JPS59145442A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59145442A
JPS59145442A JP1910583A JP1910583A JPS59145442A JP S59145442 A JPS59145442 A JP S59145442A JP 1910583 A JP1910583 A JP 1910583A JP 1910583 A JP1910583 A JP 1910583A JP S59145442 A JPS59145442 A JP S59145442A
Authority
JP
Japan
Prior art keywords
combustion gas
combustion
heat
air
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1910583A
Other languages
Japanese (ja)
Other versions
JPS6248779B2 (en
Inventor
Akihiko Hisamatsu
明彦 久松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP1910583A priority Critical patent/JPS59145442A/en
Publication of JPS59145442A publication Critical patent/JPS59145442A/en
Publication of JPS6248779B2 publication Critical patent/JPS6248779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/28Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes
    • F24H1/282Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes with flue gas passages built-up by coaxial water mantles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To increase a heating surface area for the improvement of heat efficiency, by allowing a combustion gas to pass along the outer and inner wall surface of heat-exchanging fluid chamber, in a heat exchanger adapted to recirculate the combustion gas. CONSTITUTION:A part of combustion gas flows along the inner wall surface 2a of a burner to undergo a heat exchange with the water of heat-exchanging fluid chamber 4. Then, the combustion gas passes through a clearance at the attaching port 2b of flame retaining section, reaches a circulating flow inlet 16 and is withdrawn into a mixing pipe 20 under a negative pressure caused by a high velosity vortex air stream. The remaining part of combustion gas enters into a channel 6 via an opening 21 defined through inner and outer wall surfaces 2a, 2b of boiler and further passes along the outer wall surface 2b of boiler. The combustion gas has its heat exchanged with the water of fluid chamber 4 and is withdrawn into the mixing pipe under a withdrawing action taking place at the inlet 16. The recirculated combustion gas serves to heat up the mixture of kerosene grains and air to establish a gasification or its approximate combustion state of producing a blue burning flame.

Description

【発明の詳細な説明】 不発明は、噴霧ノズルの前方に設けた混合管に、燃焼カ
スを循環させて空気と燃料の混合気をガス化燃焼させる
ようにした燃焼装置を備えてなる熱交換装置に関するも
のである。
[Detailed Description of the Invention] The present invention is a heat exchanger comprising a combustion device that circulates combustion residue in a mixing pipe provided in front of a spray nozzle to gasify and burn a mixture of air and fuel. It is related to the device.

従来、石油給湯機等に用いられる液体燃料の燃焼方法と
して、ガンタイプバーナと称するものがある0これは、
送風機より送り出される空気と、電磁ポンプで加圧され
て噴霧ノズルから噴出される液体燃料(灯油粒子]の混
合気を、高圧電気放電にて着火し、燃焼させるものであ
る。ところが、この従来のものは、混合気の空気量が多
く、黄炎燃焼となり、熱効率が悪かった。しかも黄炎燃
焼のため、カーボン粒子が缶体内部の伝熱向に付着して
運転初期の熱交換効率を維持できないということと、炎
の振動による燃焼音が大きいという欠点があった。
Conventionally, as a method of burning liquid fuel used in oil water heaters, etc., there is a method called a gun type burner.
A mixture of air sent from a blower and liquid fuel (kerosene particles) pressurized by an electromagnetic pump and jetted from a spray nozzle is ignited and combusted using high-pressure electric discharge. However, due to the large amount of air in the air-fuel mixture, yellow flame combustion occurred, resulting in poor thermal efficiency.Furthermore, due to yellow flame combustion, carbon particles adhered to the heat transfer direction inside the can, maintaining the heat exchange efficiency at the initial stage of operation. The drawbacks were that the combustion noise caused by the vibration of the flame was loud.

