JPS59138291A - Production of fluorescent film having high light transmittance - Google Patents

Production of fluorescent film having high light transmittance

Info

Publication number
JPS59138291A
JPS59138291A JP1172583A JP1172583A JPS59138291A JP S59138291 A JPS59138291 A JP S59138291A JP 1172583 A JP1172583 A JP 1172583A JP 1172583 A JP1172583 A JP 1172583A JP S59138291 A JPS59138291 A JP S59138291A
Authority
JP
Japan
Prior art keywords
sol
phosphor
film
aluminum
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1172583A
Other languages
Japanese (ja)
Other versions
JPH0514000B2 (en
Inventor
Masanori Yaguchi
矢口 正規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP1172583A priority Critical patent/JPS59138291A/en
Publication of JPS59138291A publication Critical patent/JPS59138291A/en
Publication of JPH0514000B2 publication Critical patent/JPH0514000B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To enable the calcination of a fluorescent material easily at a relatively low temperature in a short time, and to obtain a fluorescent film having high light transmittance at a low cost, by gelatinizing the sol of the component constituting the fluorescent material, forming the gel to a film, and calcining the film. CONSTITUTION:Metal alkoxides, organic acid metal compounds or metal salts each containing respective element constituting the matrix of a fluorescent material and respective element constituting the dopant of the fluorescent material are hydrolyzed to obtain a sol containing all elements essential to the fluorescent material. The sol is gelatinized in a vessel having a desired shape to form a film, and calcined at 300-1,300 deg.C to obtain the objective fluorescent film having high light transmittance.

Description

【発明の詳細な説明】 本発明は透明な螢光体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing transparent phosphors.

更に詳しくは、螢光体構成成分によるゾルをゲル化する
ことにより透明な螢光体を作製する方法に関する。
More specifically, the present invention relates to a method for producing a transparent phosphor by gelling a sol of phosphor constituents.

螢光体はほとんどの場合数μないし数十μの大きさの微
粒子が集まってできた螢光膜O形で利用される。螢光膜
がこの程度の大きさの微粒子から成り立っているために
つぎのような問題が生ずる場合がある。ある螢光体の粒
子から螢光が発生されても、その光は、螢光面の外へ出
るまでにほかの螢光体の粒子に何度かあたシ、その表面
で不規則な反射を受けてから螢光面外へ出ていく。そこ
で、陰極線管の螢光面の場合には、内側の面からでる螢
光を外側から見るために、この不規則な反射の影響が強
くでる。この結果、像に1カブリ“が生じてコントラス
トを悪くし、輝度の低下の原因ともなる。
In most cases, the fluorescent material is used in the form of an O-type fluorescent film, which is made up of fine particles with a size of several microns to several tens of microns. Since the fluorescent film is made up of fine particles of this size, the following problems may occur. Even when fluorescent light is emitted from a certain phosphor particle, the light hits other phosphor particles several times before exiting the phosphor surface, causing irregular reflections on its surface. After receiving the light, it exits the fluorescent surface. In the case of the fluorescent surface of a cathode ray tube, the influence of this irregular reflection is strong because the fluorescent light emitted from the inner surface is viewed from the outside. As a result, "1 fog" occurs in the image, which deteriorates the contrast and causes a decrease in brightness.

したがって、微粒子で構成されず且つ粒子間に空隙の無
い螢光膜もしくはそれに近い螢光膜をつくることが出来
れば輝度も向上し、コントラスト、鮮鋭度も格段に改善
される。
Therefore, if it is possible to create a fluorescent film or a similar fluorescent film that is not composed of fine particles and has no voids between particles, the brightness will be improved, and the contrast and sharpness will also be significantly improved.

本発明に於ける高透光性螢光膜とは上記螢光膜中に空隙
の極めて少ない螢光膜であり、透明もしくは乱反射の極
めて少ない所謂高い透光性を有する螢光膜(板状体も含
む)の事である。
In the present invention, the highly transparent fluorescent film is a fluorescent film with extremely few voids in the above-mentioned fluorescent film, and is transparent or has extremely low diffused reflection. ).

従来、本発明と同様の目的を得る次めには次のような方
法があった。
Conventionally, there have been the following methods for achieving the same purpose as the present invention.

1つには、真空蒸着方法である。これは通常の螢光体粉
末を蒸気源に入れ、5X10’mmHg  以上の真空
度で被蒸着板上に蒸着するものである。てこでは蒸着全
途中でやめると原料の螢光体と、できた螢光膜とで組成
が違ってくるので全部蒸着させることが必要である。ま
た原料中の飛びやすい成分が先に飛んでしまい、原料の
室部が蒸着したとしても、螢光体によりかなシ組成の異
なった螢光面ができやすい。
One method is vacuum deposition. In this method, ordinary phosphor powder is placed in a vapor source and vapor-deposited onto a plate under a vacuum of 5 x 10' mmHg or higher. With a lever, if the vapor deposition is stopped midway through, the raw material phosphor and the resulting phosphor film will have different compositions, so it is necessary to allow the entire vapor deposition to take place. In addition, even if the components in the raw material that are easy to fly fly away first and the raw material chamber is vapor-deposited, a phosphor surface with a different composition is likely to be formed depending on the phosphor.

この様にしてできた高透光性螢光膜はこのままでは螢光
をほとんど示さない。これは、螢光体の母体中に完全に
は付活剤が入り込んでいない事、母体の多くが無定形の
状態にあって結晶状態ではない事によると言われている
。そこで、この蒸着膜を適当に加熱すれば、母体の結晶
化および付活剤の母体中への拡散この方法が一番適して
いる螢光体は自己付活型の螢光体である。熱処理の時間
、温度は非常にきびしい条件で行なう必要があり、実際
上かなシ困難を伴なう。そこで考えられた方法は、あら
かじめ被蒸着板?加熱しておいて蒸着を行なうものであ
る。この方法によれば、蒸着時間を短縮させ処理温度全
低下させることができる。
The highly translucent fluorescent film thus produced exhibits almost no fluorescence as it is. This is said to be due to the fact that the activator does not completely enter the matrix of the phosphor, and that most of the matrix is in an amorphous state and not in a crystalline state. Therefore, by appropriately heating the deposited film, the matrix crystallizes and the activator diffuses into the matrix.The phosphor for which this method is most suitable is a self-activating phosphor. The heat treatment must be carried out under very strict conditions for time and temperature, which is difficult to carry out in practice. Therefore, the method that was considered was to prepare the plate to be deposited in advance. Vapor deposition is performed after heating. According to this method, the deposition time can be shortened and the processing temperature can be completely lowered.

