JPS59132986A - Separation of borate ion - Google Patents

Separation of borate ion

Info

Publication number
JPS59132986A
JPS59132986A JP649783A JP649783A JPS59132986A JP S59132986 A JPS59132986 A JP S59132986A JP 649783 A JP649783 A JP 649783A JP 649783 A JP649783 A JP 649783A JP S59132986 A JPS59132986 A JP S59132986A
Authority
JP
Japan
Prior art keywords
rare earth
borate ion
aqueous solution
hydrous oxide
borate ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP649783A
Other languages
Japanese (ja)
Other versions
JPH0322238B2 (en
Inventor
Junji Nomura
野村 順治
Akira Kaneda
金田 朗
Yuzuru Ishibashi
譲 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP649783A priority Critical patent/JPS59132986A/en
Priority to US06/570,322 priority patent/US4596659A/en
Priority to FR8400678A priority patent/FR2539319B1/en
Priority to GB08401170A priority patent/GB2135983B/en
Priority to IT19220/84A priority patent/IT1173067B/en
Publication of JPS59132986A publication Critical patent/JPS59132986A/en
Priority to US06/808,581 priority patent/US4666883A/en
Publication of JPH0322238B2 publication Critical patent/JPH0322238B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To separate borate ion from water or an aqueous boric acid solution of low concentration esp. such as sea water, by bringing said aqueous solution containing borate ion of low concentration into contact with the hydrous oxide of a rare earth element such as Ce. CONSTITUTION:The pH of the aqueous solution of a salt such as the hydrochloride or sulphate of a rare earth element, e.g. Y, La or Ce, is adjusted by the addition of an alkali solution to obtain the hydrous oxide of said rare earth element as a precipitate. By the method of adding the suspended matter, cake, powdery body or granular body of said hydrous oxide of the rare earth element to an aqueous solution containing borate ion and suspending it therein to bring the hydrous oxide into contact with the borate ion, the method of circulating the aqueous solution containing borate ion through a column packed with the granular or powdery body to bring the hydrous oxide into contact with the borate ion, etc., the borate ion is adsorbed. For instance, the content of borate ion in sea water can be lowered to 2-0.1ppm by the addition of hydrous oxide slurry of Ce(IV) in an amount of 3-1g-solid/m<2>.

Description

【発明の詳細な説明】 本発明は水中に低濃度に溶存するホウ酸化合物、特に海
水のような低濃度ホウ酸水溶液中より、選択性良くかつ
、高効率でホウ酸イオンを分離する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating borate ions with good selectivity and high efficiency from boric acid compounds dissolved in low concentrations in water, particularly from low concentration boric acid aqueous solutions such as seawater. .

海水よシ水酸化マグネシウムを製造するに際し、海水中
に溶存するホウ酸化合物が水酸化マグネシウムと共沈し
、その品質を低下させることから、海水中のホウ酸化合
物を除去する方法が研究されている。
When manufacturing magnesium hydroxide from seawater, boric acid compounds dissolved in seawater co-precipitate with magnesium hydroxide, reducing its quality, so research has been conducted on methods to remove boric acid compounds from seawater. There is.

従来、水中に溶存するホウ酸化合物の分離方法トシて、
アニオン交換樹脂やグアーガムから誘導されたホウ素選
択樹脂等のキレート樹脂、或いは水酸化マグネシウムを
代表とする金属水酸化物によって吸着分離する方法等が
提案されている。しかしながら、海水中のホウ酸濃度は
ホウ素原子として4〜5 ppmと極めて低く、かつま
た、多量の各種イオンが共存するため、上記の方法で1
はホウ素選択性或いは吸着能力が充分でなく、経済的に
有効な方法は見い出されていないのが実情である。
Conventionally, the method of separating boric acid compounds dissolved in water was
Methods of adsorption and separation using anion exchange resins, chelate resins such as boron selective resins derived from guar gum, or metal hydroxides typified by magnesium hydroxide have been proposed. However, the concentration of boric acid in seawater is extremely low at 4 to 5 ppm as boron atoms, and large amounts of various ions coexist.
The reality is that boron selectivity or adsorption capacity is insufficient, and no economically effective method has been found.

