JPS59141168A - Manufacturing method of gas diffusion type air pole - Google Patents

Manufacturing method of gas diffusion type air pole

Info

Publication number
JPS59141168A
JPS59141168A JP58015622A JP1562283A JPS59141168A JP S59141168 A JPS59141168 A JP S59141168A JP 58015622 A JP58015622 A JP 58015622A JP 1562283 A JP1562283 A JP 1562283A JP S59141168 A JPS59141168 A JP S59141168A
Authority
JP
Japan
Prior art keywords
gas diffusion
sheet
type air
resin film
air pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58015622A
Other languages
Japanese (ja)
Inventor
Nobuharu Koshiba
信晴 小柴
Hayashi Hayakawa
早川 林
Korenobu Morita
森田 是宣
Toshihiro Ise
伊勢 敏博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58015622A priority Critical patent/JPS59141168A/en
Publication of JPS59141168A publication Critical patent/JPS59141168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To improve the strength of cohesion between a catalyzer sheet and a porous fluorocarbon resin film as well as to secure a gas diffusion type air pole excellent in reliability, by applying an aqueous dispersion of polytetrafluoroethylene to one side of the catalyzer sheet, while making a porous fluorocarbon resin film coherent by pressure after being heated. CONSTITUTION:An aqueous dispersion 1-2 of polytetrafluoroethylene is applied by about 0.5-10mg/cm<2> to one side of a catalyzer sheet 1-1 containing fluorocarbon resin and dried up. This dispersion is treated with heat under a temperature of 100-400 deg.C, and a porous fluorocarbon resin film 1-3 is made to be coherent by pressure whereby a gas diffusion type air pole 1 is formed up. For your information, the air pole formation may take place even after the pressure sticking of the resin film 1-3. With this constitution, the strength of cohesion between the catalyzer sheet 1-1 and the porous fluorocarbon resin film 1-3 is well improved and, what is more, a liquid leakage is checked whereby air diffusion is kept in good condition, thus a span of service life in the air pole is well improvable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気(酸素)燃料電池、ボタン型空気電池な
どに用いられるガス拡散型空気極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion type air electrode used in air (oxygen) fuel cells, button type air cells, and the like.

従来例の構成とその問題点 従来、空気電池の空気極は、次の如く作られているのが
一般的である。まず、活性炭や貴金属、マンガン酸化物
などをフッ素樹脂ディスパージョンで十分混練しペース
ト状となし、これを金属スクリーンにシート状に塗着し
て乾燥した後多孔性のフッ素樹脂膜を密着させていた。
Conventional Structure and Problems Conventionally, the air electrode of an air battery has generally been made as follows. First, activated carbon, precious metals, manganese oxide, etc. were thoroughly kneaded with a fluororesin dispersion to form a paste, which was then applied to a metal screen in the form of a sheet, dried, and then covered with a porous fluororesin membrane. .

ここで触媒シート中にフッ素樹脂を混入するのは、空気
中の酸素を正極活物質として利用するため、酸素を触媒
中に拡散し易いように撥水性を保持させる目的からであ
る。まだ、多孔性フン素樹脂膜を密着させるのは、触媒
シート中を通過したアルカリ電解液が触媒シート表面に
たまっだシ、電池外へ漏出するのを防止するためである
The reason why the fluororesin is mixed into the catalyst sheet is to maintain water repellency so that oxygen can easily diffuse into the catalyst since oxygen in the air is used as a positive electrode active material. The reason why the porous fluororesin membrane is placed in close contact with the catalyst sheet is to prevent the alkaline electrolyte that has passed through the catalyst sheet from accumulating on the surface of the catalyst sheet and leaking out of the battery.

