JPS59127660A - Treatment of coal ash and low grade coal - Google Patents

Treatment of coal ash and low grade coal

Info

Publication number
JPS59127660A
JPS59127660A JP58001374A JP137483A JPS59127660A JP S59127660 A JPS59127660 A JP S59127660A JP 58001374 A JP58001374 A JP 58001374A JP 137483 A JP137483 A JP 137483A JP S59127660 A JPS59127660 A JP S59127660A
Authority
JP
Japan
Prior art keywords
coal
ash
added
low
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58001374A
Other languages
Japanese (ja)
Other versions
JPS6247416B2 (en
Inventor
Hayamizu Ito
伊東 速水
Shuhei Tatsumi
巽 修平
Chiaki Nagai
永井 千秋
Shoichi Takao
彰一 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58001374A priority Critical patent/JPS59127660A/en
Publication of JPS59127660A publication Critical patent/JPS59127660A/en
Publication of JPS6247416B2 publication Critical patent/JPS6247416B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To perform the separation of a lime component and ash while reducing the addition ratio of a collector, by a method wherein a collector is added to a water slurry of coal ash to make coal ash hydrophobic under stirring and mixing and a part of coal ash is flocculated while a foaming agent is added to the slurry and air is blown therein to perform floatation. CONSTITUTION:The coal ash collected by a dust collecting apparatus is introduced into a flocculation tank 6 and a collector such as water, heavy oil or kerosene and, according to necessity, a surfactant are added to make the pure coal component in coal ash while stirring and mixing and a part thereof is further flocculated. This slurry is introduced into a floatation tank 7 and water and a foaming agent are added to said tank while air or combustion exhaust gas are introduced to form air bubbles and a non-combustion component and flocculated substance of the non-combustion component are adhered to surfaces of each air bubble to take out the same by floatation.

Description

【発明の詳細な説明】 本発明は、石炭を専焼、混焼またはOOM (石炭・油
混合物の状態で燃焼させる事業用または専業用の微粉炭
たきボイラから発生ずる燃焼灰、同様の燃料を使用する
流動床ボイラがら発生する燃焼灰、石炭カス化炉から発
生する排出灰なと(以下、集じん装置捕集石炭灰または
単に石炭灰と記す)に含まれる未燃カーボンを分離する
方法ならびにボタ・亜炭・褐炭・瀝青炭のうち灰分含有
率が高いために発熱量が低く、燃焼が困難であり、さら
にダスト、S欺処理工程の負荷が著しく大きくなること
から、現在あまり利用されていない低品位炭について、
その中に含まれている純炭分を分離濃縮する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses combustion ash and similar fuels generated from commercial or specialized pulverized coal-fired boilers that burn coal in the form of exclusive combustion, mixed combustion, or OOM (coal/oil mixture). A method for separating unburned carbon contained in combustion ash generated from a fluidized bed boiler and exhaust ash generated from a coal casing furnace (hereinafter referred to as coal ash collected by a dust collector or simply coal ash), and Among lignite, lignite, and bituminous coal, low-grade coal is currently not widely used because it has a high ash content, has a low calorific value, is difficult to burn, and is extremely burdensome in the dust and sulfur treatment process. about,
The present invention relates to a method for separating and concentrating pure coal contained therein.

一般に石炭火力発電所などの微粉炭だきボイラにおいて
は、海外炭などの燃料比(固定炭素/揮発分)の高い炭
種の燃焼、二段燃焼や排ガス混合などの低NOx燃焼の
実施により、石炭灰が未燃カーボンにより黒色化する傾
向にある。通常の灰処理としては、粗粉は灰捨てされ、
細粉はフライアッシュ製品として販売されセメント混和
剤などに用いられているが、黒色石炭灰発生時には製品
として販売でき安いので、全量投棄しなければならず問
題となっている。石炭灰の黒色化の原因は未燃分と考え
られ、これを大量に投棄することは省エネルギの観点か
ら見ても大きなマイナスであり、かつ現在計画中の大型
石炭火力発電所は、海外からの輸入炭を使用するため、
臨1毎立地型であり、灰投棄処分などに際し海洋などの
環境に対して無公害であることが要求される。
In general, in pulverized coal-fired boilers such as coal-fired power plants, the combustion of coal types with a high fuel ratio (fixed carbon/volatile content) such as foreign coal, and low-NOx combustion such as two-stage combustion and exhaust gas mixing are performed. Ash tends to turn black due to unburned carbon. In normal ash processing, coarse powder is discarded as ash,
The fine powder is sold as a fly ash product and used as a cement admixture, but when black coal ash is generated, it is cheap to sell as a product, so the entire amount has to be dumped, which poses a problem. The cause of the blackening of coal ash is thought to be unburned matter, and dumping large amounts of this is a big disadvantage from an energy conservation perspective. Because we use imported coal,
It is a type of site where ash is dumped and is required to be non-polluting to the ocean and other environments when disposing of ash.

また微粉炭だきボイラ以外の流動床ボイラを備えた石炭
火力発電所においても、未燃分の高い黒色の燃焼灰の排
出が予想され、さらに石炭の燃焼以外の、たとえば石炭
のガス化炉においても未燃分の高い黒色灰の排出が予想
され、未燃分の低減対策として、未燃分の燃焼速度の関
係から再燃炉(カーボンバーンアップセル、CBC)に
よる高温焼成法が検討されているが、石炭灰の粒径の細
かいこと、未燃分濃度の経時変化があることなど効率の
よい方式とは言えない現状である。なお現在、フライア
ッシュに対する規制値は、強熱減量(イグニションロス
)が5.0%以下でアル。
In addition, coal-fired power plants equipped with fluidized bed boilers other than pulverized coal-fired boilers are expected to emit black combustion ash with a high amount of unburned content, and even coal-fired power plants equipped with fluidized bed boilers other than pulverized coal-fired boilers are expected to emit black combustion ash. It is expected that black ash with a high unburned content will be emitted, and as a measure to reduce the unburned content, a high-temperature calcination method using a reburning furnace (carbon burn upsell, CBC) is being considered due to the combustion rate of the unburned content. The current situation is that this method cannot be said to be efficient due to the small particle size of the coal ash and the fact that the concentration of unburned fuel changes over time. Currently, the regulation value for fly ash is that the loss on ignition (ignition loss) must be 5.0% or less.

また上記の高温焼成法以外の効果的な方法として、石炭
灰に水、重油などのバインダー、必要に応じて界面活性
剤を加え攪拌混合して石炭分の多い粗粒を形成させ、こ
の粗粒と灰分の多い細粉とに分離する凝集(オイルアグ
ロメレーション)法が・あるが、灰分と石炭分の分離操
作の確立が実用化の課題であった。
In addition, as an effective method other than the above-mentioned high-temperature firing method, water, a binder such as heavy oil, and if necessary a surfactant are added to the coal ash and mixed with stirring to form coarse particles with a high coal content. There is an oil agglomeration method that separates coal into fine powder with a high ash content, but establishing a process for separating the ash and coal content has been a challenge for practical application.

また石炭の各種利用技術(燃焼、ガス化、液化、00M
化など)において、予め原料となる石炭中の無機物や硫
黄分を分離除去し、純炭分を濃縮することにより、炉、
リアクタの処理能力の増大ならびに排煙処理設備の簡略
化を図り、ひいては使用炭種を大幅に拡大することがで
きるようなコールクリーニング技術の確立が検討されて
いるが、その中に水中造粒法がある。この方法は前記石
炭灰の凝集(オイルアグロメレーション)法と同様に、
石炭に水、重油などのバインダー、必要に応じて界面活
性剤を加え攪拌混合して石炭分の凝集体および/または
造粒物を形成させ、この凝集体および/または造粒物と
灰分とを分離する方法であるが、捕集剤(重油、軽油、
灯油など)の添加率の低減ならびに石炭分と灰分の分離
操作の確立が実用化の課題であった。
In addition, various coal utilization technologies (combustion, gasification, liquefaction,
By separating and removing the inorganic substances and sulfur content in the raw material coal in advance and concentrating the pure coal content, the furnace,
The establishment of a coal cleaning technology that will increase the processing capacity of reactors, simplify the flue gas treatment equipment, and greatly expand the types of coal that can be used is being considered, but one of them is underwater granulation. There is. This method is similar to the coal ash agglomeration (oil agglomeration) method,
Water, a binder such as heavy oil, and a surfactant if necessary are added to the coal and mixed with stirring to form coal aggregates and/or granules, and the aggregates and/or granules are combined with ash. Although this is a separation method, it uses a collection agent (heavy oil, light oil,
The challenges for practical application were reducing the addition rate of kerosene, etc.) and establishing an operation for separating coal and ash.

