JPH09255950A - Preparation of light-storing luminescent pigment - Google Patents

Preparation of light-storing luminescent pigment

Info

Publication number
JPH09255950A
JPH09255950A JP654097A JP654097A JPH09255950A JP H09255950 A JPH09255950 A JP H09255950A JP 654097 A JP654097 A JP 654097A JP 654097 A JP654097 A JP 654097A JP H09255950 A JPH09255950 A JP H09255950A
Authority
JP
Japan
Prior art keywords
fluorescent pigment
activator
phosphorescent fluorescent
gel
phosphorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP654097A
Other languages
Japanese (ja)
Inventor
Mizue Fujimori
瑞惠 藤森
Seki Hirashima
碩 平島
Hiroaki Imai
宏明 今井
Shiyunroku Go
濬禄 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP654097A priority Critical patent/JPH09255950A/en
Publication of JPH09255950A publication Critical patent/JPH09255950A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process for preparing a chemically stable light-storing luminescent metal oxide pigment free of any radioactive substances, which process is simplified as compared with conventional processes while enabling a high-purity light-storing luminescent pigment to be obtd. with control of the particle size of the pigment. SOLUTION: In preparation of a light-storing luminescent pigment comprising matrix crystals in the form of metal oxide crystals, an activator and a coactivator, and a light-storing luminescent pigment comprising matrix crystals in the form of metal oxide crystals, an activator, a coactivator and other additive element; a gel powder obtd. using an alkoxide deriv. of a constituent metal element and an org. or inorg. acid salt by a sol-gel method is fired in a reducing atmosphere to prepare a light-storing luminescent pigment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蓄光性蛍光顔料の
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a phosphorescent fluorescent pigment.

【0002】[0002]

【従来の技術】現在市場で多く用いられている蓄光性蛍
光顔料は硫化亜鉛系蛍光体に蓄光性能を高めるための放
射性物質を添加したものである。これらの物質は化学的
に不安定で耐光性に劣るという欠点のみならず放射性物
質を含有するため製造上の管理体制が厳しく、また使用
量が制限されるなどの欠点を有している。
2. Description of the Related Art A phosphorescent fluorescent pigment that is widely used in the market at present is a zinc sulfide-based phosphor to which a radioactive substance for enhancing the phosphorescent performance is added. These substances not only have the drawbacks of being chemically unstable and poor in light resistance, but also have drawbacks such as a strict management system for production because they contain radioactive substances, and the amount used is limited.

【0003】これらの問題を解決する方法として最近特
開平7−11250、USP5,376,303等に金
属酸化物系結晶中に複数の希土類元素をドープする事に
より有害な物質を含まず化学的に安定な蓄光性蛍光顔料
が得られる事が報告された。
As a method for solving these problems, recently, Japanese Patent Laid-Open No. 7-11250, USP 5,376,303, etc. have been chemically doped without containing harmful substances by doping a plurality of rare earth elements into a metal oxide crystal. It was reported that a stable phosphorescent fluorescent pigment was obtained.

【0004】通常これら蓄光性蛍光顔料の製造法は母結
晶、附活剤、共附活剤の構成元素の酸化物、ハロゲン化
物、或いは炭酸塩を混合焼成してなる固相反応が用いら
れる。
In general, these phosphorescent fluorescent pigments are produced by a solid-phase reaction in which an oxide, a halide or a carbonate of a constituent element of a mother crystal, an activator or a coactivator is mixed and fired.

【0005】固相反応法では微量の不純物により蓄光性
蛍光顔料の特性が大きく左右される事より原料を充分に
精製する精製工程が重要となる。
In the solid-phase reaction method, the characteristics of the phosphorescent fluorescent pigment are greatly influenced by a slight amount of impurities, and therefore a purification step for sufficiently purifying the raw material is important.

【0006】精製後、これら精製原料をブレンダ、或い
はボールミル等で混合しその後還元雰囲気下で焼成を行
う。例えば母結晶がアルミン酸塩の場合はおよそ130
0℃以上の高温度を要する。
After the refining, these refining raw materials are mixed in a blender or a ball mill, and then fired in a reducing atmosphere. For example, when the mother crystal is aluminate, it is approximately 130
A high temperature of 0 ° C or higher is required.

【0007】焼成後、焼結した生成物はクラッシャー、
ボールミル等で粉状に粉砕される。蓄光性蛍光顔料は粒
径により発光特性やその後の塗工性が異なるため粉砕
後、粗大粒子や微粒子を除く目的で分級を行う。
After firing, the sintered product is a crusher,
It is crushed into powder by a ball mill. Luminescent fluorescent pigments have different luminescent properties and subsequent coating properties depending on the particle size, so after crushing, classification is performed for the purpose of removing coarse particles and fine particles.

【0008】更に、固相反応法では焼結の際、結晶成長
を助長する目的でアルカリ、またはアルカリ土類金属の
ハロゲン化物やほう酸等の融剤(フラックス)を添加す
る場合が多い事からこれらの融剤、不純物を除く目的で
分級後洗浄、乾燥工程を経て目的とする蓄光性蛍光顔料
が得られる。
Further, in the solid-phase reaction method, a flux such as an alkali or alkaline earth metal halide or boric acid is often added during sintering for the purpose of promoting crystal growth. The objective phosphorescent fluorescent pigment is obtained through a washing, drying process after classification for the purpose of removing the flux and impurities.