また最近では、省エネルギー、省費源及び環境上の観1
点から高効率化、低騒音化の要求があり、灯油を気化さ
せて青炎燃焼させる、いわゆるロータリーガス化バーナ
あるいはヒーターガス化方式といった燃焼方式が開発さ
れている。ところが、前者のものは着火の立上がり時と
消火時に、灯油のガス化が不十分となって臭気が発生す
るという欠点があった。また後者のものはヒーターの予
熱時間が必要なため、使用上の不便さがあり、しかもヒ
ーターのコントロール等に複雑な制御を要する欠点があ
った0更には、いずれのものも基本的な灯油のガス化構
造が複雑で、保守点検に際し、特殊な技能を必要とする
欠点があった。
In addition, recently, energy saving, cost saving and environmental considerations 1
Due to this, there is a demand for higher efficiency and lower noise, and combustion methods such as so-called rotary gasification burners or heater gasification methods, which vaporize kerosene and burn it with blue flame, have been developed. However, the former method had the disadvantage that the kerosene was not sufficiently gasified at the time of ignition and extinguishment, resulting in odor. In addition, the latter method requires time to preheat the heater, making it inconvenient to use, and it also has the disadvantage of requiring complicated heater control. The gasification structure was complicated and required special skills for maintenance and inspection.

本出願人に上述の欠点を解決するものとして、先に、燃
焼カスを噴霧ノズルの四方に設けた混合管に循環させて
、空気と燃料の混合スケガス化燃焼させる燃焼装置及び
燃焼方法分、特願昭57−83799号で出願済みであ
る。
In order to solve the above-mentioned drawbacks, the present applicant first developed a combustion apparatus and a combustion method for circulating combustion scum through mixing pipes provided on all sides of a spray nozzle to combust a mixture of air and fuel to form skelet gas. The application has been filed under Application No. 57-83799.

不発明は、空気と燃料を混合させる混合管に、燃焼カス
を再度循環させるよりにした燃焼装置を備えてなる熱交
換装置において、被熱交換流体室の内外内壁面に沿って
燃焼ガスを流通させることにより、伝熱面ffRt増加
させて、熱交換効率を同上させんとするものである。
The invention is a heat exchange device comprising a mixing tube for mixing air and fuel and a combustion device for recirculating combustion residue, in which combustion gas is distributed along the inner and outer walls of a fluid chamber to be heat exchanged. By doing so, the heat transfer surface ffRt is increased and the heat exchange efficiency is increased.

以下に本発明のm我を、本出願人が先に出願した特願昭
57−83799号の燃焼装置ケ利用した熱交換装置の
実施例に基づいて、図面を参照して詳細に説明すると次
の通りである。
Hereinafter, the features of the present invention will be explained in detail with reference to the drawings, based on an embodiment of a heat exchange device using a combustion device in Japanese Patent Application No. 57-83799 previously filed by the present applicant. It is as follows.

第1図乃至第4図は、本発明の第1の実施例の熱交換装
置Aを示すものである。同図に示すようにこの熱交換装
置Aは、外装体1内に設置された円柱状の缶体2と燃焼
装置Bを有している。燃焼装置Bは、缶体2の下方内部
に形成された燃焼室3に臨んで設置されている01九缶
体2の燃焼室3の外部側部及び上部には、被熱交換流体
を貯留するための室4が形成されている。そしてこの実
施例では、缶体2の外周囲に所定間隙をもって断熱材5
を設置することにより、後述する燃焼ガスの通路6を形
成するようにしている0燃焼装置Bは、油圧ポンプ7で
加圧され危液体燃料を霧状の微粒子にして噴出する噴霧
ノズル8を有し、該ノズル8の外周には、送風ファン9
で起風された空気を噴出するための送風管lOが設置さ
れている。
1 to 4 show a heat exchange device A according to a first embodiment of the present invention. As shown in the figure, this heat exchange device A has a cylindrical can body 2 and a combustion device B installed in an exterior body 1. The combustion device B stores a fluid to be heat exchanged on the outer side and upper part of the combustion chamber 3 of the 019 can body 2, which is installed facing the combustion chamber 3 formed inside the lower part of the can body 2. A chamber 4 is formed for this purpose. In this embodiment, the heat insulating material 5 is placed around the outer periphery of the can body 2 with a predetermined gap.
The combustion device B has a spray nozzle 8 which is pressurized by a hydraulic pump 7 and sprays hazardous liquid fuel in the form of fine particles in the form of mist. A blower fan 9 is installed around the outer periphery of the nozzle 8.
A blower pipe IO is installed to blow out the air generated by the blower.