もう1つの高透光性螢光膜作製方法は、気相反応法(ケ
ミカルベーパーデポジョン)によるものである。これは
気相反応により生じた螢光体が基板状に付着するもので
ある。この方法は硫化亜鉛系螢光体に1吏用できる。具
体的には、真空系へ接続した容器内部に硫化水素を1〜
2 +nm Hg  の圧で注入する。容器内部に保持
されている基板はあらかじめ500〜600℃に加熱さ
れている。この容器内に金属亜鉛と塩化マンガンの混合
物少量を落下させる。これが硫化水素と反応し、生じた
ZnS:Mn  が基板に付着する。しかし、この方法
では製作可能な螢光体は限定される。
Another method for producing a highly transparent fluorescent film is a gas phase reaction method (chemical vapor deposition). In this method, a phosphor produced by a gas phase reaction is attached to a substrate. This method can be applied to zinc sulfide based phosphors. Specifically, hydrogen sulfide was added to the inside of the container connected to the vacuum system.
Inject at a pressure of 2 + nm Hg. The substrate held inside the container is heated to 500 to 600°C in advance. A small amount of a mixture of metallic zinc and manganese chloride is dropped into this container. This reacts with hydrogen sulfide, and the resulting ZnS:Mn adheres to the substrate. However, the phosphors that can be manufactured using this method are limited.

本発明は、上述の蒸着方法、気相反応法とは根本的に異
なり、ゾルゲル法を用いて高透光性螢光膜?作製するも
のである。この方法は、従来方法と比較し格段に安価な
高透光性螢光膜を提供するものであシ、その工業上の利
点は計り知れない。
The present invention is fundamentally different from the above-mentioned vapor deposition method and gas phase reaction method, and uses a sol-gel method to create a highly transparent fluorescent film. It is to be manufactured. This method provides a highly transparent fluorescent film that is much cheaper than conventional methods, and its industrial advantages are immeasurable.

同発明で言うゾルゲル法とは、出発原料として目的とす
る螢光体化合物の金属アルコキシド、金属アセテートな
どの有機酸金属化合物もしくは金属塩を加水分解するこ
とによりゾルを形成し、このゾルをゲル化する方法であ
る。
The sol-gel method referred to in the same invention refers to forming a sol by hydrolyzing an organic acid metal compound or metal salt such as a metal alkoxide or metal acetate of the target fluorescent compound as a starting material, and converting this sol into a gel. This is the way to do it.

以下、出発原料が金属アルコキシドであり、螢光体がラ
ンタノイド系金属とアルミニウムとからなる複室金属酸
塩螢光体(以下ランタノイド系アルミ/酸塩螢光体とい
う)を91Jとしてゾルゲル法を説明しつつ本発明を説
明する1、う7タノイド系アルミ/酸塩螢光体は、従来
、母体となる、ランタノイド系金属の酸化物と酸化アル
ミニウムと、付活剤となるランタノイド系金属の酸化物
とを充分混合し、必要に応じて融剤等を添加11500
℃7’J至2000℃更にはそれ以上の高温で10数時
間もの長時間焼成する事によって得ていた。
The sol-gel method will be explained below using 91J as a starting material of a metal alkoxide and a phosphor of a multichamber metal salt phosphor (hereinafter referred to as a lanthanide aluminum/acid phosphor) consisting of a lanthanoid metal and aluminum. The present invention will be explained with reference to the following: 1. U7 Thanoid aluminum/acid phosphors have conventionally been prepared using a lanthanide metal oxide and aluminum oxide as a base material, and a lanthanide metal oxide as an activator. Thoroughly mix and add flux etc. as necessary11500
It was obtained by firing for a long time of more than 10 hours at high temperatures ranging from 7'J to 2000°C or even higher.

しかしながらこの様な従来法によると、得られるランタ
ノイド系アルミ/酸塩螢光体は粉末かあるいは形状の一
定しない螢光体となる。
However, according to such a conventional method, the obtained lanthanide-based aluminum/acid phosphor is a powder or a phosphor with an irregular shape.

従って希望する高透光性螢光膜にするには蒸着などの方
法によらなくてはならない。また、従来法では焼成する
温度が高<L75=も長時1司焼成する必要がある几め
容易には製造出来ず、この点が産業上大きな問題であっ
た。更に、従来法では粉末として得る場合のその粉末の
粒度分布が不均一である。一定の粒度のものを得るには
更に分級等を行なうことカニ必要であるためにその収率
が著しく低くなる。またその粒度も望むものが必ずしも
得られない。
Therefore, in order to obtain the desired highly transparent fluorescent film, a method such as vapor deposition must be used. In addition, in the conventional method, even if the firing temperature is high <L75=, it is necessary to carry out one firing for a long time, and it cannot be easily manufactured, which has been a big problem in industry. Furthermore, in the conventional method, when the powder is obtained, the particle size distribution of the powder is non-uniform. In order to obtain particles with a constant particle size, it is necessary to carry out further classification, etc., resulting in a significantly low yield. Furthermore, the desired particle size cannot always be obtained.

本発明者は上記の如き従来技術の問題点を解決すべく、
より低温で且つ高透光性を示し、所望の形状・粒度のう
/タノイドアルミン酸塩螢光膜を得るために種々研究を
重ねた結果、目的とするランタノイド系アルミン酸塩螢
光体を構成する金属成分のアルコキシドを加水分解する
ことによって得たゾルをゲル化する場合には、その後の
焼成は低い温度で且つ短時間に容易に行なうことができ
、また高透光性を示し所望の形状・粒度のランタノイド
系アルミン酸高透光性螢光体が得られることを見い出し
た。
In order to solve the problems of the prior art as described above, the present inventors
As a result of various studies to obtain a lanthanoid aluminate phosphor film with desired shape and particle size, which exhibits high translucency at lower temperatures, we have succeeded in producing the desired lanthanoid aluminate phosphor. When gelling a sol obtained by hydrolyzing the alkoxide of the constituent metal components, the subsequent firing can be easily carried out at a low temperature and in a short time, and it also exhibits high translucency and produces the desired result. It has been found that a lanthanide-based aluminate phosphor with high transparency and shape and particle size can be obtained.