【0009】[0009]

【発明が解決しようとする課題】上記固相反応法では焼
成前の精製工程を必要とする事、焼成後洗浄工程で除か
れる融剤を系に添加する事が必要である事、目的とする
結晶型を得るには高温焼成が必要である事、焼成粉砕後
に得られる粒径が不均一であり分級工程を要する事、洗
浄工程を必要とする事等の複雑な製造工程、反応条件が
必要となる。
The above solid-phase reaction method requires a refining step before firing, and it is necessary to add a fluxing agent removed in the washing step after firing to the system. In order to obtain a crystalline form, high-temperature firing is required, complicated particle size obtained after firing and pulverization requires a classification step, and a washing step is required. Becomes

【0010】本発明は固相反応に必要な複雑な製造工程
の減少が図られ、更に目的とする結晶型純度の高い均質
な粒径の蓄光性蛍光顔料を得る事が可能となる製造方法
を提供する事を目的とする。
The present invention provides a production method capable of reducing the number of complicated production steps required for a solid-phase reaction, and further obtaining an intended phosphorescent fluorescent pigment having a high crystal purity and a uniform particle size. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する本発
明の蓄光性蛍光顔料の製造法は、金属酸化物系結晶であ
る母結晶と附活剤、共附活剤よりなる蓄光性蛍光顔料、
並びに金属酸化物系結晶である母結晶と附活剤、共附活
剤、及びその他添加元素よりなる蓄光性蛍光顔料におい
て、前記蓄光性蛍光顔料の構成構成金属元素のアルコキ
シド誘導体、有機酸塩、無機酸塩、酸化物、または塩化
物を用いるゾル−ゲル法により蓄光性蛍光顔料を製造す
る事を特徴とするものである。
The method for producing a phosphorescent fluorescent pigment of the present invention for solving the above-mentioned problems is a phosphorescent fluorescent pigment comprising a mother crystal which is a metal oxide crystal, an activator, and a co-activator. ,
And a phosphorescent pigment consisting of a mother crystal which is a metal oxide-based crystal and an activator, a co-activator, and other additive elements, wherein an alkoxide derivative of a metal element constituting the phosphorescent fluorescent pigment, an organic acid salt, The present invention is characterized in that a phosphorescent fluorescent pigment is produced by a sol-gel method using an inorganic acid salt, an oxide, or a chloride.

【0012】更に本発明の蓄光性蛍光顔料の製造方法は
母結晶がAl、Sr、Ca、Baよりなる群の少なくと
も2つ以上の構成元素よりなる金属酸化物系結晶である
事を特徴とするものである。
Further, the method for producing a phosphorescent fluorescent pigment of the present invention is characterized in that the mother crystal is a metal oxide type crystal composed of at least two or more constituent elements of the group consisting of Al, Sr, Ca and Ba. It is a thing.

【0013】更に本発明の蓄光性蛍光顔料の製造方法は
附活剤がEuである事を特徴とするものである。
Further, the method for producing a phosphorescent fluorescent pigment of the present invention is characterized in that the activator is Eu.

【0014】更に本発明の蓄光性蛍光顔料の製造方法は
共附活剤がLa、Ce、Pr、Nd、Sm、Gd、D
y、Ho、Er、Tm、Y、Luよりなる群の少なくと
も1つ以上の構成元素よりなる事を特徴とするものであ
る。
Further, in the method for producing a phosphorescent fluorescent pigment of the present invention, the co-activator is La, Ce, Pr, Nd, Sm, Gd, D.
It is characterized by comprising at least one or more constituent elements of the group consisting of y, Ho, Er, Tm, Y and Lu.

【0015】更に本発明の蓄光性蛍光顔料の製造方法は
その他添加元素がB、Cu、Pよりなる群の少なくとも
1つ以上の構成元素よりなる事を特徴とするものであ
る。
Further, the method for producing a phosphorescent fluorescent pigment of the present invention is characterized in that the additional element is at least one constituent element of the group consisting of B, Cu and P.

【0016】更に本発明の蓄光性蛍光顔料の製造方法は
ゾル−ゲル法により得られたゲル粉末を還元雰囲気下で
焼成する事により蓄光性蛍光顔料を製造する事を特徴と
するものである。
Further, the method for producing a phosphorescent fluorescent pigment of the present invention is characterized by producing a phosphorescent fluorescent pigment by firing a gel powder obtained by the sol-gel method in a reducing atmosphere.

【0017】次に本発明のゾル−ゲル法による蓄光性蛍
光顔料の製造法について説明する。
Next, the method for producing the phosphorescent fluorescent pigment by the sol-gel method of the present invention will be described.

【0018】第1工程として母結晶を構成する金属元素
のアルコキシド誘導体、有機酸塩、または無機酸塩を極
性有機溶媒中に溶解し均一溶液とする。一般に用いられ
る有機溶媒はアルコール類であるがそのほかグリコール
系溶媒、ベンゼン等の非極性溶媒、アミン系溶媒などを
用いる事が可能である。
In the first step, the alkoxide derivative of a metal element constituting the mother crystal, the organic acid salt, or the inorganic acid salt is dissolved in a polar organic solvent to form a uniform solution. Generally used organic solvents are alcohols, but it is also possible to use glycol solvents, non-polar solvents such as benzene, amine solvents and the like.

【0019】第2工程として反応系に水を添加し加水分
解→縮重合をへて均一溶液からゾル溶液を得る。この
際、反応系のpH、水の濃度を変化させる事により反応
速度をコントロールする事が可能である。
In the second step, water is added to the reaction system to carry out hydrolysis and polycondensation to obtain a sol solution from a uniform solution. At this time, the reaction rate can be controlled by changing the pH of the reaction system and the concentration of water.

【0020】第3工程としてゾル溶液よりゲル溶液を得
るが、ゲル溶液はゾル溶液生成後時間経過により自然に
生成する場合、或いは反応系の濃縮、pHコントロール
等により得る事が可能である。
In the third step, a gel solution is obtained from the sol solution. The gel solution can be obtained naturally after a lapse of time after the formation of the sol solution, or by concentrating the reaction system and controlling the pH.

【0021】第4工程では得られたゲル溶液を適当な時
間エージングした後乾燥する事によりゲル粉末を得る。
In the fourth step, the gel solution obtained is aged for a suitable time and then dried to obtain a gel powder.

【0022】その後の第5工程でゲル粉末を還元雰囲気
下で焼成する事により母結晶を得る。
In the subsequent fifth step, the gel powder is fired in a reducing atmosphere to obtain a mother crystal.

【0023】本発明では蓄光性蛍光顔料の母結晶粉末を
上記工程処理により得るが、蓄光性蛍光顔料の附活剤、
共附活剤、及びその他添加元素のアルコキシド誘導体、
有機酸塩、無機酸塩、または酸化物は第1から第5の何
れかの工程中に添加する事が可能である。
In the present invention, a mother crystal powder of a phosphorescent fluorescent pigment is obtained by the above-mentioned process, but an activator of the phosphorescent fluorescent pigment,
Co-activator, and alkoxide derivative of other additive element,
The organic acid salt, the inorganic acid salt, or the oxide can be added during any of the first to fifth steps.

