JPS59128776A - Molten salt battery - Google Patents

Molten salt battery

Info

Publication number
JPS59128776A
JPS59128776A JP58004562A JP456283A JPS59128776A JP S59128776 A JPS59128776 A JP S59128776A JP 58004562 A JP58004562 A JP 58004562A JP 456283 A JP456283 A JP 456283A JP S59128776 A JPS59128776 A JP S59128776A
Authority
JP
Japan
Prior art keywords
electrolyte
spacer
molten salt
battery
electrolyte body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58004562A
Other languages
Japanese (ja)
Inventor
Junji Niikura
順二 新倉
Nobuyuki Yanagihara
伸行 柳原
Hisaaki Giyouten
久朗 行天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58004562A priority Critical patent/JPS59128776A/en
Publication of JPS59128776A publication Critical patent/JPS59128776A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make production easy and prevent overflow or deformation of an electrolyte by stacking pressure and continue high performance for a long time by arranging a spacer having sufficient mechanical strength at battery operating temperature in the periphery, at where stacking pressure is applied, of an electrolyte. CONSTITUTION:A hole is formed in the periphery 6 of a paste type electrolyte 3, and a disc-shaped spacer 8 is fixed in the hole. A wet seal portion 6 of the electrolyte 3 and a rib 7 in the circumference of a bipolar plate 1 are strongly pressed vertically when a plurality of unit cells are stacked. However, since the spacer 8 supports stacking pressure, overflow of electrolyte paste and thickness change of the electrolyte in the sealing portion are prevented. Therefore, high battery performance is kept. Production is easy and a large size battery can be easily manufactured compared with a matrix impregnation type electrolyte.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、溶融塩を電解質として使用する溶融塩電池の
電解質体の改良に関するもので、特に水素、−酸化炭素
等を燃料とし、炭酸塩を電解質とする溶融炭酸塩燃料電
池の電解質体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvement of an electrolyte body for a molten salt battery that uses molten salt as an electrolyte. This invention relates to an electrolyte body for a molten carbonate fuel cell.

従来例の構成と問題点 溶融塩を電解質とする電池は、一般にその動作2ノ  
)゛ 温度が高い。特に溶融炭酸塩燃料電池では650℃前後
の高温となる。電池動作温度では、溶融塩は液体である
ため、その保持方法が問題となるが、温度が高く、また
一般に溶融塩による材料の腐食の問題があり、常温で動
作する電池に比べると難しい点が多い。
Structure and problems of conventional examples Batteries that use molten salt as an electrolyte generally have two modes of operation:
)゛Temperature is high. In particular, in a molten carbonate fuel cell, the temperature is around 650°C. At battery operating temperatures, molten salt is a liquid, so how to retain it is a problem, but the temperature is high and there is generally a problem of material corrosion due to molten salt, making it more difficult than batteries that operate at room temperature. many.

現在は溶融塩の保持方法として、大きく分けてペースト
タイプとマトリクス含浸タイプの2つが考えられている
。ペーストタイプの電解質体は、溶融塩と、溶融塩に対
して安定な物質の粉末又は繊維とを混合したものである
。溶融炭酸塩燃料電池の場合は、粒径数ミクロン以下の
アルミン酸リチウム(L iA lO2)粉末を混合溶
融炭酸塩に40〜60重量%の割合で混合したものが用
いられている。これは常温では固体であるが、電池動作
温度では溶融塩が溶融し、ペースト状態となって作動す
るタイプの電解質体である。
Currently, there are two main methods of holding molten salt: paste type and matrix impregnation type. A paste-type electrolyte body is a mixture of molten salt and powder or fiber of a substance that is stable to the molten salt. In the case of a molten carbonate fuel cell, a mixture of 40 to 60% by weight of lithium aluminate (LiAlO2) powder with a particle size of several microns or less is used in a mixed molten carbonate. This is a type of electrolyte that is solid at room temperature, but operates as a molten salt that melts into a paste state at battery operating temperatures.

