin alone or a hydrophilic resin added to it. Polyolefin resin has low density, medium density and high density f? , ethylene 1. and 1 nipropylene homobolymer, z, j,
Ren Pu, Robylene Random Coagulation, Ethylene Te,
Shibinbu, rock copolymer, polybutene/non...' using a mixture of 7 or more types,
/l/') Index MI is preferably 120/ to /θ. Resins with an MI of less than 0.07 have poor shoe performance during kneading and molding, and resins with an MI greater than IO have poor mechanical performance when formed into a thin film.

被抽出性有機物とはポリオレフィン樹脂の加工温度の範
囲で液体である有機物で有機溶剤で抽出用能なものf(
らはよく、例えば′だ温で固形のものとしてはパラフィ
ン、塩化パラフィン等があり、液体のものでは、フタル
酸ジコーエテルヘキシル、フタル酸ジイソデシル、トリ
メリット酸トリコーエチルヘキシル、フタル酸ジブチル
等のフタル酸エネテル、ボリエデレングリコール、トリ
エチレングリコール、グリセリン、ポリプロ・ピレング
リ、コール等のグリ、コニニル知及びそれらのエーテル
類、セパシン酸ジコーエテルヘキ・シル、セバシン酸ジ
ブチル等のエステル類、ナフサ等の石油系炭化水系、ポ
リブテン等のオイル等である。□これら被抽出性有機物
の添加量ゆ前述したよう(″−含成樹脂76 o 部に
対してJ′O−2よρ部であるが若しこの添加量が!θ
郡より小さいときは条孔性が充分でなくなり、また2I
O部より大きいときは樹脂への溶解力上飽和し、″y:
混和が置県となる。  。
Extractable organic substances are organic substances that are liquid within the processing temperature range of polyolefin resins and that can be extracted with organic solvents.
For example, paraffin and chlorinated paraffin are solid at room temperature, and phthalates such as dicoethylhexyl phthalate, diisodecyl phthalate, tricoethylhexyl trimellitate, and dibutyl phthalate are liquid. Acid enether, polyethylene glycol, triethylene glycol, glycerin, polypropylene glycol, glycerol such as coal, esters such as dicoetherhexyl sepacate, dibutyl sebacate, petroleum-based products such as naphtha, etc. Hydrocarbon oils, polybutene oils, etc. □As mentioned above, the amount of these extractable organic substances added is ρ parts of J'O-2 relative to 76 o parts of the resin, but if this amount is !θ
When the size is smaller than 2I, the pore quality is insufficient, and 2I
When it is larger than O part, it is saturated in terms of its ability to dissolve the resin, and ``y:
Mixture becomes the prefecture. .

、無機微粉体とは酸化チタン、酸化ジルコニウム、カー
ボンブラック、舞水迂酸、珪酸カルシウム、11酸アル
ミニクム、アルミナ1、炭酸カルシウム、炭酸マグネシ
ウム、タルク、マイカ、グラファイト、硫酸バリウムJ
↓藻土、アスベスト等又はこれらの混合物でよく、出来
る丈撤粒、子のものがよく、10〜/ 00WLμのも
のが好ま・□しい。これら微粉体の樹脂への添加量は、
前述したように合成樹・、脂100部(二対して7oo
〜3.!O:部で:ある・を添加量が100部より少な
いと多孔性が失われ電、気、抵抗が大となり1.3!θ
部より多いと薄膜成形がしにくくなる。
, Inorganic fine powders include titanium oxide, zirconium oxide, carbon black, maizui oxidation, calcium silicate, aluminum 11ate, alumina 1, calcium carbonate, magnesium carbonate, talc, mica, graphite, barium sulfate J
↓Algae, asbestos, etc., or a mixture thereof may be used, and those with a particle size of 10 to 00 WLμ are preferable. The amount of these fine powders added to the resin is
As mentioned above, 100 parts of synthetic resin and resin (70 parts for 2 parts)
~3. ! O: parts: If the amount added is less than 100 parts, the porosity will be lost and the electric, air, and resistance will become large and 1.3! θ
If the amount exceeds 30%, it becomes difficult to form a thin film.