【0024】またゲル粉末の焼成は発光種である附活剤
のEuを3価から2価に還元する必要があるため還元雰
囲気下で行う必要がある。
Further, the firing of the gel powder needs to be carried out in a reducing atmosphere because it is necessary to reduce Eu of the activator which is a luminescent species from trivalent to divalent.

【0025】(作用)本発明のゾル−ゲル法による蓄光
性蛍光顔料の製造法は脱水処理を施した原料を用いゾル
−ゲル反応により均一溶液→ゾル溶液→ゲル溶液→ゲル
粉末を得、還元雰囲気下で焼成する事により蓄光性蛍光
顔料を得る方法である。
(Function) In the method for producing a phosphorescent fluorescent pigment by the sol-gel method of the present invention, a dehydrated raw material is used to obtain a homogeneous solution → sol solution → gel solution → gel powder by the sol-gel reaction and reduction. It is a method of obtaining a phosphorescent fluorescent pigment by firing in an atmosphere.

【0026】従来の固相反応法による製造法と比較した
場合、製造工程については原料の精製の簡略化、焼成温
度の低減化、粉砕工程の省略、分級工程の省略が図られ
ると共に、得られる蓄光性蛍光顔料は不純物混入が無
く、また低温焼成条件下で目的とする純度の高い母結晶
の結晶型が得られる。またゾル−ゲル反応条件を選択す
る事による粒径の制御が可能である事よりその後の塗布
工程条件等に見合った粒径の蓄光性蛍光顔料を得る事が
可能となる。
In comparison with the conventional solid-phase reaction method, in the manufacturing process, the purification of the raw material is simplified, the firing temperature is reduced, the crushing process is omitted, and the classification process is omitted. The phosphorescent fluorescent pigment does not contain impurities, and the desired crystal form of the mother crystal with high purity can be obtained under low temperature firing conditions. Further, since the particle size can be controlled by selecting the sol-gel reaction condition, it is possible to obtain a phosphorescent fluorescent pigment having a particle size suitable for the conditions of the subsequent coating process.

【0027】[0027]

【発明の実施の形態】次に本発明の一部を実施例に、従
来法である固相法による蓄光性蛍光顔料の製造法を比較
例に挙げ図を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a part of the present invention will be described with reference to the drawings with reference to a comparative example of a conventional method for producing a phosphorescent fluorescent pigment by a solid phase method.

【0028】(実施例1)アルミニウム トリ(2−ブ
トキシド)0.02モル(4.927g)とストロンチ
ウム ジ(2−プロポキシド)0.01モル(2.05
8g)をそれぞれ40ml、並びに20mlの2−エト
キシエタノールに添加し1時間攪拌後混合した。混合溶
液を130℃にて17時間還流後、室温に戻し5.40
6gの水を添加し加水分解を行った。30min攪拌
後、附活剤Eu230.00328gと共附活剤Dy2
30.00325gを硝酸2gに溶解した溶液を添
加、攪拌後得られたゲル溶液を60℃下で24時間エー
ジングした。その後150℃でゲル溶液を乾燥し非常に
脆いゲル粉末の塊を得た。塊を乳鉢で粉状に解した後還
元雰囲気下で1000℃、2時間仮焼成を行い、その後
更に還元雰囲気下で1300℃、2時間本焼成を行っ
た。
Example 1 Aluminum tri (2-butoxide) 0.02 mol (4.927 g) and strontium di (2-propoxide) 0.01 mol (2.05)
8 g) was added to 40 ml and 20 ml of 2-ethoxyethanol, and the mixture was stirred for 1 hour and then mixed. The mixed solution was refluxed at 130 ° C. for 17 hours, then returned to room temperature and 5.40.
Hydrolysis was carried out by adding 6 g of water. After stirring for 30 min, 0.00328 g of activator Eu 2 O 3 and co-activator Dy 2
A solution prepared by dissolving 0.00325 g of O 3 in 2 g of nitric acid was added, and after stirring, the resulting gel solution was aged at 60 ° C. for 24 hours. The gel solution was then dried at 150 ° C. to obtain a very brittle mass of gel powder. After the lumps were crushed into powder in a mortar, they were calcined in a reducing atmosphere at 1000 ° C. for 2 hours, and then further calcined in a reducing atmosphere at 1300 ° C. for 2 hours.

【0029】実施例1で得られたゲル粉末のTG−DT
A測定結果を図−1に示す。120℃付近の吸熱ピーク
は溶媒の蒸発によるもの、320−350℃付近の発熱
ピークは有機物の燃焼によるものと考えられる。その
後、900℃付近に結晶化と思われる発熱ピークが現れ
る。
TG-DT of the gel powder obtained in Example 1
A measurement result is shown in FIG. It is considered that the endothermic peak around 120 ° C is due to the evaporation of the solvent and the exothermic peak around 320-350 ° C is due to the combustion of organic substances. Then, an exothermic peak that seems to be crystallization appears near 900 ° C.

【0030】次に実施例1で得られたゲル粉末の各焼成
温度でのXRDスペクトル変化を図−2に示す。400
℃、600℃においては母結晶の構成元素であるストロ
ンチウムが硝酸、或いは空気中の二酸化炭素と反応し生
成すると考えられる硝酸ストロンチウム、炭酸ストロン
チウムのピークが確認されるが800℃においては非晶
質となり1000℃ではSrAl24結晶が単独相で存
在する事が認められた。この事は図−1の900℃付近
の発熱ピークはSrAl24の結晶化によるものである
事を示す。
Next, FIG. 2 shows changes in XRD spectrum of the gel powder obtained in Example 1 at various firing temperatures. 400
At 600 ° C and 600 ° C, peaks of strontium nitrate and strontium carbonate, which are considered to be produced by reaction of strontium, which is a constituent element of the mother crystal, with nitric acid or carbon dioxide in the air are confirmed, but at 800 ° C, it becomes amorphous. At 1000 ° C., it was confirmed that the SrAl 2 O 4 crystal existed as a single phase. This indicates that the exothermic peak near 900 ° C. in FIG. 1 is due to crystallization of SrAl 2 O 4 .