一方、マトリクス含浸タイプの電解質体は、同じく溶融
塩に対して安定な物質からなる多孔性のマトリクスに溶
融塩を含浸させるもので、溶融炭3ヘージ 酸塩燃料電池においては、アルミン酸リチウム粉末を板
状に成形した後、高温で焼結し、これに溶融状態の炭酸
塩を含□浸させる手法がとられている。
On the other hand, matrix-impregnated type electrolytes impregnate molten salt into a porous matrix made of a substance that is also stable against molten salts. The method used is to form a plate into a plate, sinter it at a high temperature, and then impregnate it with molten carbonate.

このタイプでは、電池動作温度において溶融塩はマトリ
クスの空孔内に保持され、マトリクス自体はその形状と
機械的強度を保っている。
In this type, the molten salt is retained within the pores of the matrix at cell operating temperatures, and the matrix itself maintains its shape and mechanical strength.

これら2つのタイプの電解質体には、それぞれ次のよう
ガ長所、短所がある。
These two types of electrolyte bodies each have their own advantages and disadvantages as follows.

すなわち、ペーストタイプにおいては、不活性物質に対
する溶融塩の量を比較的大きくとることができるため、
電解質体としての導電性が高くなり、電池性能も良くな
る。又、マトリクス含浸タイプでは、どうしてもマトリ
クス製造時に焼結過程が必要であるが、ペーストタイプ
では不要であり、製法によっては非常に容易かつ安価に
製造できる可能性がある。しかし、一方でペーストタイ
プは、電池動作温度における機械的強度が著しく小さい
ため、電解質ペーストのはみ出しといった事態を生じる
大きな欠点を有している。
In other words, in the paste type, the amount of molten salt relative to the inert substance can be relatively large, so
The conductivity of the electrolyte becomes higher, and the battery performance also improves. In addition, while the matrix impregnated type requires a sintering process during matrix production, the paste type does not require a sintering process, and depending on the manufacturing method, it may be possible to manufacture it very easily and at low cost. However, on the other hand, the paste type has a significant drawback in that the mechanical strength at the battery operating temperature is extremely low, resulting in situations such as the electrolyte paste spilling out.

この現象について以下に述べる。第1図は溶融、  炭
酸塩燃料電池単セルの分解構成図である。1゜1′はバ
イポーラ板、2は燃料極、3は電解質体、4は空気極、
5 、5’はバイポーラ板上の集電突起、・  6は電
解質体上のウェットシール部を示す。この図は電池構成
の1つの例であるが、基本的にはこのような構成をなし
ておシ、部分的な変化があるのみである。この構成では
、燃料は第1図の矢印X方向にバイポーラ板1と燃料極
2の間を流れ、空気はバイポーラ板1′と空気極4の間
を矢印y方向に流れる直交流型である。シール部6は電
解質体の周辺部と、バイポーラ板の周辺部を圧着するこ
とによシ、燃料ガス等のシールを行う部分である。この
部分の断面を第2図(a)に示す。電解質体のウェット
シール部6とバイポーラ板周辺のリプ部7は、単電池を
複数個積層してスタックとする際に上下方向の強い力で
圧着されガスシールとなる。しかし、この際、電解質体
がペーストタイプであると、この圧力のために、第2図
(b)に示すように、ペーストが押し出される現象が起
こる。この現象によりスタック圧力の異常、ガス流路の
閉5ページ 塞、短絡、ガス漏洩といった重大な支障をきたす可能性
がある。
This phenomenon will be discussed below. Figure 1 is an exploded diagram of a single cell of a molten carbonate fuel cell. 1゜1' is a bipolar plate, 2 is a fuel electrode, 3 is an electrolyte body, 4 is an air electrode,
5 and 5' indicate current collector protrusions on the bipolar plate, and 6 indicates a wet seal portion on the electrolyte body. Although this figure is an example of a battery configuration, the configuration is basically like this, with only partial changes. In this configuration, fuel flows between the bipolar plate 1 and the fuel electrode 2 in the direction of the arrow X in FIG. 1, and air flows in the direction of the arrow y between the bipolar plate 1' and the air electrode 4 in a cross-flow type. The seal portion 6 is a portion that seals fuel gas and the like by compressing the peripheral portion of the electrolyte body and the peripheral portion of the bipolar plate. A cross section of this portion is shown in FIG. 2(a). The wet seal portion 6 of the electrolyte body and the lip portion 7 around the bipolar plate are pressed together with strong force in the vertical direction when a plurality of single cells are stacked to form a gas seal. However, at this time, if the electrolyte body is of a paste type, a phenomenon occurs in which the paste is pushed out due to this pressure, as shown in FIG. 2(b). This phenomenon may cause serious problems such as stack pressure abnormalities, gas flow path closures, short circuits, and gas leaks.