本発明者らは上記の諸点に鑑み、石炭燃焼灰または低品
位炭の水スラリーに石炭燃焼灰中の未燃分または低品位
炭中の石炭分に対し、重量比1〜10%のC重油を添加
し凝集(オイルアグロメレーション)操作を行なった後
、このスラリー中の石炭燃焼灰または低品位炭に対し0
.1〜0.5wt%の起泡剤を添加し浮選(70チージ
ヨン)操作を行なうことにより、オーバーフロー分とし
て未燃分または石炭分が濃縮された未燃分含有率の高い
石炭灰(新燃料)または石炭分含有率の高い石炭燃料が
得られ、テール分として白色に脱色された未燃分または
石炭分の少ない石炭灰が得られることを知見した。また
この場合、石炭燃焼灰または低品位炭の種類によっては
、前記の凝集(オイルアグロメレーション)法の場合よ
りも重油の添加量る低減することができるとともに、分
離効率が改善され、凝集物と非凝集物との分離が容易に
行なえることを知見した。
In view of the above points, the present inventors added heavy oil C to a water slurry of coal combustion ash or low-rank coal at a weight ratio of 1 to 10% based on the unburned content in the coal combustion ash or the coal content in the low-rank coal. After the oil agglomeration operation is performed, the coal combustion ash or low-rank coal in this slurry is
.. By adding 1 to 0.5 wt% of a foaming agent and performing flotation (70%), coal ash with a high unburned content (new fuel ) or coal fuel with a high coal content can be obtained, and it has been found that unburned content bleached to white or coal ash with a low coal content can be obtained as a tail content. In addition, in this case, depending on the type of coal combustion ash or low-rank coal, the amount of heavy oil added can be reduced compared to the oil agglomeration method described above, and the separation efficiency is improved, resulting in It was found that the separation of the solid and non-aggregated materials could be easily performed.

本発明はこれらの知見に基づいてなされたもので、石炭
灰または低品位炭の水スラリーに捕集剤を添加し攪拌混
合して石炭分を疎水化するとともに、石炭分の一部を凝
集させる凝集工程と、石炭灰または低品位炭の水スラリ
ーに起泡剤を添加し気体を吹き込んで気泡を生成させ、
この気泡の表面に石炭分を何着させて浮上させる浮選工
程とで、さらには上記凝集工程および浮選工程と、浮選
工程で得られた石炭分の濃縮された水スラリーを水中造
粒し湿式分級して石炭分の濃縮された造粒物と石炭灰を
含む排水とに分離する造粒・分級工程とで、石炭灰中の
未燃分と灰分または低品位炭中の石炭分と灰分とを効率
よく分離することができる石炭灰または低品位炭の処理
方法を提供せんとするものである。
The present invention has been made based on these findings, and involves adding a scavenger to a water slurry of coal ash or low-rank coal, stirring and mixing it to hydrophobize the coal content, and coagulating a part of the coal content. The agglomeration process involves adding a foaming agent to a water slurry of coal ash or low-rank coal and blowing gas into it to generate air bubbles.
A flotation step is carried out in which coal is floated on the surface of the bubbles, and then the agglomeration step and flotation step are performed, and the concentrated water slurry of coal obtained in the flotation step is granulated in water. The granulation and classification process involves wet classification and separation into granules with concentrated coal content and wastewater containing coal ash, which separates the unburned content and ash in coal ash or the coal content in low-rank coal. It is an object of the present invention to provide a method for processing coal ash or low-rank coal that can efficiently separate the ash content.

第1図〜第4図は石炭灰について本発明者らが行なった
実験結果を示している。すなわち第1図は流動床ボイラ
燃焼灰(イグニションロス56.1%)を原料として、
これに水を加えて30%スラリーとし、さらにC重油を
添加して700 rpm 、 40″Cで1時間攪拌混
合した後、さらに水を加えて10%スラリーとし、ノニ
オン系界面活性剤を浮選剤として0.3 wt%(対固
形分)添加し、空気を吹き込んで1時間浮選処理した場
合の油温率(wt%対純炭分)、オーバーフロー分イグ
ニション’Oス(wt%)、テール分収率(wt%)、
テール分イグニションロス(wt%)の関係を示したも
のである。
Figures 1 to 4 show the results of experiments conducted by the present inventors on coal ash. In other words, Figure 1 shows that fluidized bed boiler combustion ash (ignition loss 56.1%) is used as raw material.
Add water to this to make a 30% slurry, then add C heavy oil and stir and mix at 700 rpm and 40''C for 1 hour, then add water to make a 10% slurry and float the nonionic surfactant. Oil temperature rate (wt% vs. pure coal content) when 0.3 wt% (relative to solid content) was added as an agent and flotation treatment was carried out for 1 hour by blowing air, overflow amount ignition 'OS (wt%), Tail fraction yield (wt%),
It shows the relationship between tail ignition loss (wt%).

これに対して第2図は、第1図の場合と同じ燃焼灰を使
用し、これに水を加えて30%スラリーとし、さらにC
重油を添加して7 DOrpm、 30″Cで3時間攪
拌混合した後、149μmのふるいでふるい上とふるい
下とイこ分【シた場5合の油温率(wt%対純炭分)、
ふるい5上、ふるい下のイグニションロス(wt%)、
ふる〆下数率(wt%−)の関係を示したものである。
On the other hand, in Figure 2, the same combustion ash as in Figure 1 is used, water is added to it to make a 30% slurry, and further carbon
After adding heavy oil and stirring and mixing at 7 DO rpm and 30''C for 3 hours, sieve the top and bottom of the sieve with a 149 μm sieve. ,
Ignition loss above sieve 5 and below sieve (wt%),
It shows the relationship between the number ratio (wt%-).

第1図および第′2図から、第2図の場合の凝集(オイ
ルアグロメレーション)法に比べ、第1図の場合□の凝
集・浮選法は油温率が少なくで済み、かつ分離効率が高
いことが明らかである。
From Figures 1 and 2, it can be seen that compared to the oil agglomeration method in Figure 2, the flocculation/flotation method in Figure 1 requires less oil temperature and separates the oil. It is clear that the efficiency is high.

また第3薗は、微粉炭だきボイラ燃焼灰(イグニション
ロス11%)を原料として、これに水を加えて60%ス
ラリーとし、さらにC重油を添加して700、rpm 
、 40°Cで1時間攪拌混合した後、さらに水を加え
て1Q%スラリーとし、ノニオン系界面活性剤を浮選剤
として0.3wt%(対固形分)添加し、空気を吹き込
んで1時間浮選処理した場合の油温率(wt%対純炭分
)、オーバーフロー分イグニションロス(wt%)、テ
ール分収率(wt%)、テール分イグニションロス(w
t%)の関係を示したも゛のである。これに対して第4
図は、第3図の場合と同じ燃焼灰を使用し、これに水を
加えて3゜%スラリーとし、ざらにC重油を添加して7
00rpm。
In addition, No. 3 uses pulverized coal-fired boiler combustion ash (ignition loss 11%) as a raw material, adds water to it to make a 60% slurry, and then adds C heavy oil to produce a slurry at 700 rpm.
After stirring and mixing at 40°C for 1 hour, water was further added to make a 1Q% slurry, 0.3 wt% (based on solid content) of nonionic surfactant was added as a flotation agent, and air was blown into the slurry for 1 hour. Oil temperature rate (wt% vs. pure coal), overflow ignition loss (wt%), tail yield (wt%), tail ignition loss (w
t%). On the other hand, the fourth
The figure uses the same combustion ash as in Figure 3, adds water to it to make a 3% slurry, and roughly adds C heavy oil to it.
00rpm.

30°Cで6時間攪拌混合した後、105μmのふるい
でふるい上とふるい下とに分離した場合の油温率(wt
%対純炭分)、ふるい上のイグニションロス(wt%)
、ふるい下の収率(wt%)、ふるい下のイグニション
ロス(wt%)の関係を示したものである。第6図およ
び第4図から、第4図の場合の凝集法に比べ、第3図の
場合の凝集・浮選法は油温率が少なくて済み、かつ分離
効率が高いことが明らかである。またこれらの効果は、
低品位炭についても全く同様であることを、本発明者ら
は確認している。
After stirring and mixing at 30°C for 6 hours, oil temperature ratio (wt
% vs. pure coal), ignition loss on sieve (wt%)
, the relationship between the yield under the sieve (wt%) and the ignition loss under the sieve (wt%). From Figures 6 and 4, it is clear that the flocculation/flotation method in Figure 3 requires less oil temperature and has higher separation efficiency than the flocculation method in Figure 4. . In addition, these effects are
The present inventors have confirmed that the same applies to low-rank coal.

以下、本発明の構成を図面に基づいて説明する。Hereinafter, the configuration of the present invention will be explained based on the drawings.