【0031】更に実施例1で本焼成後得られた粉末を電
子顕微鏡にて観察したところ、粒径がおよそ0.4μm
から0.8μm程度に揃っており表面が滑らかで球状に
近い粉末である事が判った。
Further, when the powder obtained after the main calcination in Example 1 was observed with an electron microscope, the particle size was about 0.4 μm.
From this, it was found that the powder had a uniform diameter of about 0.8 μm and had a smooth surface and a nearly spherical shape.

【0032】(比較例1)α−酸化アルミニウム0.0
1モル(1.020g)と炭酸ストロンチウム0.01
モル(1.476g)、並びに附活剤Eu23(0.0
0328g)と共附活剤Dy23(0.00325g)
を乳鉢にて混合し還元雰囲気下で1300℃、2時間仮
焼成を行った後、ボールミルにて焼成物を粉砕混合し、
その後更に還元雰囲気下で1300℃、2時間本焼成を
行った。
(Comparative Example 1) α-aluminum oxide 0.0
1 mol (1.020 g) and strontium carbonate 0.01
Mol (1.476 g), as well as the activator Eu 2 O 3 (0.0
0328 g) and co-activator Dy 2 O 3 (0.00325 g)
Were mixed in a mortar and calcined in a reducing atmosphere at 1300 ° C. for 2 hours, and then the calcined product was pulverized and mixed in a ball mill,
After that, main firing was further performed in a reducing atmosphere at 1300 ° C. for 2 hours.

【0033】上記固相反応の各温度でのXRDスペクト
ル変化を図−3に示す。400℃、並びに800℃にお
いても原料の酸化アルミニウム、炭酸ストロンチウムの
ピークのみが確認された。実施例1とは異なり1000
℃ではSrAl24結晶は確認されず、1300℃にお
いてもSrAl24結晶が主相として存在するものの第
2相としてSrAl47結晶も共存する事が認められ
た。
FIG. 3 shows changes in the XRD spectrum at each temperature in the above solid-phase reaction. Only at 400 ° C. and 800 ° C., only the peaks of aluminum oxide and strontium carbonate as raw materials were confirmed. 1000 unlike the first embodiment
No SrAl 2 O 4 crystal was confirmed at 0 ° C., but it was confirmed that even at 1300 ° C., the SrAl 2 O 4 crystal was present as the main phase, but the SrAl 4 O 7 crystal was also present as the second phase.

【0034】更に固相反応で本焼成後得られた粉末を電
子顕微鏡にて観察したところ、実施例1とは異なりそれ
ぞれの粒径に大きな差が見られ(0.1μm程度〜2μ
m)形状は角張った粉末である事が判った。
Further, when the powder obtained after the main calcination by the solid-phase reaction was observed with an electron microscope, a large difference was observed in the respective particle diameters (about 0.1 μm to 2 μm) unlike Example 1.
m) The shape was found to be an angular powder.

【0035】(実施例2)加水分解工程までは上記実施
例1と同様に行った。水を添加後室温30min攪拌し
得られたゲル溶液を60℃下で24時間エージングし
た。その後150℃でゲル溶液を乾燥し非常に脆いゲル
粉末の塊を得た。この塊に附活剤Eu230.0032
8gと共附活剤Dy230.00325gを添加し乳鉢
にて混合し粉状に解した後還元雰囲気下で1000℃で
2時間仮焼成を行い、その後更に還元雰囲気下で130
0℃、2時間本焼成を行った。
Example 2 Up to the hydrolysis step, the same procedure as in Example 1 was carried out. After adding water, the mixture was stirred at room temperature for 30 min, and the obtained gel solution was aged at 60 ° C. for 24 hours. The gel solution was then dried at 150 ° C. to obtain a very brittle mass of gel powder. The activating agent Eu 2 O 3 0.0032 was added to this mass.
8g and 0.00325g of co-activator Dy 2 O 3 were added, mixed in a mortar and disintegrated into powder, and calcined at 1000 ° C for 2 hours in a reducing atmosphere, and then in a reducing atmosphere for 130
Main firing was performed at 0 ° C. for 2 hours.

【0036】得られた粉末のXRDスペクトルは実施例
1と同様にSrAl24結晶が単独相で存在する事が認
められた。
In the XRD spectrum of the obtained powder, it was confirmed that SrAl 2 O 4 crystals existed as a single phase as in Example 1.

【0037】更に電子顕微鏡にて得られた粉末を観察し
たところ、実施例1と同様に粒径がおよそ0.4μmか
ら0.8μm程度に揃っており表面が滑らかで球状に近
い粉末である事が判った。
Further observation of the powder obtained by an electron microscope revealed that the powder had a particle size of about 0.4 μm to 0.8 μm and had a smooth surface and a nearly spherical shape as in Example 1. I understood.

【0038】(実施例3)ゲル粉末工程までは上記実施
例2と同様に行った。得られたゲル粉末の塊を乳鉢で粉
状に解し還元雰囲気下で1000℃、2時間仮焼成を行
った。仮焼成後、附活剤Eu230.00328gと共
附活剤Dy230.00325gを添加し乳鉢にて混合
し粉状に解した後還元雰囲気下で1000℃で2時間仮
焼成を行い、その後更に還元雰囲気下で1300℃、2
時間本焼成を行った。
(Example 3) The same procedure as in Example 2 was carried out up to the gel powder step. The obtained lump of gel powder was pulverized in a mortar and calcinated at 1000 ° C. for 2 hours in a reducing atmosphere. After calcination, 0.00328 g of the activator Eu 2 O 3 and 0.00325 g of the co-activator Dy 2 O 3 were added and mixed in a mortar to give a powder. Calcination is performed, and then in a reducing atmosphere at 1300 ° C. for 2
Main firing was performed for an hour.

【0039】実施例3で本焼成後得られた粉末の励起、
並びに蛍光スペクトルを図−4に示す。その結果、22
0nmから420nmの幅広い励起帯を有し510nm
付近にλmaxを持つ発光ピークを示す事が判る。
Excitation of the powder obtained after the main calcination in Example 3,
Also, the fluorescence spectrum is shown in FIG. As a result, 22
510 nm with a wide excitation band from 0 nm to 420 nm
It can be seen that there is an emission peak with λmax in the vicinity.