このよう々危険性は、電池動作温度においても機械的強
度を有するマトリクス含浸タイプの電解質ではほとんど
考えられない。しかし他方で、マトリクスタイプでは機
械的強度を保証するためにはマトリクスの多孔度をあま
り大きくすることができないというジレンマがあり、電
解質体の導電性は低くならざるを得なかった。さらに、
マトリクス材料は一般にセラミツ(であるため、製造に
は高温の焼結過程を要し、特に大型のマトリクスを製造
することは技術的にも困難さを伴うという欠点を有して
いた0 発明の目的 本発明は、前述のような従来の不都合を解消し、製造が
簡単で、電池動作中においてもスタック圧力による電解
質体のはみ出し、変形等をきたさず、長期間高い性能を
持続できる溶融塩電池を提供することを目的とする。
Such a risk is almost unthinkable with matrix-impregnated type electrolytes that have mechanical strength even at battery operating temperatures. On the other hand, however, the matrix type has the dilemma that the porosity of the matrix cannot be increased too much to ensure mechanical strength, and the electrolyte has no choice but to have low conductivity. moreover,
Since the matrix material is generally ceramic, it requires a high-temperature sintering process to manufacture, and it has the disadvantage that it is technically difficult to manufacture a particularly large matrix.0 Purpose of the Invention The present invention solves the above-mentioned conventional disadvantages, and provides a molten salt battery that is easy to manufacture, does not cause the electrolyte body to protrude or deform due to stack pressure even during battery operation, and can maintain high performance for a long period of time. The purpose is to provide.

発明の構成 6パ−ジ 本発明の電解質体は、溶融塩と、この溶融塩に対して安
定な物質からなる粉末状又は繊維状の粘度調整材との混
合物からなる電解質体のスタック圧力のかかる周辺部分
に、溶融塩に対して安定な材料からなり電池の動作温度
においても電池積層のだめのスタック圧力に十分耐える
機械的強度を有するスペーサを配したことを特徴とする
Structure of the Invention 6 Purge The electrolyte body of the present invention is a stack of an electrolyte body made of a mixture of a molten salt and a powdery or fibrous viscosity adjusting material made of a substance stable against the molten salt. It is characterized in that a spacer made of a material that is stable against molten salt and has sufficient mechanical strength to withstand the stacking pressure of the battery stack even at the operating temperature of the battery is arranged in the peripheral portion.

実施例の説明 以下、本発明を実施例によって説明する。Description of examples Hereinafter, the present invention will be explained by examples.

第3〜4図は本発明による溶融炭酸塩燃料電池のペース
トタイプ電解質体を示す。図中、点線で区画された周辺
部分6は第1図のような構成をもつ溶融炭酸塩燃料電池
において、シール部を形成する部分であり、電池積層の
際のスタック圧力が大きくかかる部分である。8はこの
スタック圧力がかかる部分に配した円盤状のスペー芙(
補強体)を示す。
3-4 illustrate a paste-type electrolyte body for a molten carbonate fuel cell according to the present invention. In the figure, the peripheral area 6 demarcated by dotted lines is a part that forms a seal in the molten carbonate fuel cell having the configuration shown in Figure 1, and is a part where a large stacking pressure is applied during cell stacking. . 8 is a disk-shaped spacer placed in the area where this stack pressure is applied.
Reinforcement body) is shown.