第5図は本発明の方法を実施する装置の一例を示すもの
で、流動床ボイラ燃焼灰を処理する場合である。流動床
ボイラ1の排ガスダクトにサイクロン2、電気集じん機
などの集じん装置ろ、空気予熱器4、煙突5が直列に接
続されている。集じん装置としては電気集じん機の代り
に他の装置、たとえば砂、砂利、セラミックスなどの粒
塊状ろ過材ヲルーバ、金網、パンチングメタルなどの支
持体間に移動可能に充填してなるグラベル式ろ過集じん
装置、マルチサイクロン、バグフイノし/夕などを用い
ることも可能である。なお集じん装置乙の上流側または
下流側に゛アンモニア接触還元方式の脱硝装置が設けら
れ、また集じん装置乙の上流側に空気予熱器が設けられ
ることがあるが、図示を省略している。
FIG. 5 shows an example of an apparatus for carrying out the method of the present invention, in which fluidized bed boiler combustion ash is treated. A cyclone 2, a dust collector such as an electrostatic precipitator, an air preheater 4, and a chimney 5 are connected in series to the exhaust gas duct of the fluidized bed boiler 1. As a dust collection device, instead of an electrostatic precipitator, other devices are used, such as gravel filtration, which is made by movably filling a granular filter material louver made of sand, gravel, ceramics, etc., between supports such as wire mesh, punched metal, etc. It is also possible to use dust collectors, multi-cyclones, bag filters, etc. Note that an ammonia catalytic reduction type denitrification device may be installed upstream or downstream of the dust collector B, and an air preheater may be installed upstream of the dust collector B, but these are not shown. .

流動床ボイラ1の排ガスは、サイクロン2に導入されて
粗粒の石炭灰が除しんされ、ついで集しん装置6で残り
の石炭灰が除しんされる。流動床ボイラ1において、燃
料化の高い炭種を燃焼させたり、二段燃焼の’NOx 
低減燃焼対策を行なったりする場合には、未燃カーボン
を主成分とする黒色石炭灰が生成する。この黒色石炭灰
を含む集じん装置捕集石炭灰(サイクロン捕集石炭灰お
よび電気集じん機捕集石炭灰)を、凝集槽6に導入する
とともに、水、重油・軽油・灯油などの捕集剤、必要に
応じて界面活性剤を添加し、攪拌混合して石炭灰中の純
炭分を疎水化し、さらにその一部を凝集させる。ついで
このスラリーを浮選槽7に導入するとともに、水および
起泡剤を添加し、空気または燃焼排ガスを導入して気泡
を生成させ、この気泡の表面に未燃分および未燃分の凝
集物を付着させて浮上させ、浮選]′07からオーバー
フロー分として取り出し、灰分はテール分として浮選槽
7の下部から取り出される。オーバーフロー分は脱水機
8で脱水され、燃料として使用され、分離水は前記凝集
]■6または、/および浮選槽7へ供給される。またテ
ール分は水スラリーとして灰捨て場に放流されるか、ま
たは固液分離機10て脱水した後、セメント原料なとと
して有効利用され、分離水は前記凝集槽6または/およ
び浮選槽7へ供給される。
The exhaust gas from the fluidized bed boiler 1 is introduced into a cyclone 2 where coarse coal ash is removed, and then into a collection device 6 where the remaining coal ash is removed. In the fluidized bed boiler 1, coal types that are highly convertible to fuel are combusted, and 'NOx' in two-stage combustion is
When measures are taken to reduce combustion, black coal ash containing unburned carbon as a main component is produced. The coal ash collected by the dust collector (cyclone collected coal ash and electrostatic precipitator collected coal ash) containing this black coal ash is introduced into the coagulation tank 6, and water, heavy oil, light oil, kerosene, etc. are collected. A surfactant is added as necessary, and the pure coal content in the coal ash is hydrophobized by stirring and mixing, and a part of it is further agglomerated. Next, this slurry is introduced into the flotation tank 7, water and a foaming agent are added, air or combustion exhaust gas is introduced to generate bubbles, and unburned matter and aggregates of unburned matter are formed on the surface of the bubbles. is deposited and floated, and taken out as an overflow part from flotation]'07, and ash is taken out from the lower part of the flotation tank 7 as a tail part. The overflow is dehydrated in a dehydrator 8 and used as fuel, and the separated water is supplied to the above-mentioned flocculation [6] or/and flotation tank 7. The tail is either discharged into an ash dump as a water slurry or dehydrated in the solid-liquid separator 10 and then effectively used as a raw material for cement. supplied to

凝集槽6および浮選槽7において、スラリーのpHを5
以上にするのが望ましく、このためpH調整剤を添加す
る場合がある。なお浮選槽7において、空気の代りに燃
焼排ガスを用いる場合は、排ガス中の酸性成分によりス
ラリーのpHが中和されるという利点がある。
In the flocculation tank 6 and flotation tank 7, the pH of the slurry is set to 5.
It is desirable that the pH value is above the above range, and for this reason, a pH adjuster may be added in some cases. Note that in the case of using combustion exhaust gas instead of air in the flotation tank 7, there is an advantage that the pH of the slurry is neutralized by acidic components in the exhaust gas.

本発明において、凝集操作の際の一スラリー中の固形分
濃度は1〜50wt%、望ましくは20〜40wt%で
あり、捕集剤の添加量は石炭灰中の未燃分(純炭分)に
対して0.1〜4Qwt%、望ましくは1〜IQwt%
てあり、スラリーの温度は常温〜90°C1望ましくは
20〜60℃である。また浮選操作の際のスラリー中の
固形分濃度は1〜50wt%、望ましくは5〜3Qwt
%であり、起泡剤の添加量はスラリー中の固形分に対し
て0.0001〜5wt%、望ましくは0.05〜1w
t%てあり、空気または燃焼排ガスの流量は、スラリー
流量(m3/h)の1〜104倍、望ましくは10〜1
03倍である。
In the present invention, the solid content concentration in one slurry during the flocculation operation is 1 to 50 wt%, preferably 20 to 40 wt%, and the amount of the scavenger added is based on the unburned content (pure coal content) in the coal ash. 0.1 to 4 Qwt%, preferably 1 to IQwt%
The temperature of the slurry is room temperature to 90°C, preferably 20 to 60°C. In addition, the solid content concentration in the slurry during flotation is 1 to 50 wt%, preferably 5 to 3 Qwt.
%, and the amount of foaming agent added is 0.0001 to 5 wt%, preferably 0.05 to 1 wt%, based on the solid content in the slurry.
t%, and the flow rate of air or combustion exhaust gas is 1 to 104 times the slurry flow rate (m3/h), preferably 10 to 1
03 times.

本発明において用いられる界面活性剤は、アニオン系、
ノニオン系、カチオン系の界面活性剤などを単独でまた
は組み合わせて用いられ、炭種によって、適宜選択され
る。具体的にはアニオン系界面活性剤としては、アルキ
ルベンビンスルホン酸塩、アルキル硫酸エステル塩、ポ
リオキシエチレンアルキル(アルキルフェノール)硫酸
エステル塩、アルキルリン酸エステル塩7、ジアルキル
スルホコハク酸エステル塩、アクリル酸もしくは/およ
び無水マレイン酸共重合体、多環式芳香族スルポン化物
もしくはホルマリン化合物などが使用サレ、カチオン系
界面活性剤としては、アルギルアミン塩、第4級アミン
塩などが使用され、ノニオン系界面活性剤としては、ポ
リオキシアルギルエーテル、ポリオキシエチレンアルキ
ルフェノールエーテル、オキシエチレン・オキジプロピ
レンブロツクボリマー、ポリオキシエチレンアルギルア
ミン、ソルビタン脂肪酸エステノペポリオキシエチレン
ソルビタン脂肪酸エステルなとが使用され、両性系界面
活性剤としては、アルキルヘクィンなどが使用され、ま
た1、2.3モノアミン、ジアミンなとのアミン化合物
が使用される。また界面活性剤の添加量はドライベース
で未燃分の0.01〜5.0重量%、好ましくは0.0
5〜2.Q重量%である。
The surfactants used in the present invention include anionic,
Nonionic and cationic surfactants are used alone or in combination, and are appropriately selected depending on the type of coal. Specifically, anionic surfactants include alkylbenvin sulfonates, alkyl sulfate ester salts, polyoxyethylene alkyl (alkylphenol) sulfate ester salts, alkyl phosphate ester salts 7, dialkyl sulfosuccinate ester salts, and acrylic acid. or/and maleic anhydride copolymers, polycyclic aromatic sulfonates, or formalin compounds are used. As cationic surfactants, algylamine salts, quaternary amine salts, etc. are used, and nonionic surfactants are used. As the agent, polyoxyargyl ether, polyoxyethylene alkylphenol ether, oxyethylene/oxydipropylene block polymer, polyoxyethylene argylamine, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, etc. are used. As the surfactant, alkylhequines and the like are used, and amine compounds such as 1, 2.3 monoamines and diamines are used. In addition, the amount of surfactant added is 0.01 to 5.0% by weight of unburned content on a dry basis, preferably 0.0%.
5-2. Q% by weight.

