JPS5913942A - Method for measuring density of fluid by weighing - Google Patents

Method for measuring density of fluid by weighing

Info

Publication number
JPS5913942A
JPS5913942A JP12284582A JP12284582A JPS5913942A JP S5913942 A JPS5913942 A JP S5913942A JP 12284582 A JP12284582 A JP 12284582A JP 12284582 A JP12284582 A JP 12284582A JP S5913942 A JPS5913942 A JP S5913942A
Authority
JP
Japan
Prior art keywords
vessel
container
sample fluid
water
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12284582A
Other languages
Japanese (ja)
Inventor
Kamekichi Shiba
芝 亀吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHISAKA KENKYUSHO KK
Original Assignee
SHISAKA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHISAKA KENKYUSHO KK filed Critical SHISAKA KENKYUSHO KK
Priority to JP12284582A priority Critical patent/JPS5913942A/en
Publication of JPS5913942A publication Critical patent/JPS5913942A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To know the density of gas with good accuracy by deciding the difference between the apparent mass when a vessel contg. a sample fluid under optional temp. and pressure is suspended in water kept at 4 deg.C and the mass of a vaccum vessel when the same is suspended in water kept at 4 deg.C as the mass of the sample fluid in the vessel. CONSTITUTION:A vessel 3 attached with a float 2 to the arm 1 of a balance is suspended in water kept at 4 deg.C. The float 2 is a hollow object, and is designed to receive suitable buoyance according to the mass and volume thereof. When a vaccum vessel floats owing to the buoyancy of the water and part thereof emerges to the outside of the water, the entire part thereof can be submerged into the water by attaching the weight 4 of the same material as the material of the vessel. The measurement of the density of the sample fluid by this method is accomplished by the following operation: The vessel is first evacuated. The vacuum vessel is suspended in the water kept at 4 deg.C, and weighed, whereby the apparent mass M0 is obtd. The vessel is filled with the sample fluid at temp. t deg.C and pressure (p). The sample contg. the sample fluid is suspended in the water kept at 4 deg.C and is weighed, whereby the apparent mass M is obtd. The mass (m) of the sample fluid in the vessel is m=M-M0. The density rho of the sample fluid at t deg.C and (p) is rho=m/V where the volume of the vessel at t deg.C and (p) is designated as V.

Description

【発明の詳細な説明】 本発明は、液体にも気体にも適用されるが特に気体に適
している密度測定法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring density, which can be applied to both liquids and gases, but is particularly suitable for gases.

液体、気体に適用されるこれまでの秤量による密度測定
方法は、大別して、 1) 容積が知られている容器に試料流体を満たしたと
きの質量と真空容器の質量と容器の容積ととから密度を
求める方法。
Conventional methods of measuring density by weighing applied to liquids and gases can be broadly divided into the following: 1) From the mass of a sample fluid filled in a container whose volume is known, the mass of the vacuum container, and the volume of the container. How to find density.

11)  体積の知られている固体に及ぼされる試料流
体の浮力と固体の体積とによる方法の2種とすることが
できる。
11) Two methods can be used: the buoyancy of the sample fluid exerted on a solid with known volume and the volume of the solid.

本発明の方法は、1)に近いが、浮力をも利用するので
、上記のいずれとも異る。
The method of the present invention is close to 1), but differs from any of the above because it also utilizes buoyancy.

試料流体で満たされている容器が4°Cの水中に吊るさ
れているときの見掛けの質量と真空容器が4°Cの水中
に吊るされているときの見掛けの質量との差は、容器に
入っている試料流体の着量に等しいことは、その流体が
どのような状態で存在しているかによらない。
The difference between the apparent mass of a container filled with sample fluid when it is suspended in water at 4°C and the apparent mass of a vacuum container when it is suspended in water at 4°C is The fact that the amount of deposited sample fluid is equal does not depend on the state in which the fluid is present.

試料流体の質量からその密度を求めるには、試料流体を
容器に入れたときの温度での容器の容積が知られている
必要がある。容器の容積が知られていないときには、密
度が知られている液体(たとえば水)をその容器に入れ
て、本発明の方法でその質量を測定することによって容
器の容積が知られる。
To determine the density of a sample fluid from its mass, the volume of the container at the temperature at which the sample fluid is placed in the container must be known. When the volume of a container is not known, the volume of the container is known by filling the container with a liquid of known density (eg water) and measuring its mass using the method of the invention.