即ち、本発明のランタノイド系アルミン酸塩螢光体の製
造方法は、(1)ランタノイド系金属のアルコキシドを
加水分解することによって得られたランタノイドゾル(
母体と付活剤の28m>とアルミニウムのアルコキシド
を加水分解することによって得られたアルミニウムゾル
との混合物(11)ランタノイド系金属のアルコキシド
(母体と付活剤の2種類)とアルミニウムのアルコキシ
ドとの混合Th’を加水分解することによって得られた
ゾル、及び(ili)ランタノイド系金属とアルミニウ
ムとの複合物のアルコキシド?加水分解することkよっ
て得られた複合ランタノイドアルミニウムゾルのうち少
なくとも1つのゾルをゲル化させた後、500℃乃至1
300℃の温度で焼成することを特徴とするものである
That is, the method for producing a lanthanoid aluminate phosphor of the present invention includes (1) a lanthanide sol obtained by hydrolyzing a lanthanide metal alkoxide (
Mixture of aluminum sol obtained by hydrolyzing aluminum alkoxide with 28m of matrix and activator (11) Mixture of lanthanoid metal alkoxide (two types, matrix and activator) and aluminum alkoxide A sol obtained by hydrolyzing a mixture Th', and (ili) an alkoxide of a composite of a lanthanoid metal and aluminum? After gelling at least one sol of the composite lanthanide aluminum sol obtained by hydrolysis, the sol was heated at 500°C to 100°C.
It is characterized by being fired at a temperature of 300°C.

尚、本発明で言うランタノイドとは原子番号57のラン
タンから原子番号71のルテチウムに至る15個の希土
類元素La 、 Ce 、 Pr。
The lanthanoids referred to in the present invention include 15 rare earth elements La, Ce, and Pr, ranging from lanthanum with an atomic number of 57 to lutetium with an atomic number of 71.

Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 D
y、 Ho。
Nd, Pm, Sm, Eu, Gd, Tb, D
Y, Ho.

Er、 Tm、 Yb、 Lu及び原子番号39のYi
総称するものである。
Er, Tm, Yb, Lu and Yi with atomic number 39
It is a general term.

上記ゾル混合物(1)はたとえば次の様にして得られる
The above sol mixture (1) can be obtained, for example, as follows.

無水ハロゲン化ランタノイドとアルカリ金属アルコキシ
ドとをアルコール中で反応させた後、溶媒をベンゼンで
置換し、生成したアルカリ金属ハライドを沈殿させr過
して取シ除き、ランタノイドアルコキシドのベンゼン溶
液を得る。次にこの溶液に水を加え加水分解することに
よシランタノイド水酸化物のゾルであるランタノイドゾ
ルを得る。一方、例えばアルミニウムアルコキシド1モ
ルに対して100モルの水を加え、75℃で加水分解し
、更に上記アルミニウムアルコキシド1モルに対して0
.1モルの塩酸を加え95℃で解膠することによってア
ルミニウムゾルを得る。
After reacting the anhydrous halogenated lanthanoid and the alkali metal alkoxide in alcohol, the solvent is replaced with benzene, and the alkali metal halide formed is precipitated and removed by filtration to obtain a benzene solution of the lanthanide alkoxide. Next, water is added to this solution and hydrolyzed to obtain a lanthanide sol, which is a sol of silanthanoid hydroxide. On the other hand, for example, 100 mol of water is added to 1 mol of aluminum alkoxide, hydrolyzed at 75°C, and then 0 mol of water is added to 1 mol of aluminum alkoxide.
.. An aluminum sol is obtained by adding 1 mol of hydrochloric acid and peptizing at 95°C.

上記ランタノイドゾルと上記アルミニウムゾルとを混合
することによりゾル混合物(1)が得られる。
A sol mixture (1) is obtained by mixing the lanthanoid sol and the aluminum sol.

上記ゾル(11)はたとえば次の様にして得られる。The above-mentioned sol (11) can be obtained, for example, as follows.

ランタノイドアルコキシドとアルミニウムアルコキシド
とを目的とするランタノイドアルミン酸塩螢光体の組成
比になるように量比を調整しベンゼンに溶解する。次に
、この溶液′!1l−4時間還流した後、水を加え加水
分解することによシゾル(11)が得られる。
The lanthanoid alkoxide and aluminum alkoxide are dissolved in benzene with the quantity ratio adjusted to match the composition ratio of the intended lanthanide aluminate phosphor. Next, this solution′! After refluxing for 1 l-4 hours, water is added and hydrolyzed to obtain Schizol (11).

上記複合ゾル(110はたとえば次の様にして得られる
The above composite sol (110) can be obtained, for example, as follows.

アルカリ金属ヲ窒素気流中で過剰のアルコールと反応さ
せアルカリ金属アルコラードを合成し、これにアルカリ
金属と等モルのアルミニウムアルコキシドを加え、約2
時間還流しアルカリ金属アルミニウムアルコキシドを合
成する。これをランタノイドノ・ライドアルコール溶液
に加え、4時間還流し反応させた後、溶媒をべ/ゼンで
置換し、生成したアルカリ金属)・ライドを沈殿させ7
Jj過して取り除き、う/タノイドアルミニウムアルコ
キシドのベンゼン溶液を得る。次にこの溶液に水を加え
加水分解することにより複合2ンタノイドアルミニウム
ゾルtnt+ e得る。この場合、目的とする組成のラ
ンタノイドアルミン酸塩螢光体の形成を容易にするため
に、加水分解前ニランタンイドアルミニウムアルコキシ
トニ対し少量のランタノイドアルコキシド又はアルミニ
ウムアルコキシドを添加することもできる。
An alkali metal is reacted with excess alcohol in a nitrogen stream to synthesize an alkali metal alcoholade, and to this is added an equimolar amount of aluminum alkoxide to the alkali metal.
Reflux for a period of time to synthesize alkali metal aluminum alkoxide. This was added to a lanthanide no-ride alcohol solution, and after refluxing and reacting for 4 hours, the solvent was replaced with be/zene, and the alkali metal)-ride formed was precipitated.
Remove by filtration to obtain a benzene solution of aluminum/thanoid aluminum alkoxide. Next, water is added to this solution and hydrolyzed to obtain a composite 2 tanthanoid aluminum sol tnt+e. In this case, in order to facilitate the formation of a lanthanide aluminate phosphor having the desired composition, a small amount of lanthanide alkoxide or aluminum alkoxide may be added to the nilanthanide aluminum alkoxytonium before hydrolysis.