また本発明において用いられる起泡剤としては、水−空
気界面に吸着して表面張力をかえる界面活性剤で、ノニ
オン系界面活性剤、アニオン系界面活性剤、カチオン系
界面活゛ヰ剤もしくはそれらを組み合わせたもの、また
は従来がらの浮選技術でよく知られた多数のもの、たと
えばパイン油(テレビネール約60%)、樟脳油(テル
ペンのほがシネオール20〜30%)、クレゾール、メ
チルイソブチルカルビノールなどが用いられる。
The foaming agent used in the present invention is a surfactant that adsorbs to the water-air interface to change the surface tension, such as a nonionic surfactant, an anionic surfactant, a cationic surfactant, or any of these. or a number of those well known in traditional flotation techniques, such as pine oil (approximately 60% televane), camphor oil (20-30% terpene hogacineol), cresol, methyl isobutyl. Carbinol etc. are used.

第5図に示すように、凝集操作を行なった後、浮選操作
を行なう代りに、第6図に示すように、石炭灰を凝集・
浮選槽11に導入し、水、起泡剤、捕集剤を同時に添加
して凝集と浮選とを同時に行なうように構成する場合も
ある。他の構成は第5図の場合と同様である。
As shown in Figure 5, instead of performing the flocculation operation after the flocculation operation, as shown in Figure 6, the coal ash is flocculated and
In some cases, it is introduced into the flotation tank 11, and water, a foaming agent, and a collection agent are added at the same time to perform flocculation and flotation at the same time. The other configurations are the same as in the case of FIG. 5.

また第7図に示すように、浮選操作で得られた未燃分の
濃縮された石炭灰の水スラリーを水中造粒機12に導入
するとともに、重油および界面活性剤(凝集工程で添加
するのと同じ)を添加し攪拌混合して水中造粒し、つい
で湿式分級器13で湿式分級することにより、未燃分の
濃縮された造粒物と石炭灰を含む排水とに分離し、ふる
い上の造粒物を再び燃料として使用し、ふるい下の石炭
灰を含む排水を固液分離機10に導入して処理する。他
の構成は第5図の場合′と同様である。
In addition, as shown in FIG. 7, a water slurry of coal ash with concentrated unburned content obtained from the flotation operation is introduced into the underwater granulator 12, and heavy oil and surfactant (added in the agglomeration process) are introduced into the underwater granulator 12. ) is added, stirred and mixed to granulate it in water, and then subjected to wet classification in a wet classifier 13 to separate the granules containing concentrated unburned matter and the wastewater containing coal ash, which are then sieved. The upper granules are used again as fuel, and the waste water containing coal ash under the sieve is introduced into the solid-liquid separator 10 for treatment. The other configurations are the same as in the case of FIG. 5'.

第8図は本発明を微粉炭たきボイラに適用した例を示し
ている。微粉炭たきボイラ14の排カスダクトに空気予
熱器15、集じん装置6、脱硫装置16、煙突5が接続
されている。なお集じん装置乙の上流側または下流側に
脱硝装置が設けられるが、図示を省略している。他の構
成は第5図の場合と同様である。なおこの場合も第6図
に示すように、凝集操作と浮選操作を同時に行なうよう
に構成することができ、さらに第7図に示すように、造
粒・分級工程を付加することもできる。
FIG. 8 shows an example in which the present invention is applied to a pulverized coal-fired boiler. An air preheater 15, a dust collector 6, a desulfurizer 16, and a chimney 5 are connected to the waste duct of the pulverized coal-fired boiler 14. Note that a denitrification device is provided upstream or downstream of the dust collector B, but is not shown. The other configurations are the same as in the case of FIG. 5. In this case as well, as shown in FIG. 6, the agglomeration operation and flotation operation can be performed simultaneously, and as shown in FIG. 7, a granulation/classification step can also be added.

第9図は低品位炭を前処理し脱灰した後流動床ボイラで
燃焼する場合である。低品位炭は予め湿式あるいは乾式
微粉砕した後、凝集槽6に導入するとともに、水、重油
・軽油・灯油などの捕集剤、必要に応じて界面活性剤を
添加し、攪拌混合して低品位炭中の純炭分を疎水化し、
さらにその一部を凝集させる。ついてこのスラリーを浮
選槽7に導入するとともに、水および起泡剤を添加し、
空気または燃焼排ガスを導入して気泡を生成させ、この
気泡の表面に純炭分および純炭分の凝集物をイ」着させ
て浮上させ、浮選槽7からオーツく−フロー分として取
り出し、灰分・はテール分として浮選槽7の下部から取
り出される。オーバーフロー分は脱水機8で脱水され、
燃料として使用され、分離水は前記凝集槽6または/お
よび浮選槽7へ供給される。またテーノ1/分は水スラ
リーとして灰捨て場に放流されるか、または固液分離機
10で脱水した後、セメント原料なととして有効利用さ
れ、分離水は前記凝集槽6または/および浮選槽7−\
供給される。凝集槽6および浮選槽7において、ス、ラ
リ−のpHを5以上にするのか望ましく、このためI)
H調整剤を添加する場合がある。なお浮選槽7において
、空気の代りに燃焼排ガスを用いる場合は、排カス中の
酸性成分によりスラリーのpHが中和されるという利点
がある。
FIG. 9 shows a case where low-rank coal is pretreated and deashed and then combusted in a fluidized bed boiler. The low-grade coal is wet or dry pulverized in advance and then introduced into the agglomeration tank 6. At the same time, water, a scavenger such as heavy oil, light oil, or kerosene, and if necessary a surfactant are added, and the mixture is stirred and mixed to reduce the low-grade coal. Hydrophobicizes the pure coal content in grade coal,
Furthermore, a part of it is agglomerated. Then, this slurry is introduced into the flotation tank 7, and water and a foaming agent are added thereto.
Air or combustion exhaust gas is introduced to generate bubbles, and pure coal and pure coal aggregates are deposited on the surface of the bubbles and floated, and taken out from the flotation tank 7 as an oat flow fraction. The ash content is taken out from the lower part of the flotation tank 7 as a tail content. The overflow is dehydrated in dehydrator 8,
The separated water is used as fuel and is supplied to the flocculation tank 6 and/or flotation tank 7. In addition, Teno 1/min is discharged to an ash dump as a water slurry, or after being dehydrated in the solid-liquid separator 10, it is effectively used as a cement raw material, and the separated water is used in the aggregation tank 6 or/and flotation. Tank 7-\
Supplied. In the flocculation tank 6 and the flotation tank 7, it is desirable to adjust the pH of the slurry to 5 or higher, and for this reason I)
An H regulator may be added. Note that in the case of using combustion exhaust gas instead of air in the flotation tank 7, there is an advantage that the pH of the slurry is neutralized by acidic components in the exhaust residue.

また上記燃料を流動床ボイラ1にて燃焼した後、生成す
る石炭灰は、そのまま灰捨てしたり、あるいはセメント
原料などどして有効利用する場合もあるが、未燃カーボ
ンを主成分とする黒色石炭灰が生成すれば、この黒色石
炭灰を含む集じん装置捕集石炭灰(ザイクロン捕集石炭
灰および電気集じん機捕集石炭灰)を、凝集槽6に導入
する場合もある。
In addition, the coal ash produced after burning the above fuel in the fluidized bed boiler 1 may be disposed of as is, or may be effectively used as a raw material for cement, etc. If coal ash is generated, dust collector-collected coal ash (Zylon-collected coal ash and electrostatic precipitator-collected coal ash) containing this black coal ash may be introduced into the coagulation tank 6.