本発明者等は、この様な問題点を解決すべく、各種吸着
剤及びイオン交換体について鋭意研究を重ねた結果、本
発明に到達した。
In order to solve these problems, the present inventors have conducted extensive research on various adsorbents and ion exchangers, and as a result, have arrived at the present invention.

即ち本発明は、希土類元素の含水酸化物を用い、低濃度
ホウ酸イオン含有水溶液中よりホウ酸イオンを吸着させ
ることを特徴とするホウ酸イオンの分離方法に関するも
のである。
That is, the present invention relates to a method for separating borate ions, which is characterized by using a hydrous oxide of a rare earth element and adsorbing borate ions from an aqueous solution containing borate ions at a low concentration.

本発明に示す希土類元素の含水酸化物とは、希土類元素
、即ちY XLa、 Ce、 Pr、 NdXPm、S
m、Eu。
Hydrous oxides of rare earth elements according to the present invention include rare earth elements, namely Y XLa, Ce, Pr, NdXPm, S
m, Eu.

割、TI)、Dy1HoXErXT′rr+、YbXL
uの金属、酸化物、及び塩類の水酸化によって得られる
化合物である。
TI), Dy1HoXErXT′rr+, YbXL
It is a compound obtained by hydroxylation of metals, oxides, and salts of u.

希土類元素の種類としては、LaXCe、、YXSm等
が好ましく、特にCe(fV)が吸着能が犬きく、かつ
、溶解度が極めて低いため好ましい。
As the type of rare earth element, LaXCe, YXSm, etc. are preferable, and Ce (fV) is particularly preferable because it has a high adsorption capacity and extremely low solubility.

これ等の希土類含水酸化物は各々単独で用いてもよく、
複数種を混合して用いてもよい。また、活性炭、アルミ
ナ等信の物質と共に用いることもできる。
These rare earth hydrated oxides may be used alone,
A mixture of multiple types may be used. It can also be used with materials such as activated carbon and alumina.

これ等の希土類含水酸化物は、例えは塩酸塩、硫酸塩、
硝酸塩等の塩類水溶液中にアルカリ溶液を添加する方法
等、上記塩類水溶液のpHを調整することによって、容
易に沈澱物として得ることができる。この沈澱物は、懸
濁状態の1ま或いは瀝過して得られるケーキ状態として
使用に供することもできるし、また、乾燥して粉体とし
て或いは適当な多孔質担体に担持させる等の方法で造粒
し造粒体として使用することもできる。
These rare earth hydrated oxides are, for example, hydrochlorides, sulfates,
It can be easily obtained as a precipitate by adjusting the pH of the aqueous salt solution, such as by adding an alkaline solution to the aqueous solution of salts such as nitrates. This precipitate can be used as a suspension or as a cake obtained by filtration, or it can be dried as a powder or supported on a suitable porous carrier. It can also be granulated and used as a granule.

ホウ酸イオンの分離に際し、該ホウ酸イオン含有水溶液
のpHを調整して、ホウ酸イオンの解離状態及び、希土
類含水酸化物の表面電位を調整することは吸着量を増大
させ、分離効率を高めるのに有効である。即ち、通常、
該ホウ酸イオン含有水溶液のpHを、pH3〜12特に
好ましくはp)i4〜12の範囲に調整することによっ
て効率よく分離することができる。
When separating borate ions, adjusting the pH of the borate ion-containing aqueous solution to adjust the dissociation state of borate ions and the surface potential of the rare earth hydrous oxide increases the adsorption amount and improves the separation efficiency. It is effective for That is, usually
Efficient separation can be achieved by adjusting the pH of the boric acid ion-containing aqueous solution to a range of pH 3 to 12, particularly preferably p)i 4 to 12.

特に海水から水酸化マダイ・シウムを製造するに際して
ホウ酸イオンを分離する場合には、pH1’0以上では
海水中のマグネシウムが水酸化物として沈澱してしまう
ため、pH3〜10、特に好ましくはpH4〜10に調
整するのがよい。
In particular, when separating borate ions when producing red sea bream sium hydroxide from seawater, the pH is preferably 3 to 10, particularly preferably pH 4, since magnesium in the seawater will precipitate as hydroxide at pH 1'0 or higher. It is best to adjust it to ~10.