11は送風管10の先端開口部に設置された高速空気噴
出板である。この噴出板11は、燃料と空気を噴出する
中央噴出孔12と、その中心から所定距離をもって円周
方間に等間隔配置され之複数個の空気噴出孔13とを有
している0この空気噴出孔13は、それぞれが円周方間
に所定角度傾斜しており、噴出を気に旌回流を起こして
燃料粒子を更に微細化すると共に、燃料と空気の混合を
均一に分布せしめるようにしている014け、噴霧ノズ
ル8の先端近傍で高電圧によるスパークを発生させ、噴
出された燃料の微粒子に点火を行なう電極棒である。送
風管10の先端前方には、所定間隙をもって多重管構造
の保炎都15が設置されている。この間隙により、両筒
間に循環ガスの流入口(以下は循環流入口という) 1
6を形成するようにしている0多重管構造の保炎都15
は、そノ中心にステンレス製パンチングメタルの保炎板
17が設置されており、その外周に下汗方回へ拡開する
テーパーコーン状の保炎筒18が設置されている。そし
て、この保炎筒18の外周にステンレス製パンチングメ
タルの創作炎筒19が設置され、更にこれの外周に混合
管20がv置されているO 而して、噴霧ノズル8と対間する缶体2の内外壁面2a
、2bには、燃焼ガスの一部を通路6に導入する開口部
21が開設されているo22は排気煙突、23に被熱交
換流体の取出口で、241−1その供給口、25はドレ
ンである。
Reference numeral 11 denotes a high-speed air jetting plate installed at the opening at the tip of the blast pipe 10. This ejection plate 11 has a central ejection hole 12 for ejecting fuel and air, and a plurality of air ejection holes 13 arranged circumferentially at equal intervals at a predetermined distance from the center. The ejection holes 13 are each inclined at a predetermined angle in the circumferential direction, and the ejection holes create a circular flow to further refine the fuel particles and evenly distribute the mixture of fuel and air. This is an electrode rod that generates a spark using high voltage near the tip of the spray nozzle 8 to ignite the ejected fine particles of fuel. A flame-holding capital 15 having a multi-pipe structure is installed in front of the tip of the blast pipe 10 with a predetermined gap. This gap creates an inlet for circulating gas between the two cylinders (hereinafter referred to as the circulation inlet) 1
Flame-holding capital 15 with 0 multi-tube structure that forms 6
A flame-holding plate 17 made of stainless steel punched metal is installed in the center, and a tapered cone-shaped flame-holding cylinder 18 that expands toward the lower part of the body is installed on the outer periphery of the plate 17. An original flame tube 19 made of punched metal made of stainless steel is installed on the outer periphery of this flame stabilizing tube 18, and a mixing tube 20 is further placed on the outer periphery of this flame tube 18. Inner and outer wall surfaces 2a of body 2
, 2b has an opening 21 for introducing a part of the combustion gas into the passage 6. o22 is an exhaust chimney, 23 is an outlet for the heat exchange fluid, 241-1 is its supply port, and 25 is a drain. It is.

次に以上のように構成され次熱交換装置Aの動作態様を
、被熱交換流体を水とし、液体燃料全灯油とした場合に
基づいて説明する。尚、燃焼装置Bの供給燃料の量と供
給空気量はコンスタントである。
Next, the operation mode of the secondary heat exchange device A configured as above will be explained based on the case where water is used as the fluid to be heat exchanged and kerosene is used as the liquid fuel. Note that the amount of fuel and the amount of air supplied to the combustion device B are constant.

噴霧ノズル8より噴出された霧吹の灯油粒子は、電極棒
16のスパークによって点火され、最初のうちは、高速
空気噴出板11の先端近傍で黄炎燃焼を始める。この状
態では、空気が過剰である。
The atomized kerosene particles ejected from the atomizing nozzle 8 are ignited by the spark of the electrode rod 16, and at first begin yellow flame combustion near the tip of the high-speed air ejecting plate 11. In this condition there is an excess of air.