この観点からすると、従来の触媒シートと多孔性フッ素
樹脂膜との界面は必ずしも密着力及び撥水力が強くない
ため、長期保存中にフッ素樹脂膜が触媒シートより部分
的にはがれ、触媒シートを通過した電解液がその剥離部
分にたまり、酸素の拡散を妨害して電池の放電特性を劣
下させる原因となっていた。
From this point of view, the interface between the conventional catalyst sheet and porous fluororesin membrane does not necessarily have strong adhesion and water repellency, so during long-term storage, the fluororesin membrane may partially peel off from the catalyst sheet and pass through the catalyst sheet. The electrolytic solution accumulated in the peeled part interfered with the diffusion of oxygen, causing a deterioration in the discharge characteristics of the battery.

発明の目的 本発明は、従来例の問題点を解決したものであシ、ガス
拡飯型空気極を構成する触媒シートと多孔性フッ素樹脂
膜との密着強度を高めてガス拡散型空気極の信頼性(寿
命)を向上させ、空気電池の長期保存性を確保すること
を目的としたものである。    − 発明の構成 本発明は上記目的を達成するため、フッ素樹脂を含む触
媒シートの多孔性フン素樹脂膜が加圧密着される片面に
、あらかじめポリ4フツ化エチレン(pTFE、)の水
性ディスパージョンを塗着乾燥させ、多孔性フッ素樹脂
膜を加圧密着させる前又は後で100〜400 ’Cの
温度で加熱処理すること番特徴としたものである。こう
することにより、PTFEの水性ディスパージョンよシ
得た柔かい繊維状のフッ素樹脂により触媒シートと多孔
性フッ素樹脂膜との密着強度を強くすることができると
ともに、触媒シートと多孔性フッ素樹脂膜fの境界面の
撥水性を大とすることができる。したがって、電解液が
万一触媒シートを浸透しても、この境界面に漏出するこ
とはなく、ガス拡散空気極の寿命を大巾に伸ばすことが
できる。
Purpose of the Invention The present invention solves the problems of the prior art, and improves the adhesion strength between the catalyst sheet and the porous fluororesin membrane that constitute the gas diffusion type air electrode. The purpose is to improve reliability (life) and ensure long-term storage of air batteries. - Structure of the Invention In order to achieve the above-mentioned object, the present invention provides an aqueous dispersion of polytetrafluoroethylene (pTFE) on one side of a catalyst sheet containing a fluororesin to which a porous fluororesin membrane is adhered under pressure. The main feature of this method is that it is applied and dried, and that it is heat-treated at a temperature of 100 to 400'C before or after the porous fluororesin membrane is pressed and adhered. By doing this, the adhesion strength between the catalyst sheet and the porous fluororesin membrane can be strengthened by the soft fibrous fluororesin obtained from the aqueous dispersion of PTFE, and the adhesive strength between the catalyst sheet and the porous fluororesin membrane can be strengthened. The water repellency of the interface can be increased. Therefore, even if the electrolytic solution should permeate the catalyst sheet, it will not leak to this interface, and the life of the gas diffusion air electrode can be greatly extended.

以下、本発明の詳細は実施例によって説明する。Hereinafter, the details of the present invention will be explained with reference to Examples.

実施例の説明 二酸化マンガンと活性炭とカーボンブランクとを重量比
で20:50.:10の割合で配合し、これにさらにフ
ッ素樹脂の水性デイスノく−ジョンを固形分にして20
重量部を加え約30分間混練し、ペースト状トシてニッ
ケルスクリーンにシート状に塗着し厚さ0.5酷の触媒
シート1−1を得だ。
Description of Examples Manganese dioxide, activated carbon and carbon blank in a weight ratio of 20:50. : 10%, and further added fluororesin aqueous discontinuum to a solid content of 20%.
Parts by weight were added, kneaded for about 30 minutes, and applied to a paste in the form of a sheet on a nickel screen to obtain a catalyst sheet 1-1 with a thickness of 0.5 mm.