上記ホウ酸イオン濃度は、ホウ素原子として103〜i
o”ppmの範囲で効果を示し、より好ましくは10”
〜10−’ppmの範囲で特に顕著な効果を発揮する。
The above borate ion concentration is 103 to i as boron atoms.
Shows effectiveness in the range of 10" ppm, more preferably 10"
Particularly remarkable effects are exhibited in the range of ~10-'ppm.

本発明の希土類含水酸化物は、従来困難とされていた共
存イオンを多種多量に含む水溶液中の低濃度ホウ酸イオ
ンを選択的に高効率で分離することを可能とするもので
あり、例えば、海水のような塩素イオン500 mM/
 を中に共存する0、4 mM/Lのホウ酸イオンを選
択的に吸着することができる。
The rare earth hydrated oxide of the present invention makes it possible to selectively and highly efficiently separate low-concentration boric acid ions in an aqueous solution containing a large variety of coexisting ions, which has been considered difficult in the past. Chlorine ions like seawater 500mM/
It is possible to selectively adsorb borate ions of 0.4 mM/L coexisting inside.

本発明の希土類含水酸化物が、どの様な作用機構でホウ
酸イオンを固定するのかは明らかでないが、本発明でい
う吸着とは、希土類含水酸化物或いは水溶液中に於ける
該希土類含水酸化物の表面状態と水溶液中のホウ酸イオ
ンとの物理的及び/又は化学的作用により、ポウ酸イオ
ンが固定される現象をいう。
Although it is not clear by what mechanism of action the rare earth hydrated oxide of the present invention fixes borate ions, adsorption in the present invention refers to the rare earth hydrated oxide or the rare earth hydrated oxide in an aqueous solution. A phenomenon in which borate ions are fixed due to the physical and/or chemical interaction between the surface condition of the aqueous solution and the borate ions in the aqueous solution.

該希土類含水酸化物を用いてホウ酸イオンを吸着させる
方法は、該希土類含水酸化物をホウ酸イオンを含有する
水溶液と接触させる方法であればどの様な方法でもよい
。例えば、希土類含水酸化物の懸濁液、ケーキ、粉体或
い−は造粒体をホウ酸イオン含有水溶液中に加え懸濁さ
せて接触させる方法、造粒体又は粉体を充填した塔にホ
ウ酸イオン含有水溶液を通水して接触させる方法、希土
類含水酸化物を多孔性物質、不織布等に含浸固定(7、
該固定体をホウ酸イオン含有水溶液中に浸漬する方法等
が有効である。また、ホウ酸イオン含有水溶液中に希土
類元素の水溶性塩を溶解させた後、pHの調整等適当な
方法で希土類含水酸化物の沈澱を生ぜしめ、溶存ホウ酸
イオンを吸着させることもできる。
The method for adsorbing borate ions using the rare earth hydrate may be any method as long as the rare earth hydrate is brought into contact with an aqueous solution containing borate ions. For example, a method in which a suspension, cake, powder, or granule of a rare earth hydrous oxide is added to an aqueous solution containing borate ions, suspended, and brought into contact; Method of contacting by passing water through an aqueous solution containing boric acid ions, impregnating and fixing rare earth hydrous oxides into porous materials, nonwoven fabrics, etc. (7,
A method of immersing the fixed body in an aqueous solution containing borate ions is effective. Alternatively, after dissolving a water-soluble salt of a rare earth element in an aqueous solution containing boric acid ions, the dissolved boric acid ions can be adsorbed by precipitating the rare earth hydrous oxide by an appropriate method such as adjusting the pH.

上記接触時の温度は常温でよい。所望により温度を上げ
ることもできる。接触時間は、接触時の物理的条件や粒
径等によって左右されるが、通常0.5〜10分でよい
The temperature during the above contact may be room temperature. The temperature can also be increased if desired. The contact time depends on the physical conditions at the time of contact, the particle size, etc., but is usually 0.5 to 10 minutes.

希土類含水酸化物の添加量は、該希土類含水酸化物の単
位量当りの飽和吸着量と溶液中のホウ酸濃度との間に相
関関係があるため、初a度と目標到達濃度とによって好
適な量を設定することができる。例えは、海水中のホウ
酸イオンをCeNV)の含水酸化物スラリーを用いて分
離する場合には、3〜工y−固形分βのぶ加景で、ホウ
素原子として2〜0.lppmの濃度にすることができ
る。
Since there is a correlation between the saturated adsorption amount per unit amount of the rare earth hydrous oxide and the concentration of boric acid in the solution, the amount of the rare earth hydrous oxide to be added is determined depending on the initial a degree and the target concentration. The amount can be set. For example, when boric acid ions in seawater are separated using a hydrous oxide slurry of CeNV), the boron atoms are 2 to 0. The concentration can be 1 ppm.