その後、この燃焼炎は次第に噴霧方向へ移行し、創作炎
筒19に伝播され、更に保炎板17に移行し、この保炎
板17に到る途中で整流されて、該保炎板17で安定す
る。このように創作炎筒19は、燃焼炎が保炎板17へ
移行するに際し、その伝播全スムーズにさせる働きをす
る〇 燃焼ガスは、その一部が缶体内壁面2aに沿って流れ、
このとき被熱交換流体室4の水と熱交換を行なう。そし
て保炎都15と缶体2の保炎都取付口26との間隙を通
って、循環流入口16に到リ、高速の旋回空気流によっ
て発生する負圧(吸引作用)で混合管20内に吸引され
る0また燃焼カスの残りの一部は、iftft外内外壁
1f!]2abに開設した開口部21から通路6へと流
入し、缶体外壁1fl12bに沿って渡れる。このため
、缶体外壁面2bにおいても流体室4の水と熱交換が行
なわれる。通路6を第2図の矢符の如く流れる燃焼カス
は、やがて循環流入口16に到沙、該流入口16に発生
する吸引作用によって混合管20内に吸引される。この
ようにして、缶体2の内外両壁向2a。
Thereafter, this combustion flame gradually moves in the spray direction, propagates to the creative flame cylinder 19, further moves to the flame holding plate 17, is rectified on the way to this flame holding plate 17, and is rectified by the flame holding plate 17. Stabilize. In this way, the original flame cylinder 19 functions to smooth the propagation of combustion flame when it moves to the flame holding plate 17. A part of the combustion gas flows along the inner wall surface 2a of the can, and
At this time, heat exchange is performed with the water in the heat exchange fluid chamber 4. Then, it passes through the gap between the flame-holding capital 15 and the flame-holding capital attachment port 26 of the can body 2, reaches the circulation inlet 16, and enters the mixing pipe 20 with negative pressure (suction effect) generated by the high-speed swirling air flow. 0 Also, the remaining part of the combustion residue is sucked into the ifft outer and inner walls 1f! ] It flows into the passage 6 from the opening 21 opened in 2ab, and can cross along the can body outer wall 1fl12b. Therefore, heat exchange with the water in the fluid chamber 4 also takes place on the can body outer wall surface 2b. The combustion residue flowing through the passage 6 as indicated by the arrow in FIG. 2 eventually reaches the circulation inlet 16 and is sucked into the mixing tube 20 by the suction action generated at the inlet 16. In this way, both the inner and outer walls 2a of the can body 2.

2bに沿って流通し、混合管20内に吸引された循環燃
焼ガスは、旋回空気流によってよく混合された灯油粒子
と空気との混合気を暖め、灯油粒子全カス化若しくはこ
れに近い状態にする。このため、燃焼状態は、カス化燃
焼若しくはこれに近い状態の燃焼となり、青炎燃焼が得
られる。すなわち、灯油粒子と、空気と、循環燃焼ガス
の三者が混合管20内で混和された後に整流され、過剰
空気で燃焼していたものが理論空気比に近い、しかも整
流された理想の燃焼となる。したがって、燃焼音が低く
、熱効率に優れた燃焼が得られる。以後はこの青炎燃焼
が持続される。
2b and sucked into the mixing pipe 20, the circulating combustion gas warms the mixture of kerosene particles and air, which are well mixed by the swirling air flow, and turns all kerosene particles into scum or a state close to this. do. Therefore, the combustion state becomes scum combustion or combustion in a state close to this, and blue flame combustion is obtained. In other words, kerosene particles, air, and circulating combustion gas are mixed in the mixing tube 20 and then rectified, and what used to be combustion with excess air is now ideal combustion that is close to the stoichiometric air ratio and is rectified. becomes. Therefore, combustion with low combustion noise and excellent thermal efficiency can be obtained. From then on, this blue flame combustion continues.

面して、上述の青炎燃焼を得るためには、空気と灯油粒
子の混合気に、燃焼ガスを適当量だけ混合させることが
必要であり、循環流入口16に発生する負圧(吸引作用
)の大きさが問題になる。
On the other hand, in order to obtain the above-mentioned blue flame combustion, it is necessary to mix an appropriate amount of combustion gas into the mixture of air and kerosene particles. ) is the problem.