【0040】図−5に実施例3、並びに比較例1で本焼
成後に得られた粉末を370nmで励起した際の発光ス
ペクトルを、図−6に実施例3、並びに比較例1で本焼
成後に得られた粉末を370nmで励起した際の残光強
度変化を示す。その結果、どちらの粉末も蓄光性蛍光顔
料の特性を示すが、比較例1の固相反応により得られた
粉末に比べ実施例3のゾル−ゲル法により得られた粉末
の方が発光強度、残光特性共に優れている事が明らかで
ある。
FIG. 5 shows the emission spectra of the powder obtained after the main calcination in Example 3 and Comparative Example 1 when excited at 370 nm, and FIG. 6 shows the emission spectra after the main calcination in Example 3 and Comparative Example 1. The change in afterglow intensity when the obtained powder is excited at 370 nm is shown. As a result, both of the powders show the characteristics of the phosphorescent fluorescent pigment, but the powder obtained by the sol-gel method of Example 3 has a higher emission intensity than the powder obtained by the solid-phase reaction of Comparative Example 1. It is clear that both the afterglow characteristics are excellent.

【0041】(実施例4)ゲル粉末工程までは上記実施
例2と同様に行った。得られたゲル粉末の塊を乳鉢で粉
状に解し還元雰囲気下で1000℃、2時間仮焼成を行
った。仮焼成後、附活剤Eu230.0164gと共附
活剤Dy230.00325gを添加し乳鉢にて混合し
粉状に解した後還元雰囲気下で1000℃で2時間仮焼
成を行い、その後更に還元雰囲気下で1300℃、2時
間本焼成を行った。
Example 4 Up to the gel powder process, the same procedure as in Example 2 was performed. The obtained lump of gel powder was pulverized in a mortar and calcinated at 1000 ° C. for 2 hours in a reducing atmosphere. After calcination, 0.0164 g of the activator Eu 2 O 3 and 0.00325 g of the co-activator Dy 2 O 3 were added and mixed in a mortar to give a powder. Firing was performed, and then main firing was further performed at 1300 ° C. for 2 hours in a reducing atmosphere.

【0042】図−7に実施例4、並びに実施例3で本焼
成後に得られた粉末を370nmで励起した際の残光強
度変化を示す。どちらの粉末も蓄光性蛍光顔料の特性を
示し附活剤、共附活剤濃度の変化により残光特性が変化
する事が明らかである。また初期輝度についても実施例
4で得られた蓄光性蛍光顔料の方が実施例3で得られた
蓄光性蛍光顔料に比べ高い事が判った。
FIG. 7 shows changes in afterglow intensity when the powder obtained after the main calcination in Example 4 and Example 3 was excited at 370 nm. It is clear that both powders show the characteristics of the phosphorescent fluorescent pigment and the afterglow characteristics change depending on the concentration of the activator and co-activator. It was also found that the phosphorescent fluorescent pigment obtained in Example 4 was higher in initial brightness than the phosphorescent fluorescent pigment obtained in Example 3.

【0043】(実施例5)アルミニウム トリ(2−ブ
トキシド)0.02モル(4.927g)を40mlブ
タノールに添加し、2時間攪拌した溶液に酢酸ストロン
チウム・1/2H2 O0.01モル(2.147g)を
7.2gの水に添加した水溶液を混合し均一溶液とす
る。そこに28%アンモニア水溶液20gを加え加水分
解を行った。30min攪拌後、Eu230.0032
8gとDy230.00325gを硝酸2gに溶解した
溶液を添加、攪拌後得られたゲル溶液を60℃下で24
時間エージングした。その後150℃でゲル溶液を乾燥
し非常に脆いゲル粉末の塊を得た。塊を乳鉢で粉状に解
した後1000℃、2時間仮焼成を行い、その後130
0℃で本焼成を行った。
(Example 5) 0.02 mol (4.927 g) of aluminum tri (2-butoxide) was added to 40 ml of butanol, and the solution was stirred for 2 hours, and 0.01 mol (2 mol of strontium acetate.1 / 2H 2 O) was added to the solution. 0.147 g) was added to 7.2 g of water to obtain a uniform solution. Hydrolysis was performed by adding 20 g of 28% aqueous ammonia solution. After stirring for 30 minutes, Eu 2 O 3 0.0032
A solution of 8 g and 0.00325 g of Dy 2 O 3 dissolved in 2 g of nitric acid was added, and the gel solution obtained after stirring was heated at 60 ° C. for 24 hours.
Aged for hours. The gel solution was then dried at 150 ° C. to obtain a very brittle mass of gel powder. After crushing the mass into powder in a mortar, calcination is performed at 1000 ° C for 2 hours, and then 130
Main firing was performed at 0 ° C.

【0044】得られた粉末の形状、粒径並びに残光特性
は実施例1と同様であった。
The shape, particle size and afterglow characteristics of the obtained powder were the same as in Example 1.

【0045】(実施例6)アルミニウム トリ(2−ブ
トキシド)0.04モル(9.854g)とストロンチ
ウム ジ(2−プロポキシド)0.01モル(2.05
8g)をそれぞれ80ml、並びに20mlの2−エト
キシエタノールに添加し5時間攪拌後混合した。混合溶
液を130℃にて17時間還流後、室温に戻し9.01
gの水を添加し加水分解を行った。ゲル溶液を60℃下
で24時間エージングした。その後150℃でゲル溶液
を乾燥し非常に脆いゲル粉末の塊を得た。得られたゲル
粉末の塊を乳鉢で粉状に解し還元雰囲気下で1000
℃、2時間仮焼成を行った。仮焼成後、附活剤Eu23
0.0164gと共附活剤Dy230.0065gを添
加し乳鉢にて混合し粉状に解した後還元雰囲気下で10
00℃で2時間仮焼成を行い、その後更に還元雰囲気下
で1300℃、2時間本焼成を行った。
Example 6 Aluminum tri (2-butoxide) 0.04 mol (9.854 g) and strontium di (2-propoxide) 0.01 mol (2.05)
8 g) was added to 80 ml and 20 ml of 2-ethoxyethanol, respectively, and the mixture was stirred for 5 hours and then mixed. The mixed solution was refluxed at 130 ° C. for 17 hours, then returned to room temperature and 9.01.
Hydrolysis was carried out by adding g of water. The gel solution was aged at 60 ° C. for 24 hours. The gel solution was then dried at 150 ° C. to obtain a very brittle mass of gel powder. The lump of the obtained gel powder is crushed into powder in a mortar and 1000
Calcination was performed at 2 ° C. for 2 hours. After calcination, activator Eu 2 O 3
0.0164 g and 0.0065 g of co-activator Dy 2 O 3 were added and mixed in a mortar to give a powder, and then 10 in a reducing atmosphere.
Pre-baking was performed at 00 ° C. for 2 hours, and then main baking was further performed at 1300 ° C. for 2 hours in a reducing atmosphere.