これらは以下のようにして製作した。ペーストタイプ電
解質体本体は、粒径2〜3ミクロン以下のアルミン酸リ
チウム粉末と、炭酸リチウム、炭71・−ジ 酸カリウムの2成分混合炭酸塩を重量比50:50で混
合し、ホットプレス法により溶融塩の融点よりも5〜1
0℃低い温度で200 Kg/caの圧力をかけて成形
したもので、その大きさは15X15trn。
These were manufactured as follows. The paste type electrolyte body is made by mixing lithium aluminate powder with a particle size of 2 to 3 microns or less and a two-component mixed carbonate of lithium carbonate and potassium charcoal 71-diaate at a weight ratio of 50:50, and then hot pressing the mixture. 5 to 1 higher than the melting point of the molten salt
It is molded under a pressure of 200 kg/ca at a temperature lower than 0°C, and its size is 15 x 15 trn.

厚み1.7朔である。次に前記電解質体周辺部にスペー
サ用の穴を形成する。スペーサは前述のアルミン酸リチ
ウム粉末に有機結着剤を加え、直径5咽の棒状に成形し
た後、1300℃で焼結し、厚さ1.6調の円盤状に切
断したものである。直径6謳、高さ61wInの試験片
を用いて、このスペーサの圧縮強度を測定したところ、
120Kg/−前後の強度を有していることを確認した
The thickness is 1.7 mm. Next, holes for spacers are formed around the electrolyte body. The spacer was made by adding an organic binder to the aforementioned lithium aluminate powder, forming it into a rod shape with a diameter of 5 mm, sintering it at 1300° C., and cutting it into a disc shape with a thickness of 1.6 mm. The compressive strength of this spacer was measured using a test piece with a diameter of 6 cm and a height of 61 wIn.
It was confirmed that it had a strength of around 120 kg/-.

前記スペーサの厚みは1.6−と、前記ペーストタイプ
電解質体の厚み1.7mmよりも薄くなっているが、こ
れは次の理由による0すなわち、ホットプレス法によっ
て製作したペーストタイプ電解質体は、多少の空孔を有
し、電池動作温度で溶融塩が完全に溶融すると、電解質
体の厚みが多少減少するため、電池動作温度で双方の厚
みが同じになるようにしだものである。
The thickness of the spacer is 1.6 mm, which is thinner than the thickness of the paste type electrolyte body, which is 1.7 mm. It has some pores, and when the molten salt completely melts at the battery operating temperature, the thickness of the electrolyte body decreases to some extent, so the thicknesses of both electrolyte bodies are made to be the same at the battery operating temperature.

こうして作製したスペーサを前記電解質体の穴にはめ込
み、電解質体を完成させる。こうして得られた電解質体
を、第1図に示すような構造の溶融炭酸塩燃料電池単セ
ルに組み込み、ボルトでしめ付けてスタック圧力をかけ
、200時間のテスト運転をした。テストは650℃で
行い、燃料として水素を用いた。その結果、電池性能は
、同じ組成でスペーサを有しない従来のペーストタイプ
電解質体を使用した場合と同一の性能が得られた。
The spacer thus produced is fitted into the hole of the electrolyte body to complete the electrolyte body. The electrolyte body thus obtained was assembled into a single molten carbonate fuel cell having a structure as shown in FIG. 1, tightened with bolts, stack pressure was applied, and test operation was performed for 200 hours. The test was conducted at 650° C. and hydrogen was used as the fuel. As a result, the battery performance was the same as when using a conventional paste-type electrolyte body with the same composition and no spacer.

テスト後電池を調べたところ、従来例のものでは、電池
周辺部で電解質ペーストのはみ出し現象が見られたが、
本発明による電解質体においては、第5図に示すように
、スペーサが上下からのスタック圧力を支えるため、電
解質ペーストのはみ出しや、シール部分での電解質体の
厚みの変化は見られず、全く問題がなかった。
When we examined the battery after the test, we found that in the conventional model, the electrolyte paste protruded around the battery.
In the electrolyte body according to the present invention, as shown in Fig. 5, since the spacer supports the stack pressure from above and below, there is no problem with the protrusion of the electrolyte paste or the change in the thickness of the electrolyte body at the sealing part. There was no.