また、上記の方法でホウ酸イオンを吸着せしめブζ希土
類含水酸化物は、pHの調整、塩の添加等の適当な方法
により脱着し再生することができ、再生した希土類含水
酸化物を用いて、新たなホウ酸イオン含有水溶液中のホ
ウ酸イオンを繰り返えし吸着分離することもできる。上
記の脱着は、例えば、希土類含水酸化物をpH11以上
、より好ましくは12以上に調整した水溶液と常温、或
いは適当に加温した条件下で接触させることにより容易
に行うことができる。
In addition, the rare earth hydrated oxide that adsorbs borate ions by the above method can be desorbed and regenerated by appropriate methods such as adjusting the pH and adding salt, and the regenerated rare earth hydrated oxide can be used. , it is also possible to repeatedly adsorb and separate borate ions in a new aqueous solution containing borate ions. The above desorption can be easily carried out, for example, by bringing the rare earth hydrated oxide into contact with an aqueous solution adjusted to pH 11 or higher, more preferably 12 or higher, at room temperature or under appropriately heated conditions.

以下、本発明を実施例により更に詳細に説明す実施例1
.2 蒸留水にホウ酸(試薬特級)を溶解し、ホウ素原子とし
て45ppmとした試料水(1)H5,4)に、下記の
如く調整したCe及びYの含水酸化物を42/lの割合
で添加し攪拌した。2時間後の試料水中のホウ素濃度を
ICP (高周波誘導結合グラズマ発光分析法)で測定
し、平衡吸着量及び除去率を求め・Ce含水酸化物:塩
化セリウムを蒸留水に溶解し、セリウムと等モル量の過
酸化水素水を添加して撹拌した後、アンモニア水を添加
してpH9に調整した。その後85℃に加熱して過剰の
過酸化水素を分解した後、1晩熟成して瀝過し、そのケ
ーキを試料としだ。
Example 1 Hereinafter, the present invention will be explained in more detail with reference to Examples.
.. 2. To sample water (1) H5,4) in which boric acid (special grade reagent) was dissolved in distilled water and the concentration of boron atoms was adjusted to 45 ppm, hydrated oxides of Ce and Y prepared as below were added at a ratio of 42/l. Add and stir. After 2 hours, the boron concentration in the sample water was measured by ICP (inductively coupled glasma emission spectrometry), and the equilibrium adsorption amount and removal rate were determined.Ce hydrous oxide: Cerium chloride was dissolved in distilled water, and cerium, etc. After adding a molar amount of hydrogen peroxide and stirring, aqueous ammonia was added to adjust the pH to 9. After that, the cake was heated to 85° C. to decompose excess hydrogen peroxide, aged overnight, filtered, and the resulting cake was used as a sample.

、Y含水酸化物;塩化イツトリウムを蒸留水に溶解し、
アンモニア水を添加してpH9に調整した。1晩熟成後
p過したケーキを試料とした。
, Y hydrated oxide; yttrium chloride is dissolved in distilled water,
The pH was adjusted to 9 by adding aqueous ammonia. A cake that had been aged overnight and then filtered was used as a sample.

なお、比較例として、地及びTiの含水酸化物、グアー
ガム樹脂を実施例と同様にして吸着率を求めた。Tiの
含水酸化物はYの場合と同様にして調整し、地の水酸化
物は水酸化ナトリウムを添加してpH10,5に調整し
た他はYの場合と同様にして調整した。結果を表−1に
示す。
In addition, as a comparative example, the adsorption rate was determined using soil, a hydrous oxide of Ti, and guar gum resin in the same manner as in the example. The hydrous oxide of Ti was prepared in the same manner as in the case of Y, and the hydroxide of Ti was prepared in the same manner as in the case of Y, except that sodium hydroxide was added to adjust the pH to 10.5. The results are shown in Table-1.