【0046】実施例6で得られたゲル粉末の各焼成温度
でのXRDスペクトル変化を調べたところ900℃にお
いては非晶質となり1000℃ではSrAl24結晶と
SrAl47結晶が共存する事が認められた。更に高温
の1100℃以上ではSrAl24結晶ピークは消失し
SrAl47結晶が単独相で存在することが認められ
た。
When the XRD spectrum change at each firing temperature of the gel powder obtained in Example 6 was examined, it became amorphous at 900 ° C. and SrAl 2 O 4 and SrAl 4 O 7 crystals coexist at 1000 ° C. The thing was recognized. Further, at a high temperature of 1100 ° C. or higher, it was confirmed that the SrAl 2 O 4 crystal peak disappeared and the SrAl 4 O 7 crystal existed as a single phase.

【0047】実施例4と実施例6で本焼成後得られた粉
末を370nmで励起した際の発光スペクトルを比較し
たところ、実施例4の粉末は508nmに実施例6の粉
末は498nmに最大発光ピークを示し、母結晶の結晶
型による発光スペクトルの違いがみられた。
The emission spectra of the powders obtained after the main calcination in Example 4 and Example 6 when excited at 370 nm were compared, and the powder of Example 4 had a maximum emission at 508 nm and the powder of Example 6 had a maximum emission at 498 nm. A peak was shown, and a difference in emission spectrum was observed depending on the crystal type of the mother crystal.

【0048】図8に実施例4と実施例6の本焼成後得ら
れた粉末を1600Luxの蛍光灯で20分照射した後
の残光特性を示す。図8より、母結晶の結晶型により残
光特性も大きく異なり、実施例4で得られたSrAl2
4母結晶からなる蓄光性蛍光顔料は初期輝度が高く、
一方の実施例6で得られたSrAl47母結晶からなる
蓄光性蛍光顔料は残光特性に優れていることがわかる。
FIG. 8 shows the afterglow characteristics of the powders obtained after the main calcination of Examples 4 and 6 after being irradiated with a 1600 Lux fluorescent lamp for 20 minutes. From FIG. 8, the afterglow characteristics greatly differ depending on the crystal type of the mother crystal, and the SrAl 2 obtained in Example 4 was obtained.
The phosphorescent fluorescent pigment composed of O 4 mother crystal has high initial brightness,
On the other hand, it can be seen that the phosphorescent fluorescent pigment composed of the SrAl 4 O 7 mother crystal obtained in Example 6 has excellent afterglow characteristics.

【0049】このように本発明によれば特性の異なる蓄
光性蛍光顔料を純度高く得ることが可能であり、これら
を個々に製造、混合することにより要求特性に応じた蓄
光性蛍光顔料の調整も可能となる。
As described above, according to the present invention, it is possible to obtain the phosphorescent fluorescent pigments having different characteristics with high purity, and by individually manufacturing and mixing these, the phosphorescent fluorescent pigments can be adjusted according to the required characteristics. It will be possible.

【0050】(比較例2)α−酸化アルミニウム0.0
2モル(2.040g)と炭酸ストロンチウム0.01
モル(1.476g)、並びに附活剤Eu23(0.0
164g)と共附活剤Dy23(0.0065g)を乳
鉢にて混合し還元雰囲気下で1300℃、2時間仮焼成
を行った後、ボールミルにて焼成物を粉砕混合し、その
後更に還元雰囲気下で1300℃、2時間本焼成を行っ
た。
(Comparative Example 2) α-aluminum oxide 0.0
2 mol (2.040 g) and strontium carbonate 0.01
Mol (1.476 g), as well as the activator Eu 2 O 3 (0.0
164 g) and the co-activator Dy 2 O 3 (0.0065 g) were mixed in a mortar and calcined in a reducing atmosphere at 1300 ° C. for 2 hours, and then the calcined product was crushed and mixed in a ball mill, and then further mixed. Main firing was performed at 1300 ° C. for 2 hours in a reducing atmosphere.

【0051】上記固相反応の各焼成温度でのXRDスペ
クトル変化を調べたところ実施例6とは異なり900℃
においても原料の酸化アルミニウム、炭酸ストロンチウ
ム、並びにSr3Al26 のピークが確認された。また
実施例6でSrAl47が単独相で得られている120
0℃、並びに1300℃においても目的とするSrAl
47結晶は主相としては存在せずそれ以外の酸化アルミ
ニウム、Sr3Al26、SrAl24等多数の結晶の
混在が認められた。
When the change in XRD spectrum at each firing temperature of the above solid-phase reaction was examined, unlike Example 6, it was 900 ° C.
Also in this case, peaks of aluminum oxide, strontium carbonate, and Sr 3 Al 2 O 6 as raw materials were confirmed. Also, in Example 6, SrAl 4 O 7 was obtained as a single phase.
Target SrAl at 0 ℃ and 1300 ℃
The 4 O 7 crystal did not exist as the main phase, and it was recognized that many other crystals such as aluminum oxide, Sr 3 Al 2 O 6 and SrAl 2 O 4 were mixed.

【0052】比較例1と比較例2の本焼成後得られた粉
末を370nmで励起した際の発光スペクトルを調べた
ところどちらの粉末も母結晶が単一結晶相でないため発
光スペクトルに差異が認められなかった。
When the emission spectra of the powders obtained after the main calcination of Comparative Example 1 and Comparative Example 2 were excited at 370 nm, the emission spectra of both powders were different because the mother crystal was not a single crystal phase. I couldn't do it.