以上の実施例では、電解質体周辺部に円盤状のスペーサ
を配置する形であったが、スペーサの形状及び配置場所
はどのようなものでも良い。要するに電解質体において
上下からのスタック圧力が91\−ジ 強くかかる部分に、その圧力に十分耐えるスペーサを配
置すれば良い。
In the above embodiment, a disc-shaped spacer is arranged around the electrolyte body, but the spacer may have any shape and any location. In short, it is sufficient to arrange a spacer that can sufficiently withstand the pressure at a portion of the electrolyte body where the stack pressure from above and below is strongly applied.

端的な第2の実施例を第6図に示すが、これはる部分で
あシ、その一部をスペーサが占め、圧力1を支える形と
なっている。スペーサに設置した突起10は、ペースト
タイプ電解質体との結合向上のためにある。このように
スペーサの形状はどうあれ、溶融塩電池電解質体の少な
くとも周辺部分に耐溶融塩性と機械的強度を有するスペ
ーサを配した構造であれば良い。
A simple second embodiment is shown in FIG. 6, in which a spacer occupies a large part and supports a pressure of 1. The protrusion 10 provided on the spacer is for improving the bonding with the paste type electrolyte body. As described above, regardless of the shape of the spacer, it is sufficient to have a structure in which a spacer having molten salt resistance and mechanical strength is arranged at least in the peripheral portion of the molten salt battery electrolyte body.

また、スペーサとしては、溶融塩が混合炭酸塩の場合、
アルミン酸リチウム、チタン酸ストロンチウム、ジルコ
ン酸リチウムおよびこれらの混合物からカる群より選ば
れたセラミック焼結体、安定化ジルコニア、酸化トリウ
ムおよびこれらの混合物からなる群よシ選ばれたセラミ
ック焼結体が本発明は、他の溶融塩気と用いた燃料電池
、−10’ン 次電池、二次電池にも適用できる。
In addition, as a spacer, if the molten salt is a mixed carbonate,
A ceramic sintered body selected from the group consisting of lithium aluminate, strontium titanate, lithium zirconate, and mixtures thereof, and a ceramic sintered body selected from the group consisting of stabilized zirconia, thorium oxide, and mixtures thereof. However, the present invention can also be applied to fuel cells, -10'n rechargeable batteries, and secondary batteries using other molten salt air.

発明の効果 以上のように、本発明による溶融塩電池電解質体は、ペ
ーストタイプ電解質体にスペーサを組み入れることによ
り、ペーストタイプ電解質体の大きな欠点であるペース
トのはみ出し、及びそれに伴う短絡、性能劣化、さらに
燃料電池の場合にはガス漏洩、ガス流路の閉塞といった
重大な支障及び危険を予防し、高い電池性能を保持する
ことができる。又その製造も簡単でアシ、マトリクス含
浸タイプの電解質に比べ、大型化も容易である。
Effects of the Invention As described above, the molten salt battery electrolyte body according to the present invention incorporates a spacer into a paste type electrolyte body, thereby solving the major drawbacks of paste type electrolyte bodies, such as paste extrusion, resulting short circuits, performance deterioration, and Furthermore, in the case of fuel cells, serious troubles and dangers such as gas leakage and blockage of gas flow paths can be prevented, and high battery performance can be maintained. In addition, it is easy to manufacture and can be made larger than reed or matrix impregnated type electrolytes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融炭酸塩燃料電池の分解斜視図、第2図はそ
のウェットシール部分の断面図、第3図は本発明の第1
の実施例による電解質体の正面図、第4図はその底面図
、第6図は゛同型解質体を使った溶融炭酸塩燃料電池の
ウェットシール部分の断面図、第6図は第2の実施例に
よる電解質体の正面図である。 1.1’・・・・・バイメーラ板、2・・・・・・燃料
極、3・・・11’\−ジ ・・・電解質体、4・・・・・・空気極、5,5′・・
・・・・集電突起、6・・・・・・ウェットシール部、
7・・・・・・バイポーラ板のリブ、8・・・・・・円
盤形スペーサ、9・・・・・・板形スペーサ、10・・
・・・・スペーサ上の突起。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
2 の (0L) 第 3 図 d
FIG. 1 is an exploded perspective view of a molten carbonate fuel cell, FIG. 2 is a sectional view of its wet seal portion, and FIG. 3 is a first embodiment of the present invention.
FIG. 4 is a front view of the electrolyte body according to the embodiment, FIG. 4 is a bottom view thereof, FIG. FIG. 3 is a front view of an electrolyte body according to an example. 1.1'...Bimeler plate, 2...Fuel electrode, 3...11'\-di...Electrolyte body, 4...Air electrode, 5,5 '...
... Current collector protrusion, 6... Wet seal part,
7...Rib of bipolar plate, 8...Disc spacer, 9...Plate spacer, 10...
...Protrusion on the spacer. Name of agent: Patent attorney Toshio Nakao and 1 other person
2 (0L) Figure 3 d