内、以上のゾル調製において用いられるノ・ライドのハ
ロゲンとしては、フッ素、塩素、臭素およびヨウ素の何
れでも良いが特に反応安定性の点から塩素が最適である
。また、使用されるアルコールは、メチルアルコール、
エチルアルコール、クロビルアルコール、イソクロビル
アルコール、ブチルアルコール、イソブチルアルコール
、S−ブチルアルコール、アミルアルコール、イソアミ
ルアルコールなどの1価アルコールであるが、特にイソ
クロビルアルコールが着色等の問題を生ぜず好ましい。
Among these, the halogen used in the above sol preparation may be any of fluorine, chlorine, bromine and iodine, but chlorine is particularly suitable from the viewpoint of reaction stability. In addition, the alcohol used is methyl alcohol,
Monohydric alcohols such as ethyl alcohol, clovir alcohol, isoclovir alcohol, butyl alcohol, isobutyl alcohol, S-butyl alcohol, amyl alcohol, and isoamyl alcohol, but isoclovir alcohol in particular does not cause problems such as coloring. preferable.

本発明方法における上記(1) (II)及び/又は(
110のゾルのゲル化は水分全除去する等の方法で行な
われる。このゲル化により透明の薄膜や厚膜を成形する
には、上記ゾルをポリスチレン、ポリスチレン又はテフ
ロンなどの表面エネルギーの小さな容器中に入れて乾燥
させると良い。石英基板などの上にコートする方法も良
い。
The above (1) (II) and/or (in the method of the present invention)
The sol of No. 110 is gelled by a method such as removing all water. In order to form a transparent thin film or thick film by this gelation, the above-mentioned sol is preferably placed in a container with a low surface energy such as polystyrene, polystyrene, or Teflon and dried. A method of coating on a quartz substrate or the like is also good.

゛また、ゲル化によシ球状の粉末を得るには、界面活性
剤を添加した非水溶媒中で上記ゾルを攪拌することによ
シゾルと溶媒との界面張力の差を利用して球状ゾルとし
た抜水を除去しゲル化する。伺、この時の攪拌速度?調
節することによシ直径が数μ乃至約1瓢程度の球状ゲル
物質が得られる。本発明方法においては、以上の如くに
して成形されたゲル物質を500℃乃至1300℃の温
度で短時間焼成することにより、目的とするランタノイ
ドアルミノ酸塩螢光体から成る高透光性螢光膜が得られ
る。なお、得られた螢光膜は従来法により得られたそれ
と発光スペクトルは全く同様であった。
゛In order to obtain a spherical powder through gelation, the sol is stirred in a non-aqueous solvent containing a surfactant, and the difference in interfacial tension between the sol and the solvent is used to form a spherical sol. Remove the drained water and gel it. I ask, what is the stirring speed at this time? By adjusting the amount, a spherical gel material having a diameter of several microns to about 1 gourd can be obtained. In the method of the present invention, the gel material formed as described above is fired for a short time at a temperature of 500°C to 1300°C, thereby producing a highly translucent fluorophore composed of the desired lanthanide aluminate phosphor. A membrane is obtained. The luminescence spectrum of the obtained fluorescent film was exactly the same as that obtained by the conventional method.

以上の如き本発明方法によれば、従来法に比べてより低
い温度で且つより短かい時間での焼成によシランタノイ
ドアルミン酸塩螢光体が得られ、エネルギー消費量は少
ない。更に、本発明方法によれば、成形物を得ようとす
る場合には所望の形状のものが直ちに得られ、また粒状
物を得ようとする場合には粒度コノトロールが容易であ
るので所望の粒度のものが得られるという大きな利点が
ある。
According to the method of the present invention as described above, a silanthanoid aluminate phosphor can be obtained by firing at a lower temperature and in a shorter time than in the conventional method, and the amount of energy consumed is low. Further, according to the method of the present invention, when trying to obtain a molded product, a desired shape can be obtained immediately, and when trying to obtain a granular product, it is easy to control the particle size, so that the desired particle size can be easily obtained. The big advantage is that you get something like this.

更に最大の利点は、従来粉末品にくらべて高輝度比が計
れることにあ、る。これは、従来品と比較し10〜20
チの向上が得られる。
Furthermore, the biggest advantage is that a higher brightness ratio can be measured compared to conventional powder products. This is 10 to 20 times lower than conventional products.
Improved performance can be obtained.

以上出発原料を金属アルコキシドを用いて説明したが本
方法以外に、有機酸と金属・・ライドの反応物である有
機金属酸の加水分解、金属ハライドの加水分解による方
法でも同様に高透光性螢光膜とすることができる。
The above explanation was made using a metal alkoxide as the starting material, but in addition to this method, hydrolysis of an organometallic acid, which is a reaction product of an organic acid and a metal...ride, or a method of hydrolysis of a metal halide can also achieve high light transmittance. It can be a fluorescent film.

本発明で作成可能な螢光体としては、たとえば、Pナン
バーで示される様なカラーTV用螢光体、白黒TV用螢
光体、及び各種亀子管用螢光体、低速電子管用螢光体、
電場発光用螢光体、光電導体、ラング用螢光体、赤外応
用螢光体、蓄光用螢光体、放射線用螢光体などがあるが
、これらの他の公知の螢光体も可能である。
Examples of the phosphors that can be produced according to the present invention include phosphors for color TVs as indicated by the P number, phosphors for monochrome TVs, phosphors for various electron tubes, phosphors for low-speed electron tubes,
There are phosphors for electroluminescence, photoconductors, phosphors for Lang, infrared application phosphors, phosphors for phosphorescence, phosphors for radiation, etc., but other known phosphors are also possible. It is.

特に酸化物螢光体は作製しやすい。In particular, oxide phosphors are easy to produce.

・本発明で得られた螢光体の透明度は透過率として測定
した。
- The transparency of the phosphor obtained in the present invention was measured as transmittance.

透過率の測定には、30 m1m角で厚さ1tV′WL
の石英ガラス上に従来法による平均粒度6μのランタノ
イドアルミノ酸塩螢光体を厚さ100μに沈降塗布でコ
ートした。本発明に於ける透明螢光体は、ランタノイド
アルミ/酸塩ゾルを前述の石英ガラス上にコートして自
然乾燥して、100βの平滑なゲル体金得た。これを1
000℃で1時間焼成し、アルミン酸塩螢光体とした。
For transmittance measurement, a 30 m square with a thickness of 1 tV'WL was used.
A lanthanide aluminate phosphor having an average particle size of 6 microns was coated on quartz glass to a thickness of 100 microns by a conventional method by precipitation coating. The transparent phosphor of the present invention was obtained by coating the above-mentioned quartz glass with a lanthanoid aluminum/acid sol and drying it naturally to obtain a smooth gel body of 100β. This is 1
The resulting product was fired at 000° C. for 1 hour to obtain an aluminate phosphor.