この触媒シート1−1の片面にPTFEの水性ディスパ
ージョン1−2をそれぞれを塗着し、その塗着量が0 
、0.5 、1.9 、3.0 、5.0 、10.1
6”f / c7Jとなるようにして乾燥した。さらに
、これらと未処理のものと100’C,200”C,3
00”C,400’C,500’Cにて加熱処理をした
ものについて用惹し、それぞれl(率さ0.1mtn、
気孔率40%の多孔性フン素樹脂膜1−3を片面に加圧
密着させた。このそれぞれを直径11.0’lll#I
に打ち抜き、空気極1とした・ この空気極1の断面図を第1図に示す。
Each of the PTFE aqueous dispersions 1-2 was applied to one side of the catalyst sheet 1-1, and the applied amount was 0.
, 0.5 , 1.9 , 3.0 , 5.0 , 10.1
It was dried at 6"f/c7J.Furthermore, these, the untreated one, 100'C, 200"C, 3
The samples heat-treated at 00'C, 400'C, and 500'C were used, respectively.
A porous fluororesin membrane 1-3 having a porosity of 40% was adhered to one side under pressure. Each of these has a diameter of 11.0'lll#I
A cross-sectional view of this air electrode 1 is shown in FIG. 1.

またこの空気極1を、空気孔2を底部に有した正極ケー
ス3内に空気拡散紙4を下に敷いた状態で配置し、セパ
レータ5、亜鉛負極6と組み合わせて直径11.6−1
高さ5.4朋の第2図に示すボタン型空気電池を構成し
た。
Further, this air electrode 1 is placed in a positive electrode case 3 having air holes 2 at the bottom with air diffusion paper 4 laid underneath, and is combined with a separator 5 and a zinc negative electrode 6 to form a cathode case 3 with a diameter of 11.6-1.
A button-type air cell shown in FIG. 2 with a height of 5.4 mm was constructed.

図中7は負極端子を兼ねた封目板、8は絶縁ガスケット
、9は空気孔2を閉塞するシール紙である。
In the figure, 7 is a sealing plate that also serves as a negative electrode terminal, 8 is an insulating gasket, and 9 is a sealing paper that closes the air hole 2.

これらの電池を製造直後と、30′c″に6力月間保存
後の条件で20 ”C下500Ω負荷により放電を行い
、100時間後の維持電圧を比較した。その結果を次表
に示した。
These batteries were discharged immediately after manufacture and after storage at 30'C'' for 6 months under a 500Ω load at 20''C, and the sustained voltages after 100 hours were compared. The results are shown in the table below.

以下余白 表から明らかなよ−うに、製造直後ではPTFEの水性
ディスパージョンの塗着量が0〜10.0wC7Rまで
は維持電圧が変わらず、15.0■44ではや5劣化し
ている。また、処理温度が未処理から500ででは未処
理と500 ’Cが悪く、100′c〜4QO′cと(
VC200〜300 ’Cが良好である。これは、未処
理ではPTFEの水性ディスパージョンに含まれる界面
活性剤が残存しているため、触媒が濡れ易く、空気の拡
散が明害されただめと思われる。
As is clear from the margin table below, immediately after manufacture, the maintenance voltage did not change when the coating amount of the aqueous PTFE dispersion ranged from 0 to 10.0wC7R, and deteriorated by 5 at 15.0wC7R. In addition, when the treatment temperature is from untreated to 500°C, untreated and 500'C are bad, and from 100'c to 4QO'c (
VC200-300'C is good. This is thought to be because the surfactant contained in the aqueous dispersion of PTFE remains when untreated, making the catalyst easy to wet and hindering air diffusion.

また6oO′Cではフッ素樹脂が熱劣化し、やけシ未処
理と同様に触媒が濡れ易くなった。
Further, at 6oO'C, the fluororesin was thermally degraded, and the catalyst became easily wetted, similar to the untreated case.

さらに、30 ’C6力月保存後においては、処理温度
面で未処理とSOO℃がさらに劣化しているが、1oO
′C:〜400 ’Cでは全般的に安定しており、製造
直後に比べて同等以上である。なかでもPTFEの水性
ディスパージョン塗着量は0.5〜1o、oflf//
ciがよく、とくに200−300℃下、1.0〜5.
olVc肩が最高である。
Furthermore, after storage at 30'C, SOO℃ further deteriorated compared to untreated in terms of processing temperature, but 1oO
'C: It is generally stable at ~400'C, and is equivalent or better than immediately after production. Among them, the coating amount of PTFE aqueous dispersion is 0.5 to 1o, oflf//
ci is good, especially at 200-300℃, 1.0-5.
olVc shoulder is the best.