そこで、本実施例では、上記負正に最も影響を与える噴
出空気の流速を変えて天験を行った結果、理想の空気比
に必要な燃焼ガス量を吸引するに足る流速を設定するに
到った。噴出空気の流速に影響を及ばず因子は、送風フ
ァン9の出力および送風管10の大きさくこの場合、8
0Wφ)を一定とすると、中央噴出孔12と空気噴出孔
13の孔径及び自噴出孔12と13の面積比である。な
お、空気噴出孔13の数及び中央噴出孔12と空気噴出
孔13間の距離は、噴出空気の流速にはほとんど影響を
与えず、無視できるものである0次だし、自噴出孔12
と13間の距離は、それが適正値を越えると、灯油粒子
と空気の良好な混合が得られなくなる3、送風管10i
80su+φとした本実施例の場合は、FITJ記距離
は、32IIII+が適当であった。
Therefore, in this example, as a result of experimenting with changing the flow velocity of the ejected air, which has the greatest effect on the negative and positive values, we were able to set a flow velocity sufficient to suck in the amount of combustion gas required for the ideal air ratio. It was. Factors that do not affect the flow velocity of the ejected air are the output of the blower fan 9 and the size of the blower pipe 10.
0Wφ) is constant, the hole diameters of the central jet hole 12 and the air jet hole 13, and the area ratio of the self-air jet holes 12 and 13. Note that the number of air ejection holes 13 and the distance between the central ejection hole 12 and the air ejection hole 13 have almost no effect on the flow velocity of the ejected air and can be ignored.
If the distance between and 13 exceeds the appropriate value, good mixing of kerosene particles and air will not be obtained.
In the case of this example where 80su+φ was used, the appropriate FITJ recording distance was 32III+.

表−1及び表−2は、噴出孔12.13の孔径と噴出空
気の流速及び供給空気量の関係を示す天験結果である。
Tables 1 and 2 are experimental results showing the relationship between the diameter of the ejection holes 12 and 13, the flow rate of ejected air, and the amount of air supplied.

なお、去叡は熱交換装置Aの外部で行なった。Note that the removal was performed outside the heat exchanger A.

表−1 送風管10の径=80m+φ 噴出孔12の径=18■
φ表−1から明らかなように、空気噴出孔13の孔径を
小さくすれば、噴出空気の流速は速くなり、循環流入口
16で発生する負圧は大きくなる。ところが、燃焼に必
要な供給空気量は噴出孔13の径が小さくなると減少す
る傾向にある。このため、供給空気量が十分にとれ、か
つ流速の速い孔径としては811IIIφが必要である
Table-1 Diameter of blast pipe 10 = 80m + φ Diameter of blowout hole 12 = 18■
As is clear from Table 1, if the diameter of the air ejection holes 13 is made smaller, the flow velocity of the ejected air becomes faster and the negative pressure generated at the circulation inlet 16 becomes larger. However, the amount of supplied air necessary for combustion tends to decrease as the diameter of the nozzle hole 13 becomes smaller. Therefore, a hole diameter of 811IIIφ is required to ensure a sufficient amount of supplied air and a high flow rate.

表−2 送風管10の径=80■φ噴出孔13の数=16噴出孔
13の径=8−オた表−2から明らかなように、中央噴
出孔12もその孔径な小さくすれば流速は速くなるが、
供給空気量は少なくなる0しかも、中央噴出孔12と空
気噴出孔13の全体の開口面積に対する中央噴出孔12
の開口面積の割合け、空気量に比例した値を取る0そこ
で供給空気量と、噴出空気流速のバランスを考慮すれば
、中央噴出孔12の孔径け、18〜2゜簡φが最適であ
る。
Table 2: Diameter of blower pipe 10 = 80 ■φ Number of nozzle holes 13 = 16 Diameter of nozzle hole 13 = 8 - O As is clear from Table 2, if the hole diameter of central nozzle 12 is made smaller, the flow rate will increase. is faster, but
The amount of air supplied decreases (0).Moreover, the central nozzle 12 is smaller than the total opening area of the central nozzle 12 and the air nozzle 13.
The ratio of the opening area of the opening area is 0, which takes a value proportional to the amount of air. Therefore, if you consider the balance between the amount of air supplied and the flow rate of the ejected air, the diameter of the central jet hole 12 is optimal to be 18 to 2 degrees simple φ. .

中央噴出孔12の孔径?18fmφ、空気噴出孔13の
孔径を8Wφ、空気噴出孔13の数を16、送風管10
の径を80簡φとして、大阪の空気流速を計測したとこ
ろ21m/θec ’″Cあった。参考までに、これま
でに市販されている燃焼装置の空気流速は、通常12・
5m/θθC程度であった。
What is the hole diameter of the central nozzle 12? 18 fmφ, the hole diameter of the air jet hole 13 is 8Wφ, the number of air jet holes 13 is 16, and the blower pipe is 10.
When we measured the air flow velocity in Osaka with the diameter of 80mm, it was 21m/θec'''C.For reference, the airflow velocity of combustion devices commercially available to date is usually 12.
It was about 5m/θθC.