ここで得られた測定試料を水垂に光学台上に配置し、1
00 m1m  の距離をおいてタングステンラング光
源より光を照射し、測定試料を通過後、試料より10 
m1m  はなしたホトマルにて受光し、螢光体を塗布
していないl m/m  厚の石英ガラスに対する透過
率を測定した。その結果、従来法による螢光体膜の透過
率は5−iosの範囲であったが、本発明による高透光
性螢光膜は30〜90チの範囲であった。
Place the measurement sample obtained here on the optical table in a water droplet,
Light is irradiated from a tungsten lung light source at a distance of 00 m1m, and after passing through the measurement sample, it is
Light was received with a photomultiplier having a distance of m1 m, and the transmittance was measured for quartz glass having a thickness of l m/m without being coated with a phosphor. As a result, the transmittance of the phosphor film made by the conventional method was in the range of 5-ios, but the transmittance of the highly transmissive phosphor film according to the present invention was in the range of 30-90 ios.

本発明の応用分野としては、。従来がら螢光膜が使用さ
れている所はいずれも問題なく使用可能である。更に高
精細度管への応用が考えられる。これは、ベネトレーン
ヨン型陰極線管の場合であシ、現在は粒子状の螢光#、
′f!ニブラウン管内部にコートしている。本発明の高
透光性螢光膜の応用は次のように行なう。
Fields of application of the present invention include: It can be used without any problems in any place where fluorescent films have been conventionally used. Furthermore, application to high-definition tubes can be considered. This is the case with Benetrayon type cathode ray tubes, which currently use particulate fluorescent light.
'f! Coated inside the CRT. The highly transparent fluorescent film of the present invention is applied as follows.

B、G、Hの三色をそれぞれ三層コートし、その三層の
間に高透光性絶縁物1(、たとえばゾルゲル法で得られ
る高透光性μm 03 S402膜)を挿入する。この
ようにすれば従来に1して高輝度でかつ解像度の良いペ
ネトレーション型陰極線管が得られる。
Three layers of each of the three colors B, G, and H are coated, and a highly transparent insulator 1 (for example, a highly transparent μm 03 S402 film obtained by a sol-gel method) is inserted between the three layers. In this way, a penetration type cathode ray tube with higher brightness and better resolution than ever before can be obtained.

以下実施例をもって説明する。This will be explained below using examples.

実施例1 高純度酸化イツトリウムと塩化アンモニウムとを混合し
、350℃の温度で1時間反応させた後、反応生成物の
無水塩化イツトリウム全エタノールで抽出し、更に溶媒
のエタン−ル?イングロピルアルコールでif 換L 
fr−0″iた金属ナトリウムをイソグロビルアルコー
ルとベンゼンとの混合溶液に入れ82℃で還流すること
によって得たアルコラードを上記無水塩化イツトリウム
溶液と混合し、更に82℃で還流した後、溶媒をベンゼ
ンに置換し、p過によシ塩化ナトリウムを除去してイッ
トリウムイソグロボキシドのべ/ゼン溶液tiた0この
溶液に水を加えて加水分解しイツトリウムゾルを得次。
Example 1 High-purity yttrium oxide and ammonium chloride were mixed and reacted at a temperature of 350°C for 1 hour.The reaction product, anhydrous yttrium chloride, was extracted with total ethanol, and then the solvent, ethyl chloride, was extracted with ethanol. If exchanged with ingropyl alcohol
The alcoholade obtained by adding fr-0''i metal sodium to a mixed solution of isoglobil alcohol and benzene and refluxing at 82°C was mixed with the above anhydrous yttrium chloride solution, further refluxing at 82°C, and then the solvent was replaced with benzene, sodium chloride was removed by p-filtration, and a benzene/zene solution of yttrium isogloboxoxide was obtained.Water was added to this solution and hydrolyzed to obtain a yttrium sol.

同様にしてセリウムのゾルを得た。A cerium sol was obtained in the same manner.

次ニ、アルミニウムアルコキシド1モルに対して100
モルの水を加え、75℃で加水分解し、更にこのアルミ
ニウムアルコキシド1モルに対して0.1モルの塩酸を
加え95℃で解膠することによってアルミニウムゾルを
得た。
Second, 100% per mole of aluminum alkoxide
An aluminum sol was obtained by adding mol of water and hydrolyzing at 75°C, and further adding 0.1 mol of hydrochloric acid per mol of this aluminum alkoxide and peptizing at 95°C.

以上得られたイツトリウムゾルとアルミニウムゾルとを
それぞれモル比で(イ)1 : 1 、(o)3:5及
び(ハ)l:2で混合し、更にセリウムゾルをC昆合q
勿1モルに対し2.5X10’モル混合し、テフロン容
器に入れ、室温乾燥して透明なゲル状の成形体膜を得た
。次にこれ1i o o o℃で2時間焼成してそれぞ
れ(イ)YAlO3:  Ce  +  Y3・#s 
 Olt   ’   Ce   (ロ)  YsAl
s  Olt:Co及び(ハ)Y2 A140g : 
Ceで組成式が示されるセリウムアルミン酸イツトリウ
ム螢光体から成る高透光性螢光膜が得られ次。この事は
X線回折によシ同定された。
The yttrium sol and aluminum sol obtained above were mixed at a molar ratio of (a) 1:1, (o) 3:5, and (c) l:2, and then the cerium sol was mixed with C and q.
2.5 x 10' moles of the mixture were mixed for 1 mole of the mixture, placed in a Teflon container, and dried at room temperature to obtain a transparent gel-like molded film. Next, this was fired for 2 hours at 1i o o o o °C to form (a) YAlO3: Ce + Y3・#s
Olt' Ce (b) YsAl
s Olt: Co and (c) Y2 A140g:
A highly translucent phosphor film consisting of a cerium yttrium aluminate phosphor having a compositional formula of Ce was obtained. This was confirmed by X-ray diffraction.

実施例2 イットリウムイソグロボキシドとアルミニウムイソグロ
ボキシドとセリウムイソグロポキシドとをモル比で3:
5:5X10  ”のJ1合でベンゼン溶液中で混合し
、82℃の温度で4時間還流した後、元分水を加えて加
水分解しイツトリウムゾルとアルミニウムゾルとセリウ
ムゾルとの混合物を得た。
Example 2 Yttrium isogloboxide, aluminum isogloboxide, and cerium isogloboxide in a molar ratio of 3:
The mixture was mixed in a benzene solution with a J1 ratio of 5:5×10 ” and refluxed at a temperature of 82° C. for 4 hours, followed by adding water for hydrolysis to obtain a mixture of yttrium sol, aluminum sol and cerium sol.