試料流体で満たされている容器と真空容器との空気中で
の秤量によって試料流体の密度を知ることができるが、
空気の温度を精度よく一様に保つことはかなり困難であ
り、一様でなければ対流が生じるので、空気が浮力以外
の力を容器に及ぼし測定誤差が生じる。空気を攪拌して
も同様である。
The density of the sample fluid can be determined by weighing the container filled with the sample fluid and the vacuum container in air.
It is quite difficult to keep the temperature of the air accurately uniform, and if it is not uniform, convection will occur, and the air will exert forces other than buoyancy on the container, causing measurement errors. The same goes for stirring the air.

秤量を真空内で行えば、空気の対流などの影響はないが
、真空内での秤量はかなり厄介であり、その上に、空気
中での秤量と同様に、試料が気体であるときに、試料の
入っている容器および真空容器の秤量値が試料気体の質
量に比してはるかに太きいために、精度よく気体の密度
を知ることが困難である。
If weighing is carried out in a vacuum, there will be no effects such as air convection, but weighing in a vacuum is quite cumbersome, and, like weighing in air, when the sample is a gas, Since the weighed values of the container containing the sample and the vacuum container are much larger than the mass of the sample gas, it is difficult to accurately determine the density of the gas.

本発明の方法において4°Cの水中に吊るすのは、この
温度で水の密度が極太であるためである。
In the method of the present invention, the sample is suspended in water at 4°C because the density of water is extremely high at this temperature.

水温を4°Cに保つように制御する際に、温度が厳密に
一様でなくても水の密度は一様であり、対流はほとんど
生じない。しかも、液体の温度制御が気体の温度制御よ
り容易である。また、水の浮力のために秤量値がかなり
小さくなることも、空気中あるいは真空内での秤量より
有利である。
When controlling the water temperature to maintain it at 4° C., even if the temperature is not strictly uniform, the density of the water is uniform and almost no convection occurs. Moreover, controlling the temperature of liquid is easier than controlling the temperature of gas. It is also an advantage over weighing in air or vacuum that the weighing value is considerably smaller due to the buoyancy of water.

本発明の方法の別の効果は、真空容器の秤量値を適宜に
小さく調節することができる点にある。
Another advantage of the method of the invention is that the weighing value of the vacuum container can be adjusted to a suitably small value.

真空容器の秤量値が太きいときには、容器と同材質の浮
きをつげる。第1図は、本発明方法を実施するために、
天秤の臂1に浮き2をつけた容器3を4°Cの水中に吊
るした概略図である。浮き2は中空の物体で、その質l
°と体積とによって適当な浮力を受けるものとすること
ができる。また、真空容器が、水の浮力のために浮上し
てその一部が水の外に出るときには、第2図のように、
容器と同材質の錘り4をつけることによって、全部が水
中に入るようにすることができる。1,3は第1図に示
したものと同じである。このような場合には、容器と浮
きあるいは錘りとを容器とみればよい。なお、場合によ
っては浮きと錘りとを併用してもよい。真空容器の秤量
値が小さい(容器内の試料の質量より小さいか同程度で
ある)ことは、特に気体の密度測定に有利である。
If the vacuum container weighs too much, use a float made of the same material as the container. FIG. 1 shows that in order to carry out the method of the present invention,
It is a schematic diagram in which a container 3 with a float 2 attached to the arm 1 of a balance is suspended in water at 4°C. Float 2 is a hollow object whose quality is l
An appropriate buoyancy force can be applied depending on the angle and the volume. Also, when the vacuum container floats due to the buoyancy of water and a part of it comes out of the water, as shown in Figure 2,
By attaching a weight 4 made of the same material as the container, the entire container can be submerged in water. 1 and 3 are the same as shown in FIG. In such a case, the container and the float or weight can be regarded as the container. In some cases, a float and a weight may be used together. The small basis weight of the vacuum container (less than or comparable to the mass of the sample in the container) is particularly advantageous for density measurements of gases.

本発明の方法で試料流体の密度を測定する操作はつぎの
通りである。
The operation for measuring the density of a sample fluid using the method of the present invention is as follows.

1) 容器を真空にする。1) Vacuum the container.