【0053】以上実施例、比較例を挙げて述べてきた
が、本発明による蓄光性蛍光顔料の製造法は蓄光性蛍光
顔料の母結晶の構成元素や結晶型或いは附活剤、共附活
剤、及び添加物の種類、濃度になんら限定されるもので
はない。
Although the examples and comparative examples have been described above, the method for producing the phosphorescent fluorescent pigment according to the present invention is not limited to the constituent elements of the mother crystal of the phosphorescent fluorescent pigment, the crystal type or the activator, and the co-activator. , And the kind and concentration of the additive are not limited at all.

【0054】[0054]

【発明の効果】本発明の蓄光性蛍光顔料の製造方法は従
来の固相反応による蓄光性蛍光顔料の製造法に比べ、製
造工程については原料の精製の簡略化、焼成温度の低減
化、粉砕工程の省略、分級工程の省略が図られる。
EFFECTS OF THE INVENTION The method for producing a phosphorescent fluorescent pigment of the present invention is simpler than the conventional method for producing a phosphorescent fluorescent pigment by a solid-phase reaction. The steps can be omitted and the classification step can be omitted.

【0055】また、本発明のゾル−ゲル法により得られ
る蓄光性蛍光顔料は不純物混入が無く、低温焼成条件下
で目的とする純度の高い母結晶の結晶型が得らる。
Further, the phosphorescent fluorescent pigment obtained by the sol-gel method of the present invention does not contain impurities, and the desired crystal form of the mother crystal with high purity can be obtained under low temperature firing conditions.

【0056】本発明のゾル−ゲル法により特性の異なる
蓄光性蛍光顔料を純度高く得ることが可能であり、これ
らを個々に製造、混合することにより要求特性に応じた
蓄光性蛍光顔料の調整が可能である。
By the sol-gel method of the present invention, it is possible to obtain high-purity phosphorescent fluorescent pigments having different properties, and by individually manufacturing and mixing these, it is possible to adjust the phosphorescent fluorescent pigment according to the required properties. It is possible.

【0057】更に本発明の蓄光性蛍光顔料の製造法にお
いてはゾル−ゲル反応条件を選択する事により粒径の制
御が可能である事よりその後の塗布工程条件等に見合っ
た粒径の蓄光性蛍光顔料を得る事が可能となる。
Further, in the method for producing the phosphorescent fluorescent pigment of the present invention, the particle size can be controlled by selecting the sol-gel reaction condition. Therefore, the phosphorescent property of the particle size suitable for the subsequent coating process conditions and the like. It is possible to obtain a fluorescent pigment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で得られたゲル粉末のTG−
DTA測定結果である。
FIG. 1 is the TG-of the gel powder obtained in Example 1 of the present invention.
It is a DTA measurement result.

【図2】本発明の実施例1で得られたゲル粉末の各温度
でのXRDスペクトル変化である。
FIG. 2 is an XRD spectrum change at each temperature of the gel powder obtained in Example 1 of the present invention.

【図3】比較例1で示した従来の固相反応を用いた際の
各温度でのXRDスペクトル変化である。
FIG. 3 is an XRD spectrum change at each temperature when the conventional solid-phase reaction shown in Comparative Example 1 is used.

【図4】本発明の実施例3で本焼成後得られた粉末の励
起、並びに発光スペクトルである。
FIG. 4 is an excitation and emission spectrum of the powder obtained after the main calcination in Example 3 of the present invention.

【図5】本発明の実施例3、並びに比較例1で本焼成後
に得られた粉末を370nmで励起した際の発光スペク
トルである。
FIG. 5 is an emission spectrum of the powder obtained after the main calcination in Example 3 of the present invention and Comparative Example 1 when excited at 370 nm.

【図6】本発明の実施例3、並びに比較例1で本焼成後
に得られた粉末を370nmで励起した際の残光強度変
化である。
FIG. 6 is a change in afterglow intensity when the powder obtained after main firing in Example 3 of the present invention and Comparative Example 1 is excited at 370 nm.

【図7】本発明の実施例3、並びに実施例4で本焼成後
に得られた粉末を370nmで励起した際の残光強度変
化である。
FIG. 7 shows changes in afterglow intensity when the powder obtained after the main calcination in Example 3 and Example 4 of the present invention was excited at 370 nm.