表−1 実施例3.4 ホウ酸イオン含有水溶液として、海水について実施した
例を示す。海水は天然海水(ホウ素濃度4−4−5pp
を用い、pH9に調整した後に希土類含水酸化物を添加
し撹拌した。添加量を1 y −固形3)76とした以
外希土類含水酸化物の調整方法等信の条件は実施例1,
2と同様である。なあ、比較例1.2と同様に調整した
淘及びTiの含水酸化物について行った結果を比較例と
して示す。結果を表−2に示す。
Table 1 Example 3.4 An example in which seawater was used as a boric acid ion-containing aqueous solution is shown. Seawater is natural seawater (boron concentration 4-4-5pp)
After adjusting the pH to 9 using a hydride, a rare earth hydrous oxide was added and stirred. Except that the amount added was 1 y - solid 3) 76, the conditions for the preparation method of the rare earth hydrated oxide were as described in Example 1.
It is the same as 2. As a comparative example, results are shown for hydrated oxides of Tao and Ti prepared in the same manner as in Comparative Example 1.2. The results are shown in Table-2.

表−2 実施例5〜9 希土類元素の水溶性塩をホウ素イオン含有水溶液中に溶
解させた後に含水酸化物を生せしめて吸着させた例を示
す。
Table 2 Examples 5 to 9 Examples are shown in which a water-soluble salt of a rare earth element is dissolved in an aqueous solution containing boron ions, and then a hydrous oxide is formed and adsorbed.

海水中に希土類元素の塩化物を、海水1を当り希土類の
水酸化物として12となる量を溶解し、アンモニア水を
添加してpH9に調整して沈澱を生じさせた。30分間
撹拌放置した後に海水を採取し、ICPを用いてホウ素
濃度を測定して除去率を求めた。
Chlorides of rare earth elements were dissolved in seawater in an amount of 12 rare earth hydroxides per 1 part of seawater, and aqueous ammonia was added to adjust the pH to 9 to form a precipitate. After stirring for 30 minutes, seawater was collected, and the boron concentration was measured using ICP to determine the removal rate.

なお、比較例としてMg、AI、 Fe、 Tiについ
て同様に実施しだ結果を示す(但し、1胃については添
加したMg塩に対応する理論量の1.1倍量のアンモニ
ア水を添加して沈澱を生じさせ)ζ。)。
In addition, as a comparative example, the results of the same experiment for Mg, AI, Fe, and Ti are shown (however, for one stomach, 1.1 times the theoretical amount of ammonia water corresponding to the added Mg salt was added. ) ζ. ).

結果を表−3に示す 表−3 実施例10〜13 混合赤土化合物を用い、海水中のホウ酸イオンを分離し
た例を示す。市販の塩化赤土、Ce濃縮物、Y濃縮物、
Sm −Cd濃縮物を各々蒸留水又は硫酸に溶解し、全
希土類元素濃度を500 rrM/lに調整して赤土原
液としだ。希土類の水酸化物として1y7t−海水とな
る量の上記赤土原液を海水に添加した後、実施例5〜9
と同様にして含水酸化物の沈澱を生じさせ、ホウ酸イオ
ンの除去率を求めた。
The results are shown in Table 3. Examples 10 to 13 Examples 10 to 13 An example in which borate ions in seawater were separated using a mixed red clay compound is shown. Commercially available chlorinated red clay, Ce concentrate, Y concentrate,
The Sm-Cd concentrate was dissolved in distilled water or sulfuric acid, respectively, and the total rare earth element concentration was adjusted to 500 rrM/l to obtain a red clay stock solution. After adding the above red earth stock solution to seawater in an amount to give 1y7t-seawater as rare earth hydroxide, Examples 5 to 9
Hydrous oxide was precipitated in the same manner as above, and the removal rate of borate ions was determined.

なお、用いた塩化赤土、Ce濃縮物、Y濃縮物、Sm−
Gd濃縮物の組成を表−4に示す結果を表−5に示す。
In addition, the chlorinated red clay used, Ce concentrate, Y concentrate, Sm-
The composition of the Gd concentrate is shown in Table 4, and the results are shown in Table 5.