非イオン性界面活性剤とは、形成された薄膜に親水性を
与えるとともに薄膜の形成を容易ζユするための可塑剤
としての効果も併せ有するもので、分解温度がポリオレ
フィンの加工温度より高く、比表面張力低下能の大きい
ものが好ましい。例:えは、ラウリルエーテル系ンノニ
・ル]岨ニルエーテル系、オクチルフェノール系、アル
キルアリルエーテル系、ノニルフェノール系、脂肪酸系
等で特に好まし、いのは脂肪酸系中の脂肪酸アミド系で
分・千盪が70〉!θOのものである。   □ ゛本
発明において、合成樹脂としてはポリオレフイン樹脂の
みでもよいが親水性樹mlを加えることが親水性を更に
同上させるので好ましい。親水性樹脂とはポリビニルア
ルコールか、特に望ましいのはエチレン−ビニルアルコ
ール共重合体でビニルアルコール成分含量は30〜7!
%が特によい。
Nonionic surfactants provide hydrophilicity to the formed thin film and also act as plasticizers to facilitate the formation of the thin film, and their decomposition temperature is higher than the processing temperature of polyolefin. Those having a large ability to lower specific surface tension are preferred. Examples: Particularly preferred are lauryl ether type, nnonyl ether type, octylphenol type, alkyl allyl ether type, nonylphenol type, fatty acid type, etc.; is 70〉! It is of θO. □ ゛In the present invention, polyolefin resin alone may be used as the synthetic resin, but it is preferable to add a hydrophilic resin because it further improves hydrophilicity. The hydrophilic resin is polyvinyl alcohol, particularly preferably ethylene-vinyl alcohol copolymer, with a vinyl alcohol component content of 30 to 7!
% is particularly good.

ビニルアルコールの含量が多いと融点が商くなり、ポリ
オレフィンとの混和性が少なくなり加工性が低下し5、
その含量が少なくなると親水性が低下する。親水性樹脂
の添加量はポリオレフィン樹脂700部に対してθ〜2
0θ都でよい。
When the content of vinyl alcohol is high, the melting point becomes low, the miscibility with polyolefin decreases, and the processability decreases5.
When its content decreases, hydrophilicity decreases. The amount of hydrophilic resin added is θ~2 with respect to 700 parts of polyolefin resin.
0θ capital is sufficient.

本発明において上述した組成成分に更に抗酸化剤、紫外
線吸収剤、滑剤、成形助剤、老化防止剤等も本発明の効
果を特に阻害しない限り添加してもよい。
In the present invention, antioxidants, ultraviolet absorbers, lubricants, molding aids, anti-aging agents, etc. may also be added to the above-mentioned composition components as long as they do not particularly impede the effects of the present invention.

次に本発明における混練成形方法は一般的なプラスチッ
ク混線方法でよく、例えはバンバリーミキサ、ニーダ−
1熱ロール、カレンダーロール、押出機等でよい。連続
的にフィルム成形するためには混線性を考慮した場合λ
軸押出機かカレンダーロールを用いることが好ましい。
Next, the kneading and forming method in the present invention may be a general plastic mixing method, such as a Banbury mixer, a kneader, etc.
1 heat roll, calender roll, extruder, etc. may be used. In order to continuously form a film, considering crosstalk, λ
Preferably, a screw extruder or calender roll is used.

又薄膜成形方法は押出機の場合はTダイを用いるがあら
かじめシート状に押出したものを圧延ロール等で薄膜化
する方法でもよい。又峨熱または蒸気による熱プレスを
用いてもよい。又押出により得られたフィルムが厚い場
合、/軸又はλ軸方向に延伸してもよいが延伸倍率は体
積倍率で70倍までよいがこれ以上延伸すると微孔の孔
径が太き(なり過ぎて好ましくない。
In the case of a thin film forming method, a T-die is used in the case of an extruder, but it may also be a method of extruding a sheet in advance and forming it into a thin film using a rolling roll or the like. Alternatively, a heat press using superheat or steam may be used. If the film obtained by extrusion is thick, it may be stretched in the direction of the /axis or the Undesirable.