2) 真空容器を4°Cの水中に吊るして秤量し、見掛
けの質量MOを得る。
2) Suspend the vacuum container in water at 4°C and weigh it to obtain the apparent mass MO.

3) 温度t’C,圧力pで、容器を試料流体で満たす
3) Fill the container with sample fluid at temperature t'C and pressure p.

4) 試料流体の入っている容器を4°Cの水中に吊る
して秤量し、見掛けの質量Mを得る。
4) Suspend the container containing the sample fluid in water at 4°C and weigh it to obtain the apparent mass M.

5) 容器内の試料流体の質imは m−M−MO(1) である。5) The quality of the sample fluid in the container is m-M-MO(1) It is.

6)  t’C,pでの容器の容積を■とすると、t’
C,pでの試料流体の密度pは m          (2) ■ である。
6) If the volume of the container at t'C,p is ■, then t'
The density p of the sample fluid at C,p is m (2) ■.

使用する容器についてMOが知られていれば、上記の操
作の1)12)は省略してよい。
If the MO of the container used is known, steps 1) and 12) above may be omitted.

容器の材質の膨張係数が知られていれば、適宜の一温度
でのVが知られておれば、任意の温度での容積が知られ
る。
If the coefficient of expansion of the material of the container is known, and if V at an appropriate temperature is known, the volume at an arbitrary temperature is known.

液体の密度測定の際にはほとんど問題にならないが、気
体の密度測定の際には、場合によっては、固体表面に気
体が吸着することによる誤差があると考えられる。本発
明の方法では、吸着のための誤差を補正することができ
る。これも本発明の効用の一つである。本発明の方法で
は、吸着があれば、容器の内壁面での吸着である。吸着
は、気体の種類と固体の種類および表面の状態とによる
ほか、温度および圧力により、表面の状態が一様ならば
、吸着量は表面の面積に比例すると考えられる。単位面
積当りの吸着量kを吸着係数ということにする。kは固
体の種類および表面の状態、気体の種類および温度、圧
力によると考えられる。
This is hardly a problem when measuring the density of a liquid, but when measuring the density of a gas, there may be errors due to adsorption of the gas on the solid surface. With the method of the present invention, errors due to adsorption can be corrected. This is also one of the effects of the present invention. In the method of the present invention, if there is adsorption, it is on the inner wall surface of the container. Adsorption depends on the type of gas, the type of solid, and the surface condition, as well as temperature and pressure.If the surface condition is uniform, the amount of adsorption is considered to be proportional to the surface area. The adsorption amount k per unit area is referred to as an adsorption coefficient. It is thought that k depends on the type of solid, the surface condition, the type of gas, temperature, and pressure.

また、吸着している気体の組成は必ずしも吸着されてい
ない気体の組成と同じであるとはいえない。
Furthermore, the composition of the adsorbed gas is not necessarily the same as the composition of the unadsorbed gas.

本発明の方法では、1個の容器で順次2回の測定を行う
ことによって密度および吸着係数を知ることができるが
、2個の容器を用いると都合がよい。
In the method of the invention, the density and adsorption coefficient can be determined by carrying out two successive measurements in one container, but it is advantageous to use two containers.

同材質の2個の容器R1,R2のt’Cでの容積、吸着
面積をそれぞれVl、 V2.8+、 S2とする。■
1(6) とv2とは等しくても等しくなくてもよいが、S1+8
2であり、その差がかなり太きいとする。それには、た
とえば、容器R+は通常の容器であるとし、容器R2は
通常の容器の中に容器と同材質、同様の表面状態の薄板
(面積は既知とする)を入れておく。内容器R1,R2
を真空にして、4°Cの水中に吊るしての秤量で得られ
不見掛けの質量をそれぞれM+ o 、 M20とする
。次に、温度t’C1圧力pで試料気体を内容器を通し
て流してから密閉して、4°Cの水中に吊るしての秤量
で得られる見掛けの質量をそれぞれMl、M2とする。
The volumes and adsorption areas at t'C of two containers R1 and R2 made of the same material are Vl, V2.8+, and S2, respectively. ■
1(6) and v2 may or may not be equal, but S1+8
2, and the difference is quite large. To do this, for example, assume that the container R+ is a normal container, and that a thin plate (with a known area) made of the same material and with a similar surface condition as the container is placed inside the container R2. Inner container R1, R2
are evacuated, suspended in 4°C water, and weighed, and the apparent masses obtained are M+ o and M20, respectively. Next, the sample gas is flowed through the inner container at a temperature t'C1 and a pressure p, and the container is sealed, and the apparent masses obtained by hanging the container in water at 4° C. and weighing it are Ml and M2, respectively.