凝集操作の際のスラリー中の固形分濃度は1〜5Qwt
%、望ましくは20〜4Qwt%てあり、捕集剤の添加
量は固形分(低品位炭および石炭灰)中の純炭分に対し
一口1〜4Qwt%、望ましくは1〜IQwt%であり
、スラリーの温度は常温〜90°C1望ましくは20〜
60°0である。また浮選操作の際のスラリー中の固形
分濃度は1〜5 Q w t%、望ましくは5〜ろQw
t%であり、起泡剤の添加量はスラリー中の固形分に対
して0.0001〜5wt%、望ましくは0.05〜1
wt%てあり、空気または燃焼排カスの流量は、スラリ
ー流量(my’h)の1〜104倍、望ましくは10〜
103倍である。他の構成は第5図の場合と同様である
The solid content concentration in the slurry during flocculation operation is 1 to 5 Qwt.
%, preferably 20 to 4 Qwt%, and the amount of the scavenger added is 1 to 4 Qwt%, preferably 1 to IQwt%, based on the pure coal content in the solid content (low-rank coal and coal ash). The temperature of the slurry is room temperature to 90°C, preferably 20°C to
It is 60°0. In addition, the solid content concentration in the slurry during flotation is 1 to 5 Qwt%, preferably 5 to 5Qwt%.
t%, and the amount of foaming agent added is 0.0001 to 5 wt%, preferably 0.05 to 1 wt%, based on the solid content in the slurry.
wt%, and the flow rate of air or combustion waste is 1 to 104 times the slurry flow rate (my'h), preferably 10 to
It is 103 times more. The other configurations are the same as in the case of FIG. 5.

なおこの場合も第6図に示すように、凝集操作と浮選操
作を同時に行なうように構成することができ、さらに第
7図に示すように、造粒・分級工程を付加することもて
きる。
In this case as well, as shown in Figure 6, the agglomeration operation and flotation operation can be performed at the same time, and as shown in Figure 7, a granulation/classification process can also be added. .

第10図は本発明を微粉炭だきボイラに適用した例を示
している。
FIG. 10 shows an example in which the present invention is applied to a pulverized coal boiler.

つぎに本発明の実施例について説明する。Next, embodiments of the present invention will be described.

実施例1 未燃分56.1wt%の黒色の流動床ボイラ燃焼灰を1
01cg/hで攪拌槽(凝集槽)に供給し、同時に燃焼
灰の濃度か35wt%になるように水を18.6kg/
h供給した。さらにこの攪拌槽内に燃焼灰中の未燃分に
対し3wt%となるようにC重油を300y/h供給し
た。攪拌槽でこれらを30Orpm、A OoCて60
分間攪拌混合して凝集処理を行なった後、つきの浮選処
理を行なった。すなわち浮選槽に凝集処理後のスラ+)
 −28,9kg/hを供給し、さらにこれに水を38
.0kq/h加え、燃焼灰の濃度が15w t%になる
ように調整した。また燃焼灰に対し[3,5wt%の浮
選用起泡剤(ノニオン系界面活性剤)を5o11/h添
加し、浮選槽の底部より空気を40℃/ m i nで
槽内に分散させながら供給した。スラリ一温度は25°
C1滞留時間は40分であった。この操作によって未燃
分および未燃分の凝集物が気泡の表面に何着し浮上して
、浮選わからオーバーフロー分として取り出され、また
灰分はテール分として浮選槽の下部から取り出された。
Example 1 Black fluidized bed boiler combustion ash with an unburned content of 56.1 wt% was
At the same time, 18.6 kg/h of water was supplied to the stirring tank (agglomeration tank) at a rate of 0.1 cg/h, and at the same time, water was added at a rate of 18.6 kg/h to bring the concentration of combustion ash to 35 wt%.
h was supplied. Further, C heavy oil was supplied at 300 y/h into this stirring tank so that the amount was 3 wt % based on the unburned content in the combustion ash. These were heated in a stirring tank at 30 Orpm, A OoC and 60
After performing flocculation treatment by stirring and mixing for a minute, flotation treatment was performed. In other words, the slug after flocculation treatment in the flotation tank +)
-28.9kg/h, and additionally 38.9kg/h of water.
.. 0 kq/h was added, and the concentration of combustion ash was adjusted to 15 wt%. In addition, 3.5 wt% of a foaming agent for flotation (nonionic surfactant) was added to the combustion ash at a rate of 5 o 11/h, and air was dispersed into the tank from the bottom of the flotation tank at 40°C/min. I supplied it while doing so. Slurry temperature is 25°
C1 residence time was 40 minutes. As a result of this operation, unburned matter and aggregates of unburned matter landed on the surface of the bubbles and floated to the surface, and were taken out from the flotation as an overflow part, and ash was taken out from the lower part of the flotation tank as a tail part.

オーバーフロー分、テール分を吸引ろ過・乾燥により脱
水し、得られた処理灰は未燃分71.5wt%を含む灰
7.8kq/h(原料燃焼灰の78wt%)と、未燃分
4.6wt%を含む白色の灰2.2 kg/h (原料
燃焼灰の22wt%)であった。
The overflow and tail portions were dehydrated by suction filtration and drying, and the resulting treated ash contained 7.8 kq/h of ash (78 wt% of the raw material combustion ash) containing 71.5 wt% of unburned matter, and 4.8 kq/h of ash (78 wt% of the raw material combustion ash). The amount of white ash containing 6 wt% was 2.2 kg/h (22 wt% of the raw material combustion ash).

実施例2 未燃分11.Qwt%の微粉炭だきボイラ燃焼灰を10
 kg/ hで攪拌槽(凝集槽)に供給し、同時に燃焼
灰の濃度が30 V/ t%になるように水を2乙、ろ
kg/ h供給した。さらにこの攪拌槽内に燃焼灰中の
未燃分に対し5wt%となるようにC重油を55グ/h
で供給した。攪拌槽でこれらを200 rpm X30
°Cで20分間攪拌混合して凝集処理を行なった後、つ
ぎの浮選処理を行なった。すなわち浮選槽に凝集処理後
のスラ’) −33、4kq/hを供給し、さらにこれ
に水を66 、7 kg/h加え、燃焼灰の濃度が10
wt%になるように調整した。また燃焼灰に対しQ、3
wt%の浮選用起泡剤(ノニオン系界面活性剤)をly
/h添加し、浮選槽の底部より空気を50n/m i 
nで槽内に分散させながら供給した。スラリ一温度は3
0°C1滞留時間は30分であった。この操作によって
未燃分および未燃分の凝集物が気泡の表面に付着し浮上
して、浮選槽からオーバーフロー分として取り出され、
また灰分はテール分として浮選槽の下部から取り出され
た。オーバーフロー分、テール分を吸引ろ過・乾燥によ
り脱水し、得られた処理灰は未燃分5Q、1wt%を含
む灰!2.0kg/h (原料燃焼灰の20wt%)と
、未燃分0.6w t%を含む白色の灰8.1 kg/
h (原料燃焼灰の81wt%)であった。
Example 2 Unburned matter 11. Qwt% pulverized coal fired boiler combustion ash 10
kg/h to the stirring tank (agglomeration tank), and at the same time, 2 kg/h of water was supplied so that the concentration of combustion ash was 30 V/t%. Furthermore, 55 g/h of C heavy oil was added to this stirring tank so that the amount was 5 wt% based on the unburned content in the combustion ash.
It was supplied by These were heated at 200 rpm x 30 in a stirring tank.
After performing a flocculation treatment by stirring and mixing at °C for 20 minutes, the following flotation treatment was performed. In other words, the flotation tank was supplied with -33.4 kq/h of sludge after flocculation treatment, and 66.7 kg/h of water was added to this to bring the concentration of combustion ash to 10.
It was adjusted to be wt%. Also, for combustion ash, Q, 3
wt% flotation foaming agent (nonionic surfactant)
/h, and air was added at 50n/m i from the bottom of the flotation tank.
It was supplied while being dispersed in the tank. The slurry temperature is 3
The residence time at 0°C was 30 minutes. Through this operation, unburned matter and unburned matter aggregates adhere to the surface of the bubbles and float to the surface, and are removed from the flotation tank as an overflow fraction.
In addition, ash was taken out from the bottom of the flotation tank as a tail fraction. The overflow and tail parts are dehydrated by suction filtration and drying, and the resulting treated ash contains 5Q and 1wt% of unburned content! 2.0 kg/h (20 wt% of raw material combustion ash) and 8.1 kg/h of white ash containing 0.6 wt% of unburned content.
h (81 wt% of the raw material combustion ash).