薄膜の厚さは2Qμから30θμ が望ましく、更に好
ましくは30〜2Qθμである。これは薄膜の機械的お
よび電気的特性によるほか、セパレータを極板に巻く場
合の作業性ならびにセパレータを巻いて組立てた極板群
の厚みなどを考慮したものである。
The thickness of the thin film is preferably 2Qμ to 30θμ, more preferably 30 to 2Qθμ. This is based on the mechanical and electrical properties of the thin film, as well as the workability of winding the separator around the electrode plates and the thickness of the assembled electrode plate assembly by winding the separator.

次に被抽出性有機物の抽出処理について述べる。Next, the extraction process of extractable organic matter will be described.

抽出処理は上述の如(混練成形された薄膜中に分散して
いる有機液状体の被抽出性有機物を溶解するが樹脂を溶
解しない条件で行わなければならないので、通常アセト
ン、ベンゼン、キシレン、ノルマルヘキチン、エタノー
ル、メタノール等のアルコール類、四塩化炭素、クロロ
ホルム等の有機溶剤を用いて常温からtOcOの温度範
囲で行ってよい。
The extraction process must be carried out as described above (usually using acetone, benzene, xylene, or The reaction may be carried out at a temperature range from room temperature to tOcO using alcohols such as hexitine, ethanol, and methanol, and organic solvents such as carbon tetrachloride and chloroform.

抽出により親水性が失われた場合は界面活性剤で表面処
理を行ってもよい。
If hydrophilicity is lost due to extraction, surface treatment may be performed with a surfactant.

次に本発明の実施例について述べる。(以下部とあるは
いずれも重量部を指す。) 実施例/ 組成は第7表に示したように合成樹脂としてのMIθ7
の中密度ポリエチレン/3部とビニルアルコール含量4
’0%のエチレン・ビニルアルコール共重合体り部、被
抽出性有機物としてフタル酸ジコーエチルヘギシル30
婦、無機微粉体として平均粒径グ0四μのアナターゼ型
酸化テタングθ部、更にR−c−N−(OzHlloH
)2で示されるアミン1 系界面活性剤ユ、コ部、ビスフェノール系老化防止剤9
02部を加え混合した後、試験用ニーダ−(二て混練し
、/♂θ0Cの熱プレスにより薄膜にした。
Next, examples of the present invention will be described. (All parts hereinafter refer to parts by weight.) Example/The composition is as shown in Table 7, with MIθ7 as a synthetic resin.
Medium density polyethylene/3 parts and vinyl alcohol content 4 parts
'0% ethylene/vinyl alcohol copolymer content, dicoethylhegysyl phthalate 30 as extractable organic matter
Anatase-type tetane oxide θ part with an average particle size of 04μ as an inorganic fine powder, and R-c-N-(OzHlloH
) Amine 1-based surfactant represented by 2, Bisphenol-based anti-aging agent 9
After adding and mixing 2 parts of 0.02 parts, the mixture was kneaded using a test kneader (two times) and formed into a thin film by hot pressing at /♂θ0C.