これを実施例1と同様にしてゲル化し焼成したところ組
成式がYB At50H: Ce  で示されるセリウ
ム付活アルミン酸イツトリウム螢光体からなる高透光性
螢光膜が得られた。この事はX線回折にょシ同定された
When this was gelled and fired in the same manner as in Example 1, a highly transparent phosphor film consisting of a cerium-activated yttrium aluminate phosphor having the composition formula YB At50H:Ce was obtained. This was identified using X-ray diffraction.

実施例3 金属カリウムを窒素気流中で過剰のイングロビルアルコ
ールと反応させカリウムイソグロボキシド(l  C3
H?OK )を合成し、これに上記金属カリウムと等モ
ルのアルミニウムイソグロボキシドを加え2時間還流し
てカリウムアルミニウムイソグロボキシド(KM (1
−OC,H7)4 ) k合成した。これを塩化イット
リウムイソグロビルアルコール溶液及び塩化セリウムイ
ソグロビルアルコール溶液に加え4時間還流し、イツト
リウム・セリウム・アルミニウムイソグロポキシド(Y
”Ce(N(1−0C3H? )4 〕s )  k合
成した。反応副生成物のにαは溶媒をベンゼンに置換し
た後1別した。
Example 3 Potassium metal was reacted with excess inglobil alcohol in a nitrogen stream to produce potassium isogloboxoxide (l C3
H? To this was added aluminum isogloboxide in an equimolar amount to the metal potassium and refluxed for 2 hours to synthesize potassium aluminum isogloboxoxide (KM (1
-OC, H7) 4) k was synthesized. This was added to an alcoholic solution of yttrium isoglobil chloride and an alcoholic solution of cerium chloride and refluxed for 4 hours to produce yttrium-cerium-aluminum isoglopoxide (Y
``Ce(N(1-0C3H?)4]s)k was synthesized.The reaction by-product α was separated after replacing the solvent with benzene.

得られたアルコキシドに過剰の蒸留水を添加しRaによ
り複合イツトリウムアルミニウムセリウムゾルを得た。
Excess distilled water was added to the obtained alkoxide and subjected to Ra to obtain a composite yttrium aluminum cerium sol.

これを実施例1と同様にしてゲル化にょシ成形し、10
00℃で焼成することによシ組成式カY3Ale 0!
2 : Ceのセリウム付活アルミン酸イツトリウム螢
光体からなる高透光性螢光膜を得た。この事はX線回折
で同定され念。
This was gelled and molded in the same manner as in Example 1.
By firing at 00℃, the composition formula Y3Ale 0!
2: A highly transparent phosphor film made of a cerium-activated yttrium aluminate phosphor was obtained. This was confirmed by X-ray diffraction.

実施例4 実施例1において出発原料の高純度酸化イツトリウムの
かわシに高純度酸化ガドリニウムを用いて、以下同様の
方法によシガドリニウムゾルを得た。
Example 4 A cigadolinium sol was obtained in the same manner as in Example 1, using high purity gadolinium oxide as a substitute for the high purity yttrium oxide starting material.

このガドリニウムゾルとアルミニウムゾルとセリウムゾ
ルとをモル比で3 : 5 : 5X1(11に混合し
、ゲル化により成形し、更に焼成したところ、組成比が
GdlAl5O12: Ce  で示されるセリウム付
活アルミン酸ガドリニウム螢光体から成る高透光性螢光
膜が得られた。この事はX線回折で同定された。
When this gadolinium sol, aluminum sol, and cerium sol were mixed in a molar ratio of 3:5:5X1 (11), formed by gelation, and further fired, cerium-activated gadolinium aluminate with a composition ratio of GdlAl5O12:Ce was obtained. A highly transparent phosphor film consisting of phosphors was obtained, which was identified by X-ray diffraction.

実施例5 実施例3におけると類似の方法で得られたイットリウム
アルミニウムセリウムイソグロポキシド(Y−Ce[,
41!(1−0(C3H7)4 )11 )  にその
1モルに対し0.4モルのアルミニウムイソグロポキシ
ドCM (10CsH7)3’)を加え4時間還流する
ことにより充分混合した後、加水分解し、ゾルを得友。
Example 5 Yttrium aluminum cerium isoglopoxide (Y-Ce[,
41! To (1-0(C3H7)4)11), 0.4 mol of aluminum isoglopoxide CM (10CsH7)3') was added per 1 mol of the mixture and mixed thoroughly by refluxing for 4 hours, followed by hydrolysis. , Sol is a friend.

このゾルをゲル化した後1000℃で2時間焼成すると
、組成式がYs#5OI2: Ceで示されるセリウム
付活アルミン酸イツトリウム螢光体から成る高透光性螢
光膜が得られ次。この事はX線回折で同定され次。
This sol was gelatinized and then baked at 1000° C. for 2 hours to obtain a highly transparent phosphor film consisting of a cerium-activated yttrium aluminate phosphor having the composition formula Ys#5OI2:Ce. This was identified by X-ray diffraction.

実施例6 実施例3におけると類似の方法で得られたイットリウム
アルミニウムセリクムイソグロポキンド(Y−Ce〔A
t (i −0CsHq )4 〕s )にその1モル
に対し0.2モルのイットリウムイソグロボキシド(y
 (i 0CsHy)s )  を加え18時間還流す
ることによシ充分混合した後、加水分解し、ゾルを得た
Example 6 Yttrium aluminum sericum isoglopoquine (Y-Ce[A
t (i −0CsHq )4 ]s ), 0.2 mol of yttrium isogloboxoxide (y
(i 0CsHy)s ) was added and thoroughly mixed by refluxing for 18 hours, followed by hydrolysis to obtain a sol.

このゾルをゲル化した後1000℃で2時間焼成すると
、組成式がYAlO3: Ce  (六方晶)で示され
るセリウム付活アルミン酸イツトリウム螢光体から成る
高透光性螢光膜が得られた。また上は己ゲルを1260
℃で2時間焼成すると組成式がyno、 : ce(斜
方晶、ペロブスカイト型)で示されるセリウム付活アル
ミン酸イツトリウム螢光体から成る高透光性螢光膜が得
られた。これらの事はX線回折で同定された。
After gelatinizing this sol and baking it at 1000°C for 2 hours, a highly transparent phosphor film consisting of a cerium-activated yttrium aluminate phosphor having the composition formula YAlO3:Ce (hexagonal) was obtained. . Also, the top is self-gel 1260
After baking at .degree. C. for 2 hours, a highly transparent phosphor film consisting of a cerium-activated yttrium aluminate phosphor having a compositional formula of yno: ce (orthorhombic, perovskite type) was obtained. These things were identified by X-ray diffraction.