表−5 (以下余白) 表−4希土類元素の配分組成(酸化物換算)実施例14 海水についてpHを変えて実施した例を示す。天然海水
(ホウ素濃度4.5 ppm)  I LにCe(IV
)含水酸化物2ノを添加し、pHを3〜13に調整して
撹拌した。2時間経過後の海水中のホウ素濃度を測定し
、除去率を求めた。なお、Ce(IV)含水酸化物は実
施例1と同様に調整した。結果を第1図に示す。
Table 5 (blank below) Table 4 Distribution composition of rare earth elements (oxide equivalent) Example 14 An example of seawater with different pH values is shown. Natural seawater (boron concentration 4.5 ppm) Ce (IV
) Two portions of hydrous oxide were added, the pH was adjusted to 3-13, and the mixture was stirred. The boron concentration in the seawater after 2 hours was measured and the removal rate was determined. Note that the Ce(IV) hydrated oxide was prepared in the same manner as in Example 1. The results are shown in Figure 1.

実施例15 Ce(R/)含水酸化物について、脱着して再使用した
例を示す。
Example 15 An example in which Ce(R/) hydrated oxide was desorbed and reused is shown.

実施例3と同様にしてホウ酸イオンを吸着させたCe(
IV)含水酸化物を、蒸留水に2wt%の割合で懸濁さ
せ、水酸ナトリウム溶液を添加してpHを11〜13.
5に調整して攪拌した。2時間経過後、液中のホウ素濃
度を測定して脱着率を求めた。更に、pH13の条件で
脱着したCe (fV)含水酸化物を用いて、実施例3
と同様にして海水中のホウ酸イオンの平衡吸着量及び除
去率を求めた。
Ce (
IV) Hydrous oxide was suspended in distilled water at a ratio of 2 wt%, and a sodium hydroxide solution was added to adjust the pH to 11-13.
5 and stirred. After 2 hours had passed, the boron concentration in the liquid was measured to determine the desorption rate. Furthermore, using Ce (fV) hydrated oxide desorbed under pH 13 conditions, Example 3
In the same manner as above, the equilibrium adsorption amount and removal rate of borate ions in seawater were determined.

脱着率とpHとの関係を第2図に、再使用時の平衡吸着
量及び除去率を表−6に示す。
The relationship between the desorption rate and pH is shown in Figure 2, and the equilibrium adsorption amount and removal rate upon reuse are shown in Table 6.

表−6 以上の様に、本発明の方法によれば、低濃度水溶液中か
らでも選択性良く、かつ、高い効率でホウ酸イオンを分
離でき、更に、希土類含水酸化物は答易に再生して使用
できるので、工業的なホウ酸イオンの分離方法として好
適である。
Table 6 As shown above, according to the method of the present invention, borate ions can be separated with good selectivity and high efficiency even from low concentration aqueous solutions, and rare earth hydrated oxides can be easily regenerated. This method is suitable as an industrial method for separating borate ions.

本発明の方法C:、海水から水酸化マグネシウムを製造
する場合のように、水溶液中にホウ素化合物が存在しな
い事が必要とされる分野に応用することができる。
Method C of the present invention: can be applied to fields where the absence of boron compounds in an aqueous solution is required, such as the production of magnesium hydroxide from seawater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は海水からの吸着分離におけるpHとホウ酸イオ
ン除去率との関係、第2図は、脱着時のpHと脱着率と
の関係を示す図である。
FIG. 1 is a diagram showing the relationship between pH and borate ion removal rate during adsorption separation from seawater, and FIG. 2 is a diagram showing the relationship between pH and desorption rate during desorption.

Claims (4)