比較例として第1表に示すように実施例/の組成中、親
水性樹脂を添加せず又界面活性剤をソルビタンモノステ
アレート※としたもの(比較例/−/)、界面活性剤を
添加しなかったもの(比較例/−2)、無機微粉体を添
加しなかったもの(比較例/−3)、被抽出性有機物を
添加しなかったもの(比較例/−1)、親水性樹脂のビ
ニルアルコール含量を?θ%※※と大量にしたもの(比
較例/−りなどの!種類の実施例とは組成の異った比較
例のものをそれぞれ混練したところ、比較例/−3、は
微粉体がなかったので有機物が実質的に多過ぎ/−4、
は有機物がなかったので微粉体の量が重質的に多過ぎ、
また比較例/−!は親水樹脂のビニルアルコール量が多
過ぎ樹脂の相溶性が悪く、均一に混練することが不可能
であった。比較例/−/、/−λは実施例と同じ工程を
経て薄膜をつくり、実施例と共に常温のアセトン中に2
時1間浸漬して抽出処理を行い、ダイヤルゲージで膜厚
を測定し、K7t’i/lのKOH溶液(30°C)中
にて電気抵抗を測定した。測定結果は第1表に示したよ
うに本発明による実施例は比較例に比べて膜厚の薄いも
のができるし電気抵抗も小で竺れた薄膜特性紮ホした。
As a comparative example, as shown in Table 1, in the composition of Example /, no hydrophilic resin was added and the surfactant was sorbitan monostearate* (Comparative Example /-/), and a surfactant was added. (Comparative Example/-2), No inorganic fine powder was added (Comparative Example/-3), No extractable organic matter was added (Comparative Example/-1), Hydrophilic resin What is the vinyl alcohol content? When we kneaded the comparative examples with different compositions from the !type examples such as θ%※※ (comparative example/-3), there was no fine powder in comparative example/-3. Therefore, the organic matter was substantially too high/-4,
Since there was no organic matter, the amount of fine powder was extremely large,
Comparative example/-! Since the amount of vinyl alcohol in the hydrophilic resin was too large, the compatibility of the resin was poor, and it was impossible to knead uniformly. Comparative Examples /-/, /-λ were made through the same process as in the example, and 2
The sample was immersed for 1 hour for extraction treatment, and the film thickness was measured using a dial gauge, and the electrical resistance was measured in a K7t'i/l KOH solution (30°C). As shown in Table 1, the measurement results showed that the examples according to the present invention were thinner than the comparative examples, had lower electrical resistance, and had excellent thin film characteristics.

第    ン    表 実施例コ 実施例/の組成中ポリエチレンの代りにMI /。Table Example MI/ instead of polyethylene in the composition of Example/.

のエチレン・ブ、ロビ、レンブロック共重合体(エチL
/ン含量/3%)とし被抽出性有、欅物なトリ・メリッ
ト酸トリマーエテルへ、キシルとし、他は・実施例/と
同一としたものをミキサーで混合した。一方、比較例2
− /、件しては平均粒子径//邊μの無水微粉シリカ
71部にフタル酸ジλ−エテルヘキシル60部に一端混
合吸着させNJ籾粒状し、、次にこれをM、I/の中密
度ポリ・エテ・レン、、22部と混合した6又比較例2
−2としてM 、 I 、、/、、、、、、の中密度、
ボリエ・チ、レン/θO部に平抱粒子径3θ轟μ・の炭
、酸カルシウム100部ならびに脂肪酸アミド系界面活
性剤70部とをミキサーで混合した。以上の組成を第−
表に示す。次に第2表に示すZ種の混和物を30%φコ
軸押出機にてそれぞれ混練し、ペレット化し、該ペレッ
ト全4tOo#alI+巾のフィルムダイを装着した1
3φ単軸押出機でフィルムに押出した。これらのフィル
ムのうち実施例/、2比較例λ−/の3種のフィルムは
常温のアセトン中にコ時間浸□漬し、抽出処理を行った
。□比較例λ−一のフィルムを体積倍率で3倍となるよ
うに延伸し、厚さ100pとし、□後/規定のHc t
 ” (常温)中にj時間漫潰七、抽出処理を行った。
Ethylene block copolymer, Robi, Ren block copolymer (ethyl
Extractable tri-mellitic acid trimer ether (concentration: 3%) was mixed in a mixer with xyl, which was otherwise the same as in Example. On the other hand, comparative example 2
In this case, 71 parts of anhydrous fine powder silica with an average particle size of //μ is mixed and adsorbed with 60 parts of diλ-ethylhexyl phthalate to form NJ rice granules, and then this is mixed into M, I/ 6-prong comparative example 2 mixed with 22 parts of density polyethylene.
−2 as M , I , /, , , medium density,
100 parts of calcium oxide, charcoal having an average particle size of 3θ and 70 μm, and 70 parts of a fatty acid amide surfactant were mixed in a mixer with part of Borie, Ren/θO. The above composition is
Shown in the table. Next, the mixtures of type Z shown in Table 2 were kneaded and pelletized using a 30%φ coaxial extruder, and the pellets were made into pellets using a film die with a width of 4tOo#alI+1.
It was extruded into a film using a 3φ single screw extruder. Among these films, three types of films, Example/2 and Comparative Example λ-/, were immersed in acetone at room temperature for a period of time and subjected to extraction treatment. □The film of Comparative Example λ-1 was stretched to 3 times the volume magnification to a thickness of 100p, □After/specified Hc t
The extraction process was performed for seven hours at room temperature (at room temperature).