実施例7 実施例1と同様にして、ユウロピウムゾルを得た。この
ユウロピウムゾルを実施例1で得られたイツトリウムゾ
ルとモル比で1:5XIO−3で混合し、ゲル化した後
、1100℃で2時間焼成すると組成式がY203 :
 Euで示される赤に発光する螢光体から成る冒透光性
螢光膜が得られた。
Example 7 Europium sol was obtained in the same manner as in Example 1. This europium sol was mixed with the yttrium sol obtained in Example 1 at a molar ratio of 1:5XIO-3, gelled, and then baked at 1100°C for 2 hours, resulting in a composition formula of Y203:
A translucent phosphor film consisting of a red-emitting phosphor designated Eu was obtained.

実施例8 実施例1と同様にしてシリカゲル、テルビウムゾル、ユ
ウロピウムゾルを得た。以上得られた各種ゾルと実施例
1で得られたイツトリウムゾル、セリウムゾル金欠の示
威式になるように混合した。Y2SiO5: Eu 5
Y2StO,:Tb。
Example 8 Silica gel, terbium sol, and europium sol were obtained in the same manner as in Example 1. The various sols obtained above, the yttrium sol obtained in Example 1, and the cerium sol were mixed so as to demonstrate the lack of gold. Y2SiO5: Eu5
Y2StO, :Tb.

Y2S405:Ce  (但しEu、Tb、Ceは5 
X 10. ’モル)これらのゾルをゲル化後1200
℃で2時間焼成すると上記示威式で示される螢光体が得
られた。これはそれぞれ赤・緑・青全示した。
Y2S405:Ce (However, Eu, Tb, Ce are 5
X 10. 'mol) 1200 after gelling these sols
After firing at .degree. C. for 2 hours, a phosphor having the above-mentioned formula was obtained. This shows red, green, and blue, respectively.

実施例9 実施例7に於けるイツトリウムゾルをゲル化して8μの
球状酸化イツトリウムを得た。
Example 9 The yttrium sol in Example 7 was gelled to obtain 8μ spherical yttrium oxide.

この表面にユウロピウムゾル、テルビウムゾル、セリウ
ムゾルを厚さ0.5μになる様にコートし、ゲル化後1
000℃で焼成した。焼成ニよシュウロビウム、テルビ
ウム、セリウムはそれぞれイツ) IJウム中に拡散し
、高透光性の螢光体粒子となった。これはX線回折によ
り同定された。
This surface was coated with europium sol, terbium sol, and cerium sol to a thickness of 0.5μ, and after gelation,
It was fired at 000°C. After firing, the sulobium, terbium, and cerium were diffused into the IJium and became highly translucent phosphor particles. This was identified by X-ray diffraction.

手続補正書 附子058年 3月 1日 特πF庁長官  若 杉 和 夫 殿 1 事件の表示 特願昭58−11725号 2 発明の名称 高透光性螢光膜の形成方法 3 補正をする者 事件との関係 特許出願人 名称 化成オノトニクス株式会社 4代理人 住所 東京都港区虎ノ門五丁目13番1号虎ノ門40森
ビル明細書及び委任状 6、 補正の内容 Il+  明細書の浄書を別紙の通り補光する。
Attachment of Procedural Amendment March 1, 2005 Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office 1 Indication of the case Japanese Patent Application No. 11725/1982 2 Name of the invention Method for forming a highly transparent fluorescent film 3 Case of the person making the amendment Relationship with Patent applicant name: Kasei Onotonics Co., Ltd. 4 Agent address: Mori Building, 40 Toranomon, 5-13-1, Toranomon, Minato-ku, Tokyo Specification and power of attorney 6 Contents of amendment Shine.

手  続  補  正 書 附子口58缶 5月 13日 特許庁長官 若 杉 和 夫  殿 1 事件の表示 特願昭58−11725号 2 発明の名称 高透光性螢光膜の形成方法 3 補正をする者 事件との関係 特許出願人 名称 化成オプトニクス株式会社 4代理人 住所 東京都港区虎ノ門五丁目13番1号虎ノ門4o森
ビル明細書の発明の詳細な説明の欄 6、 補正の内容 (1)  明細書第7頁第10行の「アルミン酸高透光
性」を「アルミン酸塩高透光性」と補正する。
Procedures Amendment 58 cans May 13th Director of the Japan Patent Office Kazuo Wakasugi 1 Indication of the case Japanese Patent Application No. 11725/1982 2 Name of the invention Method of forming highly translucent fluorescent film 3 Make amendments Relationship with the patent applicant name: Kasei Optonics Co., Ltd. 4 Agent address: Mori Building, Toranomon 4-chome, 5-13-1, Toranomon, Minato-ku, Tokyo Column 6 of the detailed description of the invention in the specification, Contents of the amendment (1) ) "High translucency of aluminate" on page 7, line 10 of the specification is corrected to "high translucency of aluminate".

+21  明J41,1L8ffl第6行及び第121
第9行の「500℃」を「300℃」と補正する。
+21 Akira J41, 1L8ffl 6th row and 121st
Correct "500°C" in the 9th line to "300°C".

+3+  明細書第15頁第11行のr A1203S
i02 Jをr Al2O3,5i02 Jと補正する
+3+ r A1203S on page 15, line 11 of the specification
Correct i02 J to r Al2O3,5i02 J.

Claims (1)

【特許請求の範囲】[Claims] 螢光体の母体構成元素の各元素および螢光体の付活剤構
成元素中の各元素をそれぞれ含有する金属アルコキシド
、有機酸金属化合物捷たは金属塩を加水分解することに
より、前記螢光体構成に必要な各元素を含有するゾルを
得、次いで該ゾルを、得たい形状の器に入れてゲル化し
膜を形成した後、300℃〜1300℃で焼成する事を
特徴とする高透光性螢光膜の形成方法。
By hydrolyzing a metal alkoxide, an organic acid metal compound, or a metal salt containing each element of the matrix constituent elements of the phosphor and each element of the activator constituent elements of the phosphor, the above-mentioned fluorescent light can be produced. A highly transparent method characterized by obtaining a sol containing each element necessary for body composition, then placing the sol in a container of the desired shape, gelling it to form a film, and then firing it at 300°C to 1300°C. Method for forming a photofluorescent film.
JP1172583A 1983-01-27 1983-01-27 Production of fluorescent film having high light transmittance Granted JPS59138291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172583A JPS59138291A (en) 1983-01-27 1983-01-27 Production of fluorescent film having high light transmittance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172583A JPS59138291A (en) 1983-01-27 1983-01-27 Production of fluorescent film having high light transmittance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12294092A Division JPH0643580B2 (en) 1992-04-17 1992-04-17 Method for forming highly translucent fluorescent film