要するに、この第1(7)実施例にあっては、缶体2の
内外両壁面2a、2bに沿って燃焼カスが循環流通し、
内壁面2a、2bで熱交換が行なわれるので、内壁面2
aのみで熱交換を行っていた従来のものに比較して、そ
の伝熱面積の増加が著しく、優れた熱交換効率が得られ
るものである。また混合管20内において、灯油粒子を
循環燃焼ガスで暖めることにより、カス化若しくけこれ
に近い状態にすると共に、空気と灯油粒子の混合気に燃
焼ガスを加えて、理論空気比に近い空気比で青炎燃焼さ
せているので、一定量の燃料に対する発生熱量が多く、
優れた熱効率が得られる。更には、整流された青炎燃焼
であるため、燃焼音も低いという利点がある。
In short, in this first (7) embodiment, combustion scum circulates along both the inner and outer wall surfaces 2a and 2b of the can body 2,
Since heat exchange takes place between the inner wall surfaces 2a and 2b, the inner wall surface 2
Compared to the conventional method in which heat exchange was performed only by a, the heat transfer area is significantly increased, and excellent heat exchange efficiency can be obtained. In addition, in the mixing tube 20, the kerosene particles are warmed with circulating combustion gas to form a state close to scum or scum, and combustion gas is added to the mixture of air and kerosene particles to bring the ratio close to the stoichiometric air ratio. Since it burns with a blue flame at an air ratio, it generates a large amount of heat for a given amount of fuel.
Excellent thermal efficiency can be obtained. Furthermore, since it is rectified blue flame combustion, it has the advantage of low combustion noise.

第5図は、本発明の第2の実施例を示すものである。こ
の第2の実施例は、缶体2ケ円筒状になして、その内外
壁面2a、2b問に氷室を形成し、また内部空間27を
燃焼カスの排気通路と・している。そして、缶体2の底
部外周囲に燃焼ガスの循環通路6を設けている。その他
の構成並びに作用効果は@記実施例と同じである。
FIG. 5 shows a second embodiment of the invention. In this second embodiment, there are two cylindrical can bodies, an ice chamber is formed between the inner and outer wall surfaces 2a and 2b, and an internal space 27 is used as an exhaust passage for combustion scum. A combustion gas circulation passage 6 is provided around the bottom of the can body 2. The other configurations and effects are the same as in the embodiment described in @.

第6図は本発明の第3の実施例を示すもので、上記第2
の実施例の缶体2の外周囲に、氷室28を有する筒状体
29を設け、両者間に燃焼ガスの循環通路6を設けたも
のである。このように氷室28.29を設けることによ
り、前記第1及び第2の実施例にも増して伝熱面積を拡
大することが可能であり、熱交換効率がよい。
FIG. 6 shows a third embodiment of the present invention.
A cylindrical body 29 having an ice chamber 28 is provided around the outer periphery of the can body 2 of the embodiment, and a combustion gas circulation passage 6 is provided between the two. By providing the ice chambers 28 and 29 in this way, it is possible to expand the heat transfer area more than in the first and second embodiments, and the heat exchange efficiency is improved.

第7図は上記第3の実施例の缶体内壁jtn Z aを
、下流方向に拡開する直線状となした第4の実施例であ
る。
FIG. 7 shows a fourth embodiment in which the can inner wall jtnZa of the third embodiment is formed into a straight line expanding in the downstream direction.

@8図は、本発明の第5の実施例を示すものである。こ
の実施例は、第5図に示す第2の実施例の燃焼装置Bを
縦置型に変更したもので、外装体lの上部に該燃焼装置
Bを取り付け、缶体2の底部に開口部21を開設して、
該缶体2の外周囲に形成された燃焼カスの循環通路6と
缶体2の内部空間27とを連通させている。この場合の
燃焼ガスは、缶体内部空間27から開口部21を通り、
循環通路6?上昇して、その一部は、循環流入口16か
ら混合管20内に吸引される。そして、残りの燃焼ガス
は、煙突22から外部に排出される。
@8 Figure shows a fifth embodiment of the present invention. In this embodiment, the combustion device B of the second embodiment shown in FIG. by opening a
A combustion scum circulation passage 6 formed around the outer periphery of the can body 2 and an internal space 27 of the can body 2 are communicated with each other. In this case, the combustion gas passes through the opening 21 from the can internal space 27,
Circulation passage 6? It rises and a part of it is sucked into the mixing tube 20 through the circulation inlet 16 . The remaining combustion gas is then exhausted to the outside from the chimney 22.