これらのことからPTFHの水性ディスパージー17塗
着量が0.5〜10.0 my/ctAで処理温度が1
00〜400 ’Cであれば、従来のフッ素樹脂を塗布
しないものよシも保存特性にすぐれることが明らかであ
る。これは先述したように、触媒シート表面に塗着した
PTFE樹脂が、触媒シート中のフッ素樹脂及びシート
片面に密着させる多孔性のフッ素樹脂膜とに強化に結合
し、しかも境界面部分の撥JK性を強めて空気の拡散を
良好にしているためである。
From these facts, it is assumed that the coating amount of PTFH aqueous disperge 17 is 0.5 to 10.0 my/ctA and the treatment temperature is 1.
It is clear that at temperatures between 00 and 400'C, the storage properties are superior to those not coated with conventional fluororesin. As mentioned above, this is because the PTFE resin applied to the surface of the catalyst sheet strongly bonds to the fluororesin in the catalyst sheet and the porous fluororesin membrane that adheres to one side of the sheet, and the repellency of the interface area. This is because it strengthens the air and improves air diffusion.

この加熱処理は多孔性フッ素樹脂膜を触媒シートに加圧
密着させた後に行なった場合も、上記とまったく同じよ
うな結果が得られた。
Even when this heat treatment was carried out after the porous fluororesin membrane was brought into close contact with the catalyst sheet under pressure, results exactly similar to those described above were obtained.

発明の効果 このように本発明によれば、フッ素樹脂を含む触媒シー
トと多孔性フッ素樹脂膜との密着強度を高めるとともに
、両者の境界面の撥水性を犬として漏液を抑制して空気
の拡散を良好に保つため、ガス拡散型空気極の寿命を向
上させることができる。
Effects of the Invention As described above, according to the present invention, the adhesion strength between the catalyst sheet containing a fluororesin and the porous fluororesin membrane is increased, and the water repellency at the interface between the two is improved to suppress leakage and prevent air from flowing out. Since good diffusion is maintained, the life of the gas diffusion type air electrode can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における空気極の断面図、第2
図は同空気極を用いたボタン型空気電池を示す断面図で
ある。 1・・・・・・空気極、1−1・・・・・・触媒シート
、1−2・・・・・・PTFEディスパージョン、1−
3・・・・・・多孔性フッ素樹脂膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
Fig. 1 is a sectional view of the air electrode in the embodiment of the present invention, Fig.
The figure is a sectional view showing a button-type air cell using the same air electrode. 1... Air electrode, 1-1... Catalyst sheet, 1-2... PTFE dispersion, 1-
3... Porous fluororesin membrane. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  フッ素樹脂を含む触媒シートの片面に多孔性
フッ素樹脂膜を加圧密着させたガス拡散型空気極の製造
法であって、前記触媒シートの多孔性フッ素樹脂膜と対
向する面にあらかじめポリ4フツ化エチレンの水性ディ
スパージョンを塗着乾燥させ、前記多孔性フッ素樹脂膜
を加圧密着させる前又は後で1oO〜400での温度で
加熱処理するガス拡散型空気極の製造法。
(1) A method for manufacturing a gas diffusion type air electrode in which a porous fluororesin membrane is adhered under pressure to one side of a catalyst sheet containing a fluororesin, wherein A method for producing a gas diffusion type air electrode, which comprises applying and drying an aqueous dispersion of polytetrafluoroethylene, and heat-treating the porous fluororesin membrane at a temperature of 1 to 400 degrees Celsius before or after applying pressure and adhering the membrane.
(2)ポリ4フツ化エチレンの水性ディスパージョンの
触媒シートへの塗着量が0.6〜10”flc−である
特許請求の範囲第1項記載のガス拡散型空気極の製造法
(2) The method for producing a gas diffusion type air electrode according to claim 1, wherein the amount of the aqueous dispersion of polytetrafluoroethylene applied to the catalyst sheet is 0.6 to 10"flc-.
JP58015622A 1983-02-01 1983-02-01 Manufacturing method of gas diffusion type air pole Pending JPS59141168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58015622A JPS59141168A (en) 1983-02-01 1983-02-01 Manufacturing method of gas diffusion type air pole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58015622A JPS59141168A (en) 1983-02-01 1983-02-01 Manufacturing method of gas diffusion type air pole