このようにして得られた薄膜の物性を第3・表に示す。The physical properties of the thin film thus obtained are shown in Table 3.

尚測定方法は次の如く膜厚測定はダイヤルゲニジ(ユよ
り、□孔径測定は電子顕微鏡により、□気孔率は空孔容
積/多孔体容積×100で、空孔容積は含水重量−乾燥
重容と□した。
The measurement method is as follows: film thickness is measured using a dial gauge (U), □ pore size is measured using an electron microscope, □ porosity is calculated as pore volume/porous body volume x 100, and pore volume is calculated as water content - dry weight. □I did.

電気抵抗はY7fF!/lのKOHを電解液として30
00で測定。耐アル1ガリ性は4t71P/bのKOH
Electrical resistance is Y7fF! /l of KOH as electrolyte
Measured at 00. Al 1 gali resistance is 4t71P/b KOH
.

1000中に一20時1間浸漬後の重量減少で表した。It was expressed as the weight loss after being immersed in 1,000 ml for 120 hours.

第3表によれば実施例1およびコは膜が比較例の第・−
表 ・       ■      ・     1.。
According to Table 3, the membranes of Example 1 and Co are comparative examples.
Table ・ ■ ・ 1. .

膜よりも薄いものができて電気抵抗が低く、又!アルカ
リ、性が・良伝が比較例−一/は膜が厚く、耐アルカリ
性が悪く (無水微粉シリカがアルカリに溶出するため
)また比較例トくは電気抵抗が大きく孔径が大きい。
It can be made thinner than a membrane and has low electrical resistance, and! Comparative Example 1 has a thick film and poor alkali resistance (because the anhydrous fine powder silica dissolves in alkali), and Comparative Example 1 has a high electrical resistance and a large pore size.

実施例3 次に第3表に示すような7種の薄膜をセパレータとし、
電解液にグθ%KOH水溶液を、電極にニッケル板と亜
鉛板を用いて、容量/θAHのり種のニッケル亜鉛電池
を組立てた。次に70回の予備放電の後、充電量/ 2
 A Hで//2c、ICの放電試験を行い、初期特性
を測定した。その結果を第9表に示す。第y表によれば
実施例/およびコは比較例コー/、およびコーコに比し
て電池容量ならびに平均′磁圧の点で優れた特性を示し
ている。
Example 3 Next, seven types of thin films as shown in Table 3 were used as separators,
A nickel-zinc battery with a capacity/θAH ratio was assembled using a GH% KOH aqueous solution as an electrolyte and a nickel plate and a zinc plate as electrodes. Then after 70 pre-discharges, the charge amount / 2
At AH // 2c, a discharge test of the IC was conducted and the initial characteristics were measured. The results are shown in Table 9. According to Table y, Example/Co shows superior characteristics in terms of battery capacity and average magnetic pressure compared to Comparative Examples Co/ and Coco.

次にこれらの電池の充放電寿命試験を工Oの放電条件で
行った。その結果を図に示す。図の縦軸は電池容量、横
軸はサイクルを示し、線/は実施例/、ツは実施例コ、
コー/は比較例コー7、コーコは比較例コーコを示す。
Next, a charge/discharge life test of these batteries was conducted under a discharge condition of 0. The results are shown in the figure. The vertical axis of the figure shows the battery capacity, the horizontal axis shows the cycle, the line / is the example /, tsu is the example,
Co/ indicates Comparative Example Co 7, and Coco indicates Comparative Example Coco.

図によれば本発明による実施例/およびコはサイクル寿
命の優れていることがわかる。
According to the figure, it can be seen that the embodiments according to the present invention have excellent cycle life.

上述したように、本発明によるアルカリ電池用セパレー
タは耐アルカリ性、耐アルカリ酸化性、を有t11、且
つ電気的、機械的性能に優れ電池に組立てたとき優れた
電池寿命を有する。
As described above, the alkaline battery separator according to the present invention has alkali resistance and alkali oxidation resistance of T11, and has excellent electrical and mechanical performance, and has an excellent battery life when assembled into a battery.