缶体2の内外壁面2a、2bで熱交換が行なわれること
は、開運の各実施例と同じである。またその他の構成並
びに作事効果についても開運の各実施例と同じである。
The fact that heat exchange is performed between the inner and outer wall surfaces 2a and 2b of the can body 2 is the same as in each of the Kaiun embodiments. Also, the other configurations and effects are the same as in each of the good luck embodiments.

以上説明したように本発明によれば、缶体の内外壁面で
熱交換を行なうことができ、缶体の内壁面でのみ行六つ
ていた従来のものに比較して伝熱面積の増加が著しく、
優れた熱交換効率が得られる。また燃焼ガス?燃焼装置
の混合管に循環させて、燃料粒子を暖めることにより、
ガス化若しくはこれに近い状態にすると共に、空気と燃
料粒子との混合気に燃焼ガス?加えて理論空気比に近い
空気比で燃焼させることにより、青炎燃焼させることが
でき、一定量の燃料に対する発生熱量が多く、装置の熱
効率に優れている。J#!には、燃焼炎が青炎であるこ
とと、多重管構造の保炎部による整流効果により、燃焼
音が低いという利点がある。
As explained above, according to the present invention, heat can be exchanged between the inner and outer walls of the can body, and the heat transfer area is increased compared to the conventional method in which heat exchange is performed only on the inner wall surface of the can body. Remarkably,
Excellent heat exchange efficiency can be obtained. Combustion gas again? By circulating the fuel particles through the mixing tube of the combustion device and warming them,
In addition to gasifying or a state close to this, the mixture of air and fuel particles is converted into combustion gas? In addition, by burning at an air ratio close to the stoichiometric air ratio, blue flame combustion can be achieved, a large amount of heat is generated for a given amount of fuel, and the device has excellent thermal efficiency. J#! This has the advantage of low combustion noise due to the blue flame and the rectifying effect of the flame stabilizing section of the multi-tube structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は第1.の実施例を示すもので、第1
図に熱交換装置の縦断面図、第2図は同装置の横断面図
、第3図は燃焼装置の横断面図、第4図は燃焼装置の部
分新曲斜視図、第5図は第2の実施例を示す熱交換装置
の縦断面図、第6図は第3の医施例を示す熱変換装置の
縦断面部、′@7図は第4の実施例を示す熱交換装置の
横断面図、第8図は第5の実施例を示す熱変換装置の縦
断面図である。 訃・・噴霧ノズル 20・・・混合管 1・・・外装体
2・・・缶体 3・・・燃焼室 2a・・・缶体内壁面
2b・・・缶体外壁面 21・・・開口部 4・・・清
体室6・・・循環通路 時計出願人  伊奈製陶株式会社 代理人 弁理士内田敏彦
Figures 1 to 4 are 1. This shows an example of the first
Figure 2 is a longitudinal cross-sectional view of the heat exchanger, Figure 2 is a cross-sectional view of the heat exchanger, Figure 3 is a cross-sectional view of the combustion equipment, Figure 4 is a partially new perspective view of the combustion equipment, and Figure 5 is the Fig. 6 is a longitudinal cross-sectional view of a heat exchange device showing a third medical example, and Fig. 7 is a cross-sectional view of a heat exchange device showing a fourth embodiment. 8 are longitudinal sectional views of a heat conversion device showing a fifth embodiment. ... Spray nozzle 20... Mixing tube 1... Exterior body 2... Can body 3... Combustion chamber 2a... Can inner wall surface 2b... Can body outer wall surface 21... Opening 4 ... Cleaning room 6 ... Circulation passage clock Applicant Ina Seito Co., Ltd. Agent Patent attorney Toshihiko Uchida

Claims (1)