Publications (2)

Publication Number Publication Date
JPS59138291A true JPS59138291A (en) 1984-08-08
JPH0514000B2 JPH0514000B2 (en) 1993-02-23

Family

ID=11786006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172583A Granted JPS59138291A (en) 1983-01-27 1983-01-27 Production of fluorescent film having high light transmittance

Country Status (1)

Country Link
JP (1) JPS59138291A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232941A2 (en) * 1986-02-10 1987-08-19 Koninklijke Philips Electronics N.V. Sol-gel process for producing luminescent thin film, and film so produced, and devices utilizing same
EP0310308A2 (en) * 1987-10-01 1989-04-05 AT&T Corp. Sol-gel method for forming thin luminescent films
US4931312A (en) * 1986-02-10 1990-06-05 North American Philips Corporation Sol-gel process for producing liminescent thin film, and film so produced and devices utilizing same
EP0415469A2 (en) * 1989-09-01 1991-03-06 Agfa-Gevaert N.V. Phosphor preparation
FR2657619A1 (en) * 1990-01-26 1991-08-02 Matsushita Electric Works Ltd METHOD FOR MANUFACTURING A CONVERTER ELEMENT TRANSFORMING A LIGHT OF A GIVEN WAVELENGTH INTO A DIFFERENT WAVELENGTH LIGHT.
JPH03221585A (en) * 1990-01-26 1991-09-30 Matsushita Electric Works Ltd Formation of light-transforming element
WO1998053025A1 (en) * 1997-05-19 1998-11-26 Citizen Watch Co., Ltd. Phosphorescent pigment and process for preparing the same
WO2004065521A1 (en) * 2003-01-20 2004-08-05 Daiden Co.,Ltd. Method for preparing high brightness luminescent material and high brightness luminescent material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232941A2 (en) * 1986-02-10 1987-08-19 Koninklijke Philips Electronics N.V. Sol-gel process for producing luminescent thin film, and film so produced, and devices utilizing same
US4931312A (en) * 1986-02-10 1990-06-05 North American Philips Corporation Sol-gel process for producing liminescent thin film, and film so produced and devices utilizing same
EP0310308A2 (en) * 1987-10-01 1989-04-05 AT&T Corp. Sol-gel method for forming thin luminescent films
JPH01109641A (en) * 1987-10-01 1989-04-26 American Teleph & Telegr Co <Att> Light emitting thin film formation
US4965091A (en) * 1987-10-01 1990-10-23 At&T Bell Laboratories Sol gel method for forming thin luminescent films
EP0415469A2 (en) * 1989-09-01 1991-03-06 Agfa-Gevaert N.V. Phosphor preparation
FR2657619A1 (en) * 1990-01-26 1991-08-02 Matsushita Electric Works Ltd METHOD FOR MANUFACTURING A CONVERTER ELEMENT TRANSFORMING A LIGHT OF A GIVEN WAVELENGTH INTO A DIFFERENT WAVELENGTH LIGHT.
GB2242063A (en) * 1990-01-26 1991-09-18 Matsushita Electric Works Ltd Method for manufacturing photoconverter
JPH03221585A (en) * 1990-01-26 1991-09-30 Matsushita Electric Works Ltd Formation of light-transforming element
GB2242063B (en) * 1990-01-26 1994-05-18 Matsushita Electric Works Ltd Method for manufacturing photoconverter
WO1998053025A1 (en) * 1997-05-19 1998-11-26 Citizen Watch Co., Ltd. Phosphorescent pigment and process for preparing the same
WO1998053023A1 (en) * 1997-05-19 1998-11-26 Citizen Watch Co., Ltd. Photostimulable fluorescent pigment and process for producing the same
US6423247B1 (en) 1997-05-19 2002-07-23 Citizen Watch Co., Ltd. Phosphorescent pigment and process for preparing the same
WO2004065521A1 (en) * 2003-01-20 2004-08-05 Daiden Co.,Ltd. Method for preparing high brightness luminescent material and high brightness luminescent material

Also Published As

Publication number Publication date
JPH0514000B2 (en) 1993-02-23

Similar Documents

Publication Publication Date Title
KR910007700B1 (en) Sol gel method for forming thin luminescent films
Lin et al. Sol–gel deposition and characterization of Mn2+-doped silicate phosphor films
EP0265983A1 (en) Luminescent quartz glass, method of preparing such a glass and luminescent screen provided with such a glass
US4931312A (en) Sol-gel process for producing liminescent thin film, and film so produced and devices utilizing same
JP4219514B2 (en) Rare earth phosphate manufacturing method, rare earth phosphate phosphor, and rare earth phosphate phosphor manufacturing method
JPS59138291A (en) Production of fluorescent film having high light transmittance
KR20010040381A (en) Method of Preparing High Brightness, Small Particle Red Emitting Phosphor
WO1998053025A1 (en) Phosphorescent pigment and process for preparing the same
JPH05132668A (en) Formation of highly light-transmitting fluorescent membrane
WO1995031002A1 (en) Glass composition for phosphor coating and fluorescent lamp
CN109337677B (en) Stable core-shell structure red fluorescent powder and preparation method thereof
JPS62190633A (en) Manufacture of thin film of light emitting material
JP2001234166A (en) Yttrium silicate fluorescent substance for low voltage drive and its preparation process
JP2003213254A (en) Method for producing silicate phosphor
JP3842562B2 (en) Method for producing phosphor and phosphor
JPH0959617A (en) Production of aluminate phosphor
JP2001316663A (en) Fluorescent substance, process for its manufacture and fluorescent layer using the same
JP2001152145A (en) Preparation process of aluminate fluorescent body for luminous material
JP3367359B2 (en) Phosphor and its manufacturing method
JP2006233136A (en) Method for producing phosphor composition and phosphor composition obtained by the method
US20060124901A1 (en) Method for preparing high brightness luminescent material and high brightness luminescent material
JPH09255950A (en) Preparation of light-storing luminescent pigment
JP2003003166A (en) Phosphor for vacuum ultraviolet light excitation luminescent element and method for producing the same
KR950011230B1 (en) Preparatio method of green emitting luminescent
KR100388278B1 (en) Spherical shape red color luminescence composition