内容器に入っている試料気体の質量をそれぞれm1m2
とすると、 である。
The mass of the sample gas in the inner container is m1m2, respectively.
Then, .

t’c、pで容器に入った質−imの気体は、その一部
が気体として存在し、残りは吸着している。
Part of the quality -im gas that enters the container at t'c, p exists as a gas, and the rest is adsorbed.

容器に試料気体を入れる際に試料気体をある時間持続し
て流すので、容器内で気体となって存在している分の密
度は容器に入る前の気体の密度と等しくρである、それ
で、内容器R1,R2について、それぞれ である。式(4)にあっては、吸着−JiH(ksl、
に82 )は、気体となって存在12ている分(ρv1
ρv2)に比して小さく、補正項とみられるので、Ω 吸着量はだいたい値で足りる。
When introducing the sample gas into the container, the sample gas is allowed to flow for a certain period of time, so the density of the gas that exists in the container as a gas is equal to the density of the gas before entering the container, which is ρ. The same applies to the inner containers R1 and R2. In equation (4), adsorption-JiH(ksl,
82 ) is present in the form of a gas (ρv1
Since it is small compared to ρv2) and can be seen as a correction term, an approximate value of Ω adsorption amount is sufficient.

式(4)両式により、 m 、 V2−m3V、−k (S+ V2− S2 
V、 )すなわち、 である。このkを式(4)の第1式に代入して整理する
と、 として、t’C,pでの試料気体の密度ρが知られる。
By both equations (4), m, V2-m3V, -k (S+ V2- S2
V, ), that is. By substituting this k into the first equation of equation (4) and rearranging it, the density ρ of the sample gas at t'C,p is known as follows.

1個の容器を用いての測定では、2回目の測定の際には
、容器の中に壁面と同材質同様の表面の状態の薄板を入
れて、試料気体で満たせばよい。
In measurements using one container, for the second measurement, a thin plate made of the same material and with a surface similar to that of the wall may be placed in the container and filled with the sample gas.

このようにして得られるρ、には4°Cでの値ではなく
、試料気体を入れたときの温度t’Cと圧力pとの状態
での値である。
The value ρ thus obtained is not the value at 4°C, but the value at the temperature t'C and pressure p when the sample gas is introduced.

容器は、膨張係数の小さいものを用いることが望ましい
。それは、4°Cの水温に多小の温度差があっても、賓
積に対する影響が小さいからである。
It is desirable to use a container with a small coefficient of expansion. This is because even if there is a slight difference in the water temperature of 4°C, the effect on the water volume is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明方法のそれぞれ異った実施状
態を示す説明図である。 1 ・・・・・・・・・・・・・・・・・・・・・・・
・天秤の臂2 ・・・・・・・・・・・・・・・・・・
・・・・・・浮き3 ・・・・・・・・・・・・・・・
・・・・・・・・・容器4 ・・・・・・・・・・・・
・・・・・・・・・・・・錘り特許出願人  株式会社
シサカ研究所 代理人(7524)最上正太部 第1図 \
1 and 2 are explanatory diagrams showing different implementation states of the method of the present invention. 1 ・・・・・・・・・・・・・・・・・・・・・・・・
・Arm of the scales 2 ・・・・・・・・・・・・・・・・・・
・・・・・・Float 3 ・・・・・・・・・・・・・・・
・・・・・・・・・Container 4 ・・・・・・・・・・・・
・・・・・・・・・・・・ Weight patent applicant Shisaka Institute Co., Ltd. Agent (7524) Mogami Shotabe Figure 1\

Claims (1)