【特許請求の範囲】[Claims] 1、噴霧ノズルの…1方に設けた混合管に、燃焼ガスを
循環させるようにした燃焼装置全外装体に内装設置され
た缶体の燃焼室に備えてなる熱交換装置において、燃焼
室の噴霧ノズルと対問する缶体の内外壁面に開ロ部ケ設
けると共に、缶C体の内外壁間に被熱交換流体室を設け
、該流体室の外側で、かつ前記開口部から@記燃焼装置
の混合管に至る間に、燃焼ガスの循環通路を設けたこと
を特徴とする熱交換装置。
1. A combustion device in which combustion gas is circulated through a mixing pipe provided on one side of the spray nozzle.In a heat exchange device for a combustion chamber of a can installed inside the entire exterior body, Openings are provided on the inner and outer walls of the can body that face the spray nozzle, and a heat exchange fluid chamber is provided between the inner and outer walls of the can body, and combustion is carried out outside the fluid chamber and from the opening. A heat exchange device characterized in that a combustion gas circulation path is provided between the mixing tubes of the device.
JP1910583A 1983-02-08 1983-02-08 Heat exchanger Granted JPS59145442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1910583A JPS59145442A (en) 1983-02-08 1983-02-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1910583A JPS59145442A (en) 1983-02-08 1983-02-08 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS59145442A true JPS59145442A (en) 1984-08-20
JPS6248779B2 JPS6248779B2 (en) 1987-10-15

Family

ID=11990198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1910583A Granted JPS59145442A (en) 1983-02-08 1983-02-08 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59145442A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213646A (en) * 1989-02-14 1990-08-24 Noboru Maruyama Liquid heater device
JPH0722358U (en) * 1994-08-24 1995-04-21 昇 丸山 Liquid heating device
KR20010076145A (en) * 2000-05-03 2001-08-11 엄재규 Hot water boiler
JP2008241116A (en) * 2007-03-27 2008-10-09 Sharp Corp Hot water supply system
CN109751764A (en) * 2017-11-07 2019-05-14 焦武军 A kind of WNS type boiler using the compound back tube sheet of water-cooling jacket

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150774U (en) * 1989-05-24 1990-12-27
JPH0339273U (en) * 1989-08-28 1991-04-16

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153043U (en) * 1978-04-18 1979-10-24
JPS56107432U (en) * 1980-01-21 1981-08-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153043U (en) * 1978-04-18 1979-10-24
JPS56107432U (en) * 1980-01-21 1981-08-20

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213646A (en) * 1989-02-14 1990-08-24 Noboru Maruyama Liquid heater device
JPH0722358U (en) * 1994-08-24 1995-04-21 昇 丸山 Liquid heating device
KR20010076145A (en) * 2000-05-03 2001-08-11 엄재규 Hot water boiler
JP2008241116A (en) * 2007-03-27 2008-10-09 Sharp Corp Hot water supply system
CN109751764A (en) * 2017-11-07 2019-05-14 焦武军 A kind of WNS type boiler using the compound back tube sheet of water-cooling jacket
CN109751764B (en) * 2017-11-07 2021-07-30 焦武军 WNS type boiler adopting water-cooling jacket composite type rear tube plate

Also Published As

Publication number Publication date
JPS6248779B2 (en) 1987-10-15

Similar Documents

Publication Publication Date Title
JP2526236B2 (en) Ultra low NOx combustion device
US4473349A (en) Liquid hydrocarbon fuel combustor
US6102687A (en) Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle
JPS59145442A (en) Heat exchanger
EP0025219B1 (en) Apparatus for heating a gas flowing through a duct
KR20180138243A (en) Pre-mixed air and gas type burners for capable of stable combustion under extreme conditions
US4375952A (en) Wall fired duct heater
JPS591917A (en) Burner for heating
JPH028203B2 (en)
JPS59157903A (en) Heat exchanger
JPS59153021A (en) Heat exchanger
JPS59158907A (en) Combustion apparatus
JP2001056107A (en) Gas burner
JPH0124962B2 (en)
JPS59147911A (en) Heat exchanger
JP3081317B2 (en) Liquid fuel combustion device
JPH0124963B2 (en)
JPS59164810A (en) Combustion device
JPH11257614A (en) Low calorific gas combustion burner
JPH0486403A (en) Complete combustion apparatus integrated with pressure air flow type burner
JP2654627B2 (en) Flashback heat vaporization reburning burner
JPS6243088B2 (en)
TWM543334U (en) Mixed gas and hydrogen burner
JPS6091126A (en) Low calorie gas burner
JPH0211804B2 (en)