実施例3 未燃分56.1wt%の黒色の流動床ボイラ燃焼灰(実
施例1と同じ)を10 kg/hで攪拌槽(凝集・浮選
槽)に供給し、同時に燃焼灰の濃度が15wt%になる
ように水を51kq/h供給し、さらに燃焼灰中の未燃
分に対し7wt%となるようにC重油を400y/hで
供給し、燃焼灰に対し0.5wt%となるように起泡剤
(ノニオン系界面活性剤)を50y/hで供給した。撹
拌槽内でこれらを60 Wa’5.40°Cで攪拌混合
し、攪拌槽下部より空気を2011/m i nで槽内
に分散させながら吹き込んで、凝集処理と浮選処理とを
同時に行なった。この操作によって未燃分および未燃分
の凝集物が気泡の表面に何着し浮上して、攪拌槽からオ
ーバーフロー分として取り出され、また灰分はテール分
として攪拌槽の下部から取り出された。オーバーフロー
分およびテール分を吸引ろ過により脱水した。その結果
、オーバーフロー分として未燃分が66.0wt%に濃
縮された処理灰が8.2 kg/hで得られ、テール分
として未燃分が10.8wt%に低減された処理灰が1
.8kg/hで得られた。
Example 3 Black fluidized bed boiler combustion ash (same as in Example 1) with an unburned content of 56.1 wt% was supplied to a stirring tank (agglomeration/flotation tank) at a rate of 10 kg/h, and at the same time the concentration of combustion ash was Water was supplied at 51 kq/h so that the amount was 15 wt%, and C heavy oil was supplied at 400 y/h so that the amount was 7 wt% with respect to the unburned content in the combustion ash, which was 0.5 wt% with respect to the combustion ash. A foaming agent (nonionic surfactant) was supplied at a rate of 50 y/h. These were stirred and mixed in a stirring tank at 60 Wa'5.40°C, and air was blown from the bottom of the stirring tank at 2011/min while dispersing into the tank to perform flocculation treatment and flotation treatment at the same time. Ta. As a result of this operation, unburned matter and aggregates of unburned matter floated to the surface of the bubbles and were taken out from the stirring tank as an overflow part, and ash was taken out from the lower part of the stirring tank as a tail part. The overflow and tail portions were dehydrated by suction filtration. As a result, 8.2 kg/h of treated ash with an unburned content concentrated to 66.0 wt% was obtained as an overflow fraction, and 1 kg/h of treated ash with an unburned content reduced to 10.8 wt% was obtained as a tail fraction.
.. It was obtained at a rate of 8 kg/h.

実施例4 下の表に示すような灰分含有率535%の低品位炭を8
7cq/hで攪拌槽(凝集槽)に供給し、同時に低品位
炭の濃度が5Qwt%(ドライベース)になるように、
水を17. s kq/h供給した。さらにこの撹拌槽
内に、低品位炭中の固定炭素に対しIQwt%となるよ
うにC重油を180y/h供給した。攪拌槽でこれらを
360rpm、40°C(スラリ一温度)110分間攪
拌混合して凝集処理を行なった後、つぎの浮選処理を行
なった。すなわち浮選槽に凝集処理後のスラリー2b、
okq/hを供給し、さらにこれに水を51.5に!?
/h加え、低品位炭の濃度が10wt%になるように調
整したm:また低品位炭に対し0.2wt%の浮選用起
泡剤(ノニオン系界面活性剤)を16y/h添加し、浮
選槽の底部より空気を152/m i、 nで槽内に分
散させながら供給した。 スラリ一温度は2D′G、滞
留時間は60分であった。この操作によって純炭分およ
び純炭分の凝集物が気泡の表面に(v1着して浮上して
、浮選槽からオーバーフロー分として取り出され、また
灰分はテール分として浮選槽の下部から取り出された。
Example 4 Low rank coal with an ash content of 535% as shown in the table below was
The coal was supplied to the stirring tank (agglomeration tank) at a rate of 7 cq/h, and at the same time the concentration of low-rank coal was 5 Qwt% (dry base).
17. water. s kq/h was supplied. Furthermore, C heavy oil was supplied at 180 y/h into this stirring tank so as to have an IQwt% of fixed carbon in the low-rank coal. These were stirred and mixed in a stirring tank at 360 rpm and 40° C. (slurry temperature) for 110 minutes to perform a flocculation treatment, and then the following flotation treatment was performed. That is, slurry 2b after flocculation treatment in a flotation tank,
Supply okq/h and add water to 51.5! ?
/h, and the concentration of low-rank coal was adjusted to 10 wt%: In addition, 0.2 wt% of a flotation foaming agent (nonionic surfactant) was added to the low-rank coal for 16 y/h, Air was supplied from the bottom of the flotation tank at 152/m i,n while being dispersed into the tank. The slurry temperature was 2D'G and the residence time was 60 minutes. Through this operation, pure coal and aggregates of pure coal adhere to the surface of the bubbles and float to the surface, and are taken out from the flotation tank as an overflow part, and ash is taken out from the bottom of the flotation tank as a tail part. It was.

オーバーフロー分、テール分を吸引ろ過・乾燥により脱
水し、得られた処理炭は、灰分含有率19%の石炭3.
0kg/b(原料低品位炭の33wt%)と、灰分含有
率97%の白色の灰5.okg/h(原料低品位炭の6
3wt%)であった。
The overflow and tail portions are dehydrated by suction filtration and drying, and the resulting treated coal is coal with an ash content of 19%.3.
0 kg/b (33 wt% of raw material low rank coal) and white ash with an ash content of 97%5. okg/h (raw material low rank coal 6
3 wt%).