【特許請求の範囲】[Claims] 圧力による容積変化が無視される容器を4°Cの水中に
吊るして秤量し、真空容器が浮上せずその見掛けの質量
が小さいように、容器と同材質の浮き、錘りで調節して
、任意の温度、圧力のもとで試料流体を入れた容器を4
°Cの水中に吊るしたときの見掛けの質量と4°Cの水
中に吊るしたときの真空容器の見掛けの質量との差を容
器内の試料流体の質量であるとし、該質量と試料流体を
入れたときの温度での容器の容積とによって試料流体の
密度を知る秤量による流体の密度測定方法。
A container whose volume change due to pressure is ignored is suspended in water at 4°C and weighed, and a float and weight made of the same material as the container are used to adjust the vacuum container so that it does not float and its apparent mass is small. 4 containers containing sample fluid under arbitrary temperature and pressure
The difference between the apparent mass of the vacuum container when suspended in water at °C and the apparent mass of the vacuum container when suspended in water at 4 °C is the mass of the sample fluid in the container, and this mass and the sample fluid are A method of measuring the density of a fluid by weighing, in which the density of the sample fluid is determined by the volume of the container at the temperature at which it is placed.
JP12284582A 1982-07-16 1982-07-16 Method for measuring density of fluid by weighing Pending JPS5913942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12284582A JPS5913942A (en) 1982-07-16 1982-07-16 Method for measuring density of fluid by weighing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12284582A JPS5913942A (en) 1982-07-16 1982-07-16 Method for measuring density of fluid by weighing

Publications (1)

Publication Number Publication Date
JPS5913942A true JPS5913942A (en) 1984-01-24

Family

ID=14846058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12284582A Pending JPS5913942A (en) 1982-07-16 1982-07-16 Method for measuring density of fluid by weighing

Country Status (1)

Country Link
JP (1) JPS5913942A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860818A (en) * 1987-09-21 1989-08-29 Ube Industries, Ltd. Die casting apparatus
US5363899A (en) * 1990-10-15 1994-11-15 Nippondenso Co., Ltd. Method of discriminating quality of die-cast article and die-casting process using same
CN104251806A (en) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 Heavy oil density normal temperature measuring method
CN111366493A (en) * 2020-03-18 2020-07-03 青海省柴达木综合地质矿产勘查院 Test method for density, moisture and porosity water supply degree of salt lake brine layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860818A (en) * 1987-09-21 1989-08-29 Ube Industries, Ltd. Die casting apparatus
US5363899A (en) * 1990-10-15 1994-11-15 Nippondenso Co., Ltd. Method of discriminating quality of die-cast article and die-casting process using same
CN104251806A (en) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 Heavy oil density normal temperature measuring method
CN111366493A (en) * 2020-03-18 2020-07-03 青海省柴达木综合地质矿产勘查院 Test method for density, moisture and porosity water supply degree of salt lake brine layer
CN111366493B (en) * 2020-03-18 2022-07-29 青海省柴达木综合地质矿产勘查院 Test method for density, moisture and porosity water supply degree of salt lake brine layer

Similar Documents

Publication Publication Date Title
Tanaka et al. A micrometer syringe dilatometer: application to the measurement of the excess volumes of some ethylbenzene systems at 298.15 K
JPS5913942A (en) Method for measuring density of fluid by weighing
CA2490264A1 (en) Liquid extrusion porosimeter and method
EP0265535B1 (en) Method for measuring volume
JPS6157565B2 (en)
JPH09126855A (en) Method for measuring storage volume by gas
US20040025571A1 (en) Method of measuring gas transmission hate of plastic film and measuring apparatus and computer program product used therefor
Hidnert et al. Density of solids and liquids
CN111289406A (en) Density measuring device and method with extremely small error
RU2162596C2 (en) Method measuring density
RU2243536C1 (en) Method of determining gas concentration in liquid
SU1516887A1 (en) Method of determining wettability of porous materials
JP2000088843A (en) Fresh concrete air meter and air quantity measuring method
Fernández-Pineda et al. Differential thermo-osmotic permeability in water–cellophane systems
JPS6110721A (en) Method for measuring volume, mass, liquid density or the like of body
SU1038836A1 (en) Device for determination of material steam permeability and sorption capacity
US703753A (en) Instrument for indicating the pressure of gas.
Lauder Theory and applicatin of the Gilfillan-Polanyi micropyknometer technique
JPH04297829A (en) Method for metering liquid under microgravity
JPH0587777B2 (en)
CN107884115A (en) Method and device for measuring air buoyancy change
RU2176078C2 (en) Procedure measuring density
JPS6153656B2 (en)
JPS6139299Y2 (en)
Petre et al. Shape of a liquid bridge and interfacial tension