Publications (1)

Publication Number Publication Date
JPS59141168A true JPS59141168A (en) 1984-08-13

Family

ID=11893803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58015622A Pending JPS59141168A (en) 1983-02-01 1983-02-01 Manufacturing method of gas diffusion type air pole

Country Status (1)

Country Link
JP (1) JPS59141168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268060A (en) * 1986-05-15 1987-11-20 Matsushita Electric Ind Co Ltd Manufacture of gas diffusion type air electrode
JP2017076538A (en) * 2015-10-15 2017-04-20 Fdk株式会社 Method for manufacturing air electrode of air secondary battery, and air-hydrogen secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723470A (en) * 1980-07-18 1982-02-06 Sanyo Electric Co Ltd Manufacture of gas diffusion electrode
JPS5792752A (en) * 1980-12-01 1982-06-09 Matsushita Electric Ind Co Ltd Manufacture of gas diffusing electrode
JPS5795079A (en) * 1980-12-04 1982-06-12 Matsushita Electric Ind Co Ltd Gas diffusion electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723470A (en) * 1980-07-18 1982-02-06 Sanyo Electric Co Ltd Manufacture of gas diffusion electrode
JPS5792752A (en) * 1980-12-01 1982-06-09 Matsushita Electric Ind Co Ltd Manufacture of gas diffusing electrode
JPS5795079A (en) * 1980-12-04 1982-06-12 Matsushita Electric Ind Co Ltd Gas diffusion electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268060A (en) * 1986-05-15 1987-11-20 Matsushita Electric Ind Co Ltd Manufacture of gas diffusion type air electrode
JP2017076538A (en) * 2015-10-15 2017-04-20 Fdk株式会社 Method for manufacturing air electrode of air secondary battery, and air-hydrogen secondary battery

Similar Documents

Publication Publication Date Title
JP4871295B2 (en) Design, method and process for unitizing MEA
US8148026B2 (en) Multi-layered electrode for fuel cell and method for producing the same
JP2003203646A (en) Manufacturing method of fuel cell membrane-electrode- gasket joint body and fuel cell containing the same
CN100573985C (en) Alkaline battery and production method thereof
JPS59141168A (en) Manufacturing method of gas diffusion type air pole
JPS61290658A (en) Manufacture of air electrode
JP2008098075A (en) Air battery
RU2331145C1 (en) Diaphram-elecrode block (deb) for fuel cell and method of its production
JPH09306509A (en) Manufacture of oxygen-reduced electrode, and battery therewith
JPH07201335A (en) Production of air electrode catalytic layer and cylindrical air cell using this method
JP3232936B2 (en) Cylindrical air battery
JP4639372B2 (en) Air battery manufacturing method
JPH10302808A (en) Oxygen reduction electrode and zinc air cell
JPS62268060A (en) Manufacture of gas diffusion type air electrode
JPH09129198A (en) Flat organic electrolyte battery
JPH07130346A (en) Nonaqueous electrolyte secondary battery
JPH02253573A (en) Air battery
JPS59146162A (en) Air electrode
JPS59154764A (en) Manufacturing method of air pole for button type air cell
JPS59180973A (en) Gas diffusion electrode for battery
JPH1083841A (en) Oxygen reducing electrode and its manufacture and battery using the electrode
JPS6188454A (en) Manufacture of gas diffusion electrode
JPH09120821A (en) Manufacture of electrode for solid polymer type fuel cell
JPS59139570A (en) Air pole
JPS61216275A (en) Button type air battery