以上説明したように、本発明の方法は石炭灰を凝集工程
および浮選工程で処理するものであるから、凝集工程で
疎水化し、凝集した未燃分を浮選工程で気泡表面に耐着
させて浮上させることができ、このため未燃分と灰分と
の分離をきわめて効率よく行なうことができるという効
果を有している。
As explained above, in the method of the present invention, coal ash is treated in the agglomeration step and the flotation step, so it is made hydrophobic in the aggregation step, and the agglomerated unburned matter is made to adhere to the bubble surface in the flotation step. This has the effect that unburned matter and ash can be separated extremely efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第Δ図は本発明者らが行なった実験結果を示す
もので、第1図は流動床ボイラ燃焼灰を凝集・浮選法に
より処理した場合の油温率(%対線炭分)、オーバーフ
ロー分イグニションロス(%)、テール分収率(%)、
テール分イグニションロス(%)の関係を示すグラフ、
第2図は流動床ボイラ燃焼灰を凝集法のみで処理した場
合の油温率(%対線炭分)、ふるい上、下イグニション
ロス(%)、ふるい下数率(%)の関係を示すグラフ、
第6図は微粉炭だきボイラ燃焼灰を凝集・浮選法により
処理した場合の油温率(%対線炭分)、オー ハーフロ
ー分イグニションロス(%)、テール分収率(%)、テ
ール分イグニションロス(%)の関係を示すグラフ、第
4図は微粉炭だきボイラ燃焼灰を凝集法のみで処理した
場合の油温率(%対線炭分)、ふるい上イグニションロ
ス(%)、ふるい下数率(%)、ふるい下イグニション
ロス(%)の関係を示すグラフ、第5図〜第10図は本
発明の方法を実施する装置の一例を示すもので、第5図
は流動床ボイラ燃焼灰を凝集工程で処理した後、浮選工
程で処理する場合、第6図は流動床ボイラ燃焼灰を同時
に凝集工程と浮選工程で処理する場合、第7図は流動床
ボイラ燃焼灰を凝集工程、浮選工程で処理した後、造粒
・分級工程で処理する場合、第8図は微粉炭だきボイラ
燃焼灰を凝集工程、浮選工程で処理する場合、第9図は
低品位炭を凝集工程、浮選工程で処理して流動床ボイラ
で燃焼させる場合、第10図は低品位炭を凝集工程、浮
選工程で処理して微粉炭たきボイラて燃焼させる場合の
フローシートである。 1・・・流動床ボイラ、2・・・サイクロン、6・・・
集しん装置、4・・・空気予熱器、5・・・煙突、6・
・・凝集槽、7・・・浮選槽、8・・・脱水機、10・
・・固液分離機、11・・・凝集・浮選槽、12・・・
水中造粒機、16・・・湿式分級器、14・・・微粉炭
だきボイラ、15・・・空気予熱器、16・・・脱硫装
置 第1図 第2図 沖捧キじ対比が(ホ) 第う図 辿希1=/、汀純ルリ 手続補正書(自発) 1.事件の表示 昭和58年   特許願第1374  号2、発明の名
称 石炭灰、低品位炭の処理方法3、 補正をする者 事件との関係 特許出願人 塵=イ(名称) (097)川崎重工業株式会社4、代
理人 7、補正の対象 (1)明細書2頁19行「炭」と「について」との間に
「や選炭廃スラツジ」を挿入する。 (2)明細書18頁4行と5行との間に「第11図は凝
集(混合)工程の前に予め捕集剤の水エマルジョンを調
製する場合を示している。すなわち、水、捕集剤、界面
活性剤を乳化器17に供給して予め捕集剤の水エマルジ
ョンを調製し、石炭灰、低品位炭もしくは選炭廃スラツ
ジ、またはそれぞれの水スラリーに前記捕集剤の水エマ
ルジョン、必要に応じて水を凝集槽(攪拌槽)6にて添
加し、攪拌混合して石炭分を疎水化するとともに、石炭
分の一部を凝集させ、ついで石炭灰、低品位炭または選
炭廃スラツジの水スラリーに起泡剤および必要に応じて
水を浮選槽7において添加し、空気または燃焼排ガスな
どの気体を吹き込んで気泡を生成させ、この気泡の表面
に石炭分を付着させて浮上させる。」を挿入する。 (3)明細書26頁下から5行と下から4行との間に、 [実施例5 灰分5dwt%(ドライベース)の低品位炭の35wt
%水スラリーを攪拌槽(凝集槽)に100 kq/へr
で供給し、同時に重油/水の割合が1/9のエマルジョ
ンを乳化器で調製し、重油が低品位炭中の純炭分に対し
5wt%となるよう、 このエマルジョンを8.05A
/hrで攪拌槽に供給した。攪拌槽でこれらを40°C
1滞留時間15分間、攪拌機の回転数15Orpmの条
件で攪拌混合して凝集処理を行なった後、つぎの浮選処
理を行なった。 上記凝集処理後のスラリーを108 kq/h rで浮
選槽に供給し、同時に水を2,110℃/hrで供給し
て石炭の濃度を10wt%に調整した。またスラリー中
の石炭に対し、0.3wt%の浮選用起泡剤(ノニオン
系界面活性剤)を105y/hr添加し、浮選槽の底部
より空気を70℃/m i nで槽内に分散させながら
供給した。スラリ一温度は25°C1滞留時間は30分
であった。この操作により、純炭分および純炭分の凝集
物が気泡の表面に付着し浮上して、浮選槽からオーバー
フロー分と選槽の下部から取り出された。オーバーフロ
ー分、テール分を遠心脱水し、得られた処理生成物は、
石炭分81wt%(ドライベース)を含む回収燃料15
,1/cg(ドライベース)/hrと、灰分85%を含
む処理石炭灰19.8kq(トライベース)Arであっ
た。」を挿入する。 (4)  明細書25頁111行「フローシート」と「
である。」との間に「、第11図は凝集工程の前に予め
捕集剤の水エマルジョンを調製する場合のフローシート
」を挿入する。 (5)明細書25頁20行「脱硫装置」の後に「、17
・・・乳化器」を挿入する。 (6)別紙のとおり第11図を補充する。 9、添付書類の目録 (1)補正図面(第11図)     1通以上
Figures 1 to Δ show the results of experiments conducted by the present inventors. Figure 1 shows the oil temperature rate (% vs. coal minute), overflow minute ignition loss (%), tail minute yield (%),
Graph showing the relationship between tail ignition loss (%),
Figure 2 shows the relationship between oil temperature rate (% vs. coal content), ignition loss above and below the sieve (%), and number rate below the sieve (%) when fluidized bed boiler combustion ash is treated only by the agglomeration method. graph,
Figure 6 shows the oil temperature rate (% vs. coal content), half-flow ignition loss (%), tail fraction yield (%), and tail fraction when pulverized coal-fired boiler combustion ash is treated by the flocculation/flotation method. Figure 4 is a graph showing the relationship between ignition loss (%) and ignition loss on sieve (%), oil temperature rate (% vs. coal content), ignition loss on sieve (%), and Graphs showing the relationship between the number ratio under the sieve (%) and the ignition loss under the sieve (%), Figures 5 to 10 show an example of an apparatus for carrying out the method of the present invention, and Figure 5 shows a fluidized bed. When boiler combustion ash is treated in the aggregation process and then in the flotation process, Figure 6 shows the case in which fluidized bed boiler combustion ash is treated in the aggregation process and flotation process at the same time, and Figure 7 shows the fluidized bed boiler combustion ash. Fig. 8 shows the case where pulverized coal boiler combustion ash is processed through the agglomeration process and flotation process, and Fig. 9 shows the low-grade ash. Figure 10 is a flow sheet for processing low-grade coal through the agglomeration and flotation processes and burning it in a pulverized coal boiler. be. 1...Fluidized bed boiler, 2...Cyclone, 6...
Air collection device, 4... Air preheater, 5... Chimney, 6.
... flocculation tank, 7... flotation tank, 8... dehydrator, 10.
...solid-liquid separator, 11... flocculation/flotation tank, 12...
Underwater granulator, 16...Wet classifier, 14...Pulverized coal boiler, 15...Air preheater, 16...Desulfurizer ) Figure U Toki 1 = / Jun Jun Ruri Procedural Amendment (Voluntary) 1. Indication of the case 1982 Patent Application No. 1374 2, Title of the invention Coal ash, low-grade coal processing method 3, Person making the amendment Relationship to the case Patent applicant Jin = I (Name) (097) Kawasaki Heavy Industries Co., Ltd. Company 4, Agent 7, Subject of amendment (1) Insert "Ya coal cleaning waste sludge" between "Charcoal" and "About" on page 2, line 19 of the specification. (2) Between lines 4 and 5 on page 18 of the specification, it says: ``Figure 11 shows a case where a water emulsion of the scavenger is prepared in advance before the aggregation (mixing) step. A water emulsion of the collecting agent is prepared in advance by supplying a collecting agent and a surfactant to the emulsifier 17, and the water emulsion of the collecting agent is added to coal ash, low-rank coal, coal cleaning waste sludge, or the respective water slurry. If necessary, water is added in a coagulation tank (stirring tank) 6, and the coal is agitated and mixed to hydrophobize the coal, and a part of the coal is agglomerated, and then converted into coal ash, low-grade coal, or washed coal waste sludge. A foaming agent and, if necessary, water are added to the water slurry in the flotation tank 7, and air or gas such as combustion exhaust gas is blown into the water slurry to generate bubbles, and the coal particles adhere to the surface of the bubbles and float. .” is inserted. (3) Between the 5th line from the bottom and the 4th line from the bottom on page 26 of the specification, [Example 5 35wt of low rank coal with an ash content of 5dwt% (dry base)]
% water slurry into a stirring tank (agglomeration tank) at 100 kq/hr
At the same time, an emulsion with a heavy oil/water ratio of 1/9 is prepared in an emulsifier, and this emulsion is heated to 8.05A so that the heavy oil is 5wt% of the pure coal content in the low-rank coal.
/hr was supplied to the stirring tank. These were heated to 40°C in a stirring tank.
After performing a flocculation treatment by stirring and mixing at a rotation speed of a stirrer of 15 rpm for one residence time of 15 minutes, the following flotation treatment was performed. The slurry after the above flocculation treatment was supplied to a flotation tank at a rate of 108 kq/hr, and at the same time water was supplied at a rate of 2,110°C/hr to adjust the coal concentration to 10 wt%. Additionally, 0.3 wt% of a foaming agent (nonionic surfactant) for flotation was added to the coal in the slurry for 105 y/hr, and air was pumped into the tank from the bottom of the flotation tank at 70°C/min. It was supplied while being dispersed. The slurry temperature was 25°C and the residence time was 30 minutes. Through this operation, pure coal and pure coal aggregates adhered to the surface of the bubbles and floated to the surface, and were taken out of the flotation tank as an overflow and from the bottom of the selection tank. The overflow and tail portions are centrifugally dehydrated, and the resulting processed product is
Recovered fuel containing 81wt% coal (dry basis)15
, 1/cg (dry base)/hr, and 19.8 kq (tri base) Ar of treated coal ash containing 85% ash. ” is inserted. (4) Page 25, line 111 of the specification “Flow sheet” and “
It is. Insert ``, Figure 11 is a flow sheet for preparing a water emulsion of the scavenger in advance before the aggregation step''. (5) After “Desulfurization equipment” on page 25, line 20 of the specification, “, 17
...Insert the emulsifier. (6) Figure 11 will be supplemented as shown in the attached sheet. 9. List of attached documents (1) One or more amended drawings (Figure 11)

Claims (1)