【図8】本発明の実施例4、並びに実施例6で本焼成後
に得られた粉末を1600Luxの蛍光灯で20分照射
した後の残光特性である。
FIG. 8 is the afterglow characteristics of the powder obtained after the main calcination in Example 4 and Example 6 of the present invention after irradiation with a 1600 Lux fluorescent lamp for 20 minutes.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物系結晶である母結晶と、附活
剤、共附活剤よりなる蓄光性蛍光顔料、並びに金属酸化
物系結晶である母結晶と、附活剤、共附活剤、及びその
他添加元素よりなる蓄光性蛍光顔料において、前記蓄光
性蛍光顔料の構成金属元素のアルコキシド誘導体、有機
酸塩、無機酸塩、酸化物、または塩化物を用いるゾル−
ゲル法により蓄光性蛍光顔料を製造する蓄光性蛍光顔料
の製造方法。
1. A mother crystal which is a metal oxide crystal, a phosphorescent fluorescent pigment comprising an activator and a co-activator, and a mother crystal which is a metal oxide crystal, an activator and a co-activator. In a luminous fluorescent pigment comprising an agent, and other additive elements, a sol using an alkoxide derivative of a constituent metal element of the luminous fluorescent pigment, an organic acid salt, an inorganic acid salt, an oxide, or a chloride.
A method for producing a phosphorescent fluorescent pigment for producing a phosphorescent fluorescent pigment by a gel method.
【請求項2】 母結晶がAl、Sr、Ca、Baよりな
る群の少なくとも2つ以上の構成元素よりなる金属酸化
物系結晶である事を特徴とする請求項1記載の蓄光性蛍
光顔料の製造方法。
2. The phosphorescent fluorescent pigment according to claim 1, wherein the mother crystal is a metal oxide crystal composed of at least two or more constituent elements of the group consisting of Al, Sr, Ca, and Ba. Production method.
【請求項3】 附活剤がEuである事を特徴とする請求
項1記載の蓄光性蛍光顔料の製造方法。
3. The method for producing a phosphorescent fluorescent pigment according to claim 1, wherein the activator is Eu.
【請求項4】 共附活剤がLa、Ce、Pr、Nd、S
m、Gd、Dy、Ho、Er、Tm、Y、Luよりなる
群の少なくとも1つ以上の構成元素よりなる事を特徴と
する請求項1記載の蓄光性蛍光顔料の製造方法。
4. The co-activator is La, Ce, Pr, Nd, S.
The method for producing a phosphorescent fluorescent pigment according to claim 1, which comprises at least one or more constituent elements of the group consisting of m, Gd, Dy, Ho, Er, Tm, Y, and Lu.
【請求項5】 その他添加元素がB、Cu、Pよりなる
群の少なくとも1つ以上の構成元素よりなる事を特徴と
する請求項1記載の蓄光性蛍光顔料の製造方法。
5. The method for producing a phosphorescent fluorescent pigment according to claim 1, wherein the other additive element is at least one constituent element of the group consisting of B, Cu and P.
【請求項6】 ゾル−ゲル法により得られたゲル粉末を
還元雰囲気下で焼成する事により蓄光性蛍光顔料を製造
する事を特徴とする請求項1記載の蓄光性蛍光顔料の製
造方法。
6. The method for producing a phosphorescent fluorescent pigment according to claim 1, wherein the phosphorescent pigment is manufactured by firing the gel powder obtained by the sol-gel method in a reducing atmosphere.
JP654097A 1996-01-17 1997-01-17 Preparation of light-storing luminescent pigment Pending JPH09255950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP654097A JPH09255950A (en) 1996-01-17 1997-01-17 Preparation of light-storing luminescent pigment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2466596 1996-01-17
JP8-24665 1996-01-17
JP654097A JPH09255950A (en) 1996-01-17 1997-01-17 Preparation of light-storing luminescent pigment

Publications (1)

Publication Number Publication Date
JPH09255950A true JPH09255950A (en) 1997-09-30

Family

ID=26340717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP654097A Pending JPH09255950A (en) 1996-01-17 1997-01-17 Preparation of light-storing luminescent pigment

Country Status (1)

Country Link
JP (1) JPH09255950A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053023A1 (en) * 1997-05-19 1998-11-26 Citizen Watch Co., Ltd. Photostimulable fluorescent pigment and process for producing the same
JP2001220582A (en) * 1999-11-30 2001-08-14 Sumitomo Chem Co Ltd Preparation process of aluminate phosphor
WO2002059982A1 (en) * 2001-01-24 2002-08-01 Nichia Corporation Light emitting diode, optical semiconductor elemet and epoxy resin composition suitable for optical semiconductor element and production methods therefor
JP2005132861A (en) * 2003-10-28 2005-05-26 Japan Science & Technology Agency Method for producing luminant, and luminant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053023A1 (en) * 1997-05-19 1998-11-26 Citizen Watch Co., Ltd. Photostimulable fluorescent pigment and process for producing the same
JP2001220582A (en) * 1999-11-30 2001-08-14 Sumitomo Chem Co Ltd Preparation process of aluminate phosphor
WO2002059982A1 (en) * 2001-01-24 2002-08-01 Nichia Corporation Light emitting diode, optical semiconductor elemet and epoxy resin composition suitable for optical semiconductor element and production methods therefor
US6960878B2 (en) 2001-01-24 2005-11-01 Nichia Corporation Light emitting diode, optical semiconductor element and epoxy resin composition suitable for optical semiconductor element and production methods therefor
US7550096B2 (en) 2001-01-24 2009-06-23 Nichia Corporation Light emitting diode, optical semiconductor device, epoxy resin composition and phosphor suited for optical semiconductor device, and method for manufacturing the same
JP2005132861A (en) * 2003-10-28 2005-05-26 Japan Science & Technology Agency Method for producing luminant, and luminant

Similar Documents

Publication Publication Date Title
US6565771B1 (en) Process for producing aluminate-based phosphor
JP4374442B2 (en) Preparation of alkaline earth metal thiogallate phosphors with high luminous efficiency
EP1053560B1 (en) Method of preparing high brightness, small particle red-emitting phosphor and the phosohor
US6423247B1 (en) Phosphorescent pigment and process for preparing the same
CN108559500B (en) Solvent heat-assisted method for preparing complex-phase titanate red long-afterglow fluorescent powder
US5989454A (en) Method for making small particle blue emitting lanthanum phosphate based phosphors
CN109082272A (en) A kind of red light fluorescent powder and preparation method thereof
KR100280369B1 (en) Manufacturing method of green light emitting phosphor
JPH09255950A (en) Preparation of light-storing luminescent pigment
JP4723150B2 (en) Method for producing rare earth borate and its application to phosphor
JP2001172620A (en) Method for producing red light emitting fluorescent microparticle
JP2001303039A (en) Inorganic fluorescent substance and method for producing the same
JP3956557B2 (en) Method for producing aluminate phosphor for phosphorescent material
KR20020022455A (en) Process for preparing spherical blue phosphor based on aluminates
KR100387659B1 (en) Manufacturing method of strontium aluminate phosphor by the sol-gel method
CN113150782B (en) Preparation method of rare earth ion doped orthorhombic indium acid gadolinium-calcium-titanium ore fluorescent powder
KR100424861B1 (en) Preparing process for spherical red phosphor based on borates using hydrolysis
JP2001107039A (en) Production method of aluminate phosphor for phosphorescent material
KR100419863B1 (en) Preparing method for spherical red phosphor based on borates
JP2010100763A (en) Method of producing luminous fluorescent substance and luminous fluorescent substance
KR20020022456A (en) Process for preparing spherical phosphors based on zinc gallate
JP2002226853A (en) Rare earth element borate and method for producing the same
CN116716106A (en) Preparation method of gadolinium phosphate and rare earth doped gadolinium phosphate fluorescent powder
JPH0468077A (en) Preparation of phosphor powder
KR100665511B1 (en) Preparation of Europium-Activated Yttrium Vanadate Phosphor Materials by Combustion Process and Materials thereof