第ダ表 弘 簡単な図面の説明 図は本発明による実施例と比較例との′4池サイクル寿
命試験結果を示す。
Table 1: A simple explanatory diagram showing the results of a 4-cell cycle life test for an example according to the present invention and a comparative example.

/:実施例/ 、2:実施例ツ ツー/:比較例コー/ コー2:比較例コー=/:Example/ , 2: Example Two/: Comparative example/ Co2: Comparative example Co=

Claims (3)

【特許請求の範囲】[Claims] (1)  ポリオレフィン樹脂に被抽出性有機物と無機
微粉体と非イオン性界面活性剤とを混練して混和物とな
し、該混和物を薄膜状に加工した後、該薄膜を抽出処理
することからなるアルカリ電池用セパレータ。
(1) By kneading extractable organic matter, inorganic fine powder, and nonionic surfactant into a polyolefin resin to form a mixture, processing the mixture into a thin film, and then subjecting the thin film to extraction treatment. A separator for alkaline batteries.
(2)上記混和物中の被抽出性有機物の祉はポリオレフ
ィン樹脂/ 00恵Q部に対して!0乃至2!θ重量部
であることよりなる特許請求の範囲第/項記載のセパレ
ータ。
(2) The welfare of the extractable organic matter in the above mixture is relative to the polyolefin resin/00 Megumi Q part! 0 to 2! The separator according to claim 1, wherein the separator is θ parts by weight.
(3)上記混和物中の無機微粉体の量はポリオレフイン
樹脂10θM嵐部に対して100乃至3!O重量部であ
ることよりなる特許t6求の)IQ囲第/項又は第2項
記載のセパレータ。
(3) The amount of inorganic fine powder in the above mixture is 100 to 3! 0 parts by weight of the separator according to paragraph 1 or 2 of the IQ section of patent t6.
JP58028482A 1983-02-24 1983-02-24 Separator for alkaline cell Pending JPS59154753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028482A JPS59154753A (en) 1983-02-24 1983-02-24 Separator for alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028482A JPS59154753A (en) 1983-02-24 1983-02-24 Separator for alkaline cell

Publications (1)

Publication Number Publication Date
JPS59154753A true JPS59154753A (en) 1984-09-03

Family

ID=12249872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028482A Pending JPS59154753A (en) 1983-02-24 1983-02-24 Separator for alkaline cell

Country Status (1)

Country Link
JP (1) JPS59154753A (en)

Similar Documents

Publication Publication Date Title
CN101031421B (en) Polyolefin microporous membrane
US8283073B2 (en) Microporous polyolefin membrane
JP5984307B2 (en) Method for producing polyolefin microporous stretched film with cellulose nanofibers
TWI305215B (en) Polyolefin microporous membrane and separator for battery
CN101568575B (en) Polyolefin microporous membrane
JP5325405B2 (en) Polyolefin microporous membrane
JP5403932B2 (en) Polyolefin microporous membrane
JP3497569B2 (en) Polyethylene microporous membrane for non-aqueous battery separator
WO2009136648A1 (en) Separator for high power density lithium‑ion secondary cell
JP3917721B2 (en) Method for producing microporous membrane
JPH11213982A (en) Battery separator and battery
WO1993001623A1 (en) Separator of battery wherein organic electrolyte is used and production thereof
JP4964565B2 (en) Polyethylene microporous membrane
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP2000017100A (en) Preparation of polyethylene micro-porous membrane
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JPH11269290A (en) Polyoelfin fine porous membrane
JP2003231772A (en) Microporous film made of polyolefin
JP2012072263A (en) Polyolefin microporous film
JP3121047B2 (en) Homogeneous polyethylene microporous membrane and method for producing the same
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP3948762B2 (en) Zinc bromine secondary battery separator
JP3486785B2 (en) Battery separator and method of manufacturing the same
JP6122941B2 (en) Method for producing extruded product for use in production of polyolefin microporous stretched film containing cellulose nanofiber
JPS59154753A (en) Separator for alkaline cell