【特許請求の範囲】 1 石炭灰または低品位炭から石炭分を分離する方法に
おいて、石炭灰または低品位炭の水スラリーに捕集剤を
添加し攪拌混合して石炭分を疎水化するとともに、石炭
分の一部を凝集させる凝集工程と、石炭灰または低品位
炭の水スラリーに起泡剤を添加し気体を吹き込んで気泡
を生成させ、この気泡の表面に石炭分を付着させて浮上
させる浮選工程とを有することを特徴とする石炭灰、低
品位炭の処理方法。 2 石炭灰または低品位炭から石炭分を分離する方法に
おいて、石炭灰または低品位炭の水スラリーに捕集剤を
添加し攪拌混合して石炭分を疎水化するとともに、石炭
分の一部を凝集させる凝集工程と、石炭灰または低品位
炭の水スラリーに起泡剤を添加し気体を吹き込んで気泡
を生成させ、この気泡の表面に石炭分を付着させて浮上
させる浮選工程と、浮選工程で得られた石炭分の濃縮さ
れた水スラリーを水中造粒し湿式分級して石炭分の濃縮
された造粒物と石炭灰を含む排水とに分離する造粒・分
級工程とを有ることを特徴とする石炭灰、低品位炭の処
理方法。
[Claims] 1. A method for separating a coal component from coal ash or low-rank coal, in which a scavenger is added to a water slurry of coal ash or low-rank coal, and the coal component is hydrophobized by stirring and mixing. A flocculation process involves agglomerating a portion of the coal, and a foaming agent is added to the water slurry of coal ash or low-grade coal, and gas is blown into it to generate bubbles.The coal adheres to the surface of these bubbles and floats. A method for processing coal ash and low-rank coal, comprising a flotation step. 2. In a method of separating coal from coal ash or low-rank coal, a scavenger is added to a water slurry of coal ash or low-rank coal and mixed with stirring to make the coal hydrophobic, and a part of the coal is also separated. A flocculation process involves adding a foaming agent to a water slurry of coal ash or low-rank coal, blowing gas into it to generate bubbles, and a flotation process in which coal adheres to the surface of the bubbles and floats to the surface. There is a granulation/classification process in which the coal-concentrated water slurry obtained in the selection process is granulated in water and wet-classified to separate it into coal-concentrated granules and wastewater containing coal ash. A method for processing coal ash and low-rank coal, which is characterized by:
JP58001374A 1983-01-07 1983-01-07 Treatment of coal ash and low grade coal Granted JPS59127660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58001374A JPS59127660A (en) 1983-01-07 1983-01-07 Treatment of coal ash and low grade coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58001374A JPS59127660A (en) 1983-01-07 1983-01-07 Treatment of coal ash and low grade coal

Publications (2)

Publication Number Publication Date
JPS59127660A true JPS59127660A (en) 1984-07-23
JPS6247416B2 JPS6247416B2 (en) 1987-10-07

Family

ID=11499713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58001374A Granted JPS59127660A (en) 1983-01-07 1983-01-07 Treatment of coal ash and low grade coal

Country Status (1)

Country Link
JP (1) JPS59127660A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122065A (en) * 1983-12-05 1985-06-29 Mitsui Eng & Shipbuild Co Ltd Method for recovering fine granulated coal by floatation
JP2006306679A (en) * 2005-04-28 2006-11-09 Eacle Kk Method for producing cement-based composition, and cement-based composition
JP2007054773A (en) * 2005-08-26 2007-03-08 Mitsui Eng & Shipbuild Co Ltd Unburned carbon removal method in coal ash
WO2007066534A1 (en) * 2005-12-07 2007-06-14 Taiheiyo Cement Corporation Apparatus for removing of unburned carbon from fly ash and relevant removing method
WO2007074627A1 (en) * 2005-12-26 2007-07-05 Mitsui Engineering & Shipbuilding Co., Ltd. Method for removal of unburned carbon contained in fly ash
JP2007222800A (en) * 2006-02-24 2007-09-06 Taiheiyo Cement Corp Apparatus and method for removing unburnt carbon in fly ash
JP2008087468A (en) * 2006-09-05 2008-04-17 Eacle Kk Method for manufacturing coal ash slurry for cement based composition and cement based composition
CN104148164A (en) * 2014-07-04 2014-11-19 中国海洋石油总公司 Method for coal washing by means of carbon dioxide
JP2015074697A (en) * 2013-10-08 2015-04-20 三井造船株式会社 Method and apparatus for deashing and cleaning brown coal
JP2015199006A (en) * 2014-04-04 2015-11-12 松藤 泰典 Production method and production facility of fly ash powder
CN113430029A (en) * 2021-06-23 2021-09-24 太原理工大学 Method for hydrophobic modification of surface of low-rank coal by mechanochemical method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547210Y2 (en) * 1987-12-07 1993-12-13
KR100749757B1 (en) * 2007-05-16 2007-08-16 한국지질자원연구원 Separation of unburned coal from briquette ash by flotation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489902A (en) * 1977-12-23 1979-07-17 American Cyanamid Co Floth floatation of coal
JPS54139802A (en) * 1978-04-17 1979-10-30 American Cyanamid Co Recovery of finely divided coal
JPS58104652A (en) * 1981-12-15 1983-06-22 Mitsubishi Heavy Ind Ltd Separation of floated material of aggregated coal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489902A (en) * 1977-12-23 1979-07-17 American Cyanamid Co Floth floatation of coal
JPS54139802A (en) * 1978-04-17 1979-10-30 American Cyanamid Co Recovery of finely divided coal
JPS58104652A (en) * 1981-12-15 1983-06-22 Mitsubishi Heavy Ind Ltd Separation of floated material of aggregated coal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044032B2 (en) * 1983-12-05 1992-01-27
JPS60122065A (en) * 1983-12-05 1985-06-29 Mitsui Eng & Shipbuild Co Ltd Method for recovering fine granulated coal by floatation
JP2006306679A (en) * 2005-04-28 2006-11-09 Eacle Kk Method for producing cement-based composition, and cement-based composition
JP2007054773A (en) * 2005-08-26 2007-03-08 Mitsui Eng & Shipbuild Co Ltd Unburned carbon removal method in coal ash
JPWO2007066534A1 (en) * 2005-12-07 2009-05-14 太平洋セメント株式会社 Apparatus and method for removing unburned carbon in fly ash
WO2007066534A1 (en) * 2005-12-07 2007-06-14 Taiheiyo Cement Corporation Apparatus for removing of unburned carbon from fly ash and relevant removing method
US7703610B2 (en) 2005-12-26 2010-04-27 Mitsui Engineering & Shipbuilding Co., Ltd. Method for removal of unburned carbon contained in fly ash
WO2007074627A1 (en) * 2005-12-26 2007-07-05 Mitsui Engineering & Shipbuilding Co., Ltd. Method for removal of unburned carbon contained in fly ash
JP2007222800A (en) * 2006-02-24 2007-09-06 Taiheiyo Cement Corp Apparatus and method for removing unburnt carbon in fly ash
JP2008087468A (en) * 2006-09-05 2008-04-17 Eacle Kk Method for manufacturing coal ash slurry for cement based composition and cement based composition
JP2015074697A (en) * 2013-10-08 2015-04-20 三井造船株式会社 Method and apparatus for deashing and cleaning brown coal
JP2015199006A (en) * 2014-04-04 2015-11-12 松藤 泰典 Production method and production facility of fly ash powder
CN104148164A (en) * 2014-07-04 2014-11-19 中国海洋石油总公司 Method for coal washing by means of carbon dioxide
CN113430029A (en) * 2021-06-23 2021-09-24 太原理工大学 Method for hydrophobic modification of surface of low-rank coal by mechanochemical method

Also Published As

Publication number Publication date
JPS6247416B2 (en) 1987-10-07

Similar Documents

Publication Publication Date Title
WO2005085143A1 (en) A method for sewage sludge treatment by using circulating fluidized bed combustion
JPS59127660A (en) Treatment of coal ash and low grade coal
JP5319973B2 (en) Method and apparatus for removing unburned carbon in fly ash
JPH0249772B2 (en)
CN108687115A (en) A kind of cooperative processing method of incineration of refuse flyash and desulfurization wastewater
CA1146893A (en) Process for removal of sulfur and ash from coal
JP3384435B2 (en) Fluidized bed furnace exhaust gas desulfurization method
US6126014A (en) Continuous air agglomeration method for high carbon fly ash beneficiation
CA1136078A (en) Process for removing sulfur from coal
JP2007098296A (en) Method for recovering valuable material from bed material ash and method for utilizing recovered valuable material
JP2004230284A (en) Method for treating powder content containing combustible solid content
JP6973128B2 (en) Method for manufacturing fly ash for concrete and method for manufacturing cement composition
CA1185792A (en) Dispersion fuel and a method for its manufacture
JP2004025152A (en) Treatment method of incineration ash
JPS5960115A (en) Disposing method of coal ash
JP2003284973A (en) Method for treating coal ash
JP4174936B2 (en) Solid oil separation method for heavy oil fired boiler exhaust gas
JP2802906B2 (en) Wet treatment of heavy oil ash
Pasiowiec et al. Fine coal waste utilisation
JP2004358288A (en) Method for washing/desalting incineration ash
JPS59150559A (en) De-ashing treatment of coal
JP7354516B1 (en) Materials with immobilized soot and smoke, their manufacturing methods, and road base materials
FI125598B (en) Process for the processing of coal ash generated in power plants and in other combustion processes generated carbonaceous ash
RU2740349C1 (en) Method for non-waste combustion of carbon fuel
JPH0220888B2 (en)