【特許請求の範囲】[Claims] (1)希土類元素の含水酸化物を用い、低濃度ホウ酸イ
オン含有水溶液中よりホウ酸イオンを吸着させることを
特徴とするホウ酸イオンの分離方法。
(1) A method for separating borate ions, which comprises using a hydrous oxide of a rare earth element to adsorb borate ions from an aqueous solution containing borate ions at a low concentration.
(2)希土類元素がCe(■)である特許請求の範囲第
1項記載のホウ酸イオンの分離方法。
(2) The method for separating borate ions according to claim 1, wherein the rare earth element is Ce (■).
(3)低濃度ホウ酸イオン含有水溶液が海水である特許
請求の範囲第1項記載のホウ酸イオンの分離方法。
(3) The method for separating borate ions according to claim 1, wherein the aqueous solution containing borate ions at a low concentration is seawater.
(4)低濃度ホウ酸イオン含有水溶液をpH3〜12の
範囲に調整することを特徴とする特許請求の範囲第1項
記載のホウ酸イオンの分離方法。
(4) The method for separating borate ions according to claim 1, which comprises adjusting the aqueous solution containing borate ions at a low concentration to a pH range of 3 to 12.
JP649783A 1983-01-18 1983-01-18 Separation of borate ion Granted JPS59132986A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP649783A JPS59132986A (en) 1983-01-18 1983-01-18 Separation of borate ion
US06/570,322 US4596659A (en) 1983-01-18 1984-01-13 Selective separation of borate ions in water
FR8400678A FR2539319B1 (en) 1983-01-18 1984-01-17 PROCESS FOR THE SEPARATION OF BORATE IONS, ADSORBENT OF THESE IONS AND PROCESS FOR THE PREPARATION OF THE ADSORBENT
GB08401170A GB2135983B (en) 1983-01-18 1984-01-17 Selective adsorption of borate ions from aqueous solution
IT19220/84A IT1173067B (en) 1983-01-18 1984-01-18 SELECTIVE SEPARATION OF BORATE IONS IN WATER
US06/808,581 US4666883A (en) 1983-01-18 1985-12-13 Selective separation of borate ions in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP649783A JPS59132986A (en) 1983-01-18 1983-01-18 Separation of borate ion

Publications (2)

Publication Number Publication Date
JPS59132986A true JPS59132986A (en) 1984-07-31
JPH0322238B2 JPH0322238B2 (en) 1991-03-26

Family

ID=11640086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP649783A Granted JPS59132986A (en) 1983-01-18 1983-01-18 Separation of borate ion

Country Status (1)

Country Link
JP (1) JPS59132986A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153864A (en) * 2000-11-21 2002-05-28 Chiyoda Corp Method for adsorbing and removing fluorine and/or boron dissolved in water
JP2014213233A (en) * 2013-04-23 2014-11-17 株式会社化研 Purification method and purifier of radioactive contaminated water or industrial waste water, and volume reduction method
JP2018122273A (en) * 2017-02-03 2018-08-09 学校法人早稲田大学 Method for treating boron-containing water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153864A (en) * 2000-11-21 2002-05-28 Chiyoda Corp Method for adsorbing and removing fluorine and/or boron dissolved in water
JP2014213233A (en) * 2013-04-23 2014-11-17 株式会社化研 Purification method and purifier of radioactive contaminated water or industrial waste water, and volume reduction method
JP2018122273A (en) * 2017-02-03 2018-08-09 学校法人早稲田大学 Method for treating boron-containing water

Also Published As

Publication number Publication date
JPH0322238B2 (en) 1991-03-26

Similar Documents

Publication Publication Date Title
EP0191893B1 (en) Process for adsorption treatment of dissolved fluorine
CA1338346C (en) Method for reducing the amount of anionic metal-ligand complex in a solution
US4477367A (en) Crystalline 2-layer lithium-hydroxy aluminates
EP2874152B1 (en) Treatment method and use of a treatment device for waste water containing radioactive strontium
KR940004119B1 (en) Method of removing sulfate ions from aqueous solution of alkali metal chloride
JP4609660B2 (en) Adsorbent
US4596659A (en) Selective separation of borate ions in water
JP4247633B2 (en) Adsorbent
US2402959A (en) Removal of boron from boron polluted substances
JP2009034564A (en) Adsorbent for substance x that ionizes in alkaline solution, and method for isolating the same
JPS6324431B2 (en)
JPS59132986A (en) Separation of borate ion
JPH10128313A (en) Method for removing heavy metal from photographic waste solution
WO2018230489A1 (en) Adsorption method
JPH11235595A (en) Treatment of boron-containing waste water
JPS61192385A (en) Treatment of fluorine-containing waste solution
JPS61192340A (en) Fluorine complex ion adsorbent
JP4547528B2 (en) Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same
JP2859897B2 (en) A method for reducing the amount of anionic metal-ligand complex in solution
JPH0218906B2 (en)
JP2006263603A (en) Method for treating boron-containing water
JPH04338110A (en) Method for removing sulfate ion from aqueous alkali metal chloride solution
JPH0660014B2 (en) Method for removing sulfate ion from alkali metal chloride aqueous solution
JPS63287547A (en) Adsorbent for fluoride ion
JPH10305224A (en) Cadmium adsorbent