Claims (1)

【特許請求の範囲】[Claims] 溶融塩と、溶融塩に対して安定な物質からなる粉末状又
は繊細状の粘度調整材との混合物からなる電解質体を備
え、前記電解質体のスタック圧力のかかる周辺部分に、
溶融塩に対して安定な材料からなり電池の動作温度にお
いて十分な機械的強度を有するスペーサを配したことを
特徴とする溶融塩電池。
An electrolyte body made of a mixture of a molten salt and a powdered or delicate viscosity adjusting material made of a substance stable against the molten salt, and a peripheral portion of the electrolyte body where stack pressure is applied,
A molten salt battery comprising a spacer made of a material that is stable against molten salt and having sufficient mechanical strength at the operating temperature of the battery.
JP58004562A 1983-01-13 1983-01-13 Molten salt battery Pending JPS59128776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58004562A JPS59128776A (en) 1983-01-13 1983-01-13 Molten salt battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004562A JPS59128776A (en) 1983-01-13 1983-01-13 Molten salt battery

Publications (1)

Publication Number Publication Date
JPS59128776A true JPS59128776A (en) 1984-07-24

Family

ID=11587477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004562A Pending JPS59128776A (en) 1983-01-13 1983-01-13 Molten salt battery

Country Status (1)

Country Link
JP (1) JPS59128776A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246570A (en) * 1984-05-22 1985-12-06 Agency Of Ind Science & Technol Fused carbonate fuel cell
US7279248B2 (en) * 2003-02-18 2007-10-09 Nissan Motor Co., Ltd. Bipolar battery and related method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246570A (en) * 1984-05-22 1985-12-06 Agency Of Ind Science & Technol Fused carbonate fuel cell
JPH0449750B2 (en) * 1984-05-22 1992-08-12 Kogyo Gijutsuin
US7279248B2 (en) * 2003-02-18 2007-10-09 Nissan Motor Co., Ltd. Bipolar battery and related method

Similar Documents

Publication Publication Date Title
US4895774A (en) Molten carbonate fuel cell
JPH01502109A (en) Lanthanum chromite refractory sintering aid
US3671319A (en) Battery electrode and battery embodying same
JPS59128776A (en) Molten salt battery
JPH0736334B2 (en) Molten carbonate fuel cell electrode
US3725129A (en) Method for preparing pasted nickel hydroxide electrode
US5641328A (en) Fuel cell cathodes
US3575727A (en) Battery separator production and battery
US4891280A (en) Cathode for molten carbonate fuel cell
JPS60246570A (en) Fused carbonate fuel cell
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
US20030012992A1 (en) Gas humidification system
JPS60212963A (en) Manufacture of electrolyte of molten carbonate fuel cell
JPH039589B2 (en)
JPH0222505B2 (en)
JPS58119161A (en) Manufacture of electrode for fused salt fuel battery
JP2944097B2 (en) Molten carbonate fuel cell
JPS6391961A (en) Molten carbonate type fuel cell
JPS61225772A (en) Manufacture of molten carbonate fuel cell
JPS58225582A (en) Button-type air cell
JPS61133566A (en) Molten carbonate fuel cell
JPS59117075A (en) Manufacture of phosphoric-acid holding matrix
JPH04237957A (en) Bipolar plate for molten carbonate fuel cell
JPS61216255A (en) Electrolyte for fused carbonate fuel cell
JP2997518B2 (en) Molten carbonate fuel cell