JPS5912252A - Sunlight energy converter - Google Patents

Sunlight energy converter

Info

Publication number
JPS5912252A
JPS5912252A JP57121557A JP12155782A JPS5912252A JP S5912252 A JPS5912252 A JP S5912252A JP 57121557 A JP57121557 A JP 57121557A JP 12155782 A JP12155782 A JP 12155782A JP S5912252 A JPS5912252 A JP S5912252A
Authority
JP
Japan
Prior art keywords
heat
temperature
collecting member
low
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57121557A
Other languages
Japanese (ja)
Inventor
Kyoichi Kanetani
金谷 経一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57121557A priority Critical patent/JPS5912252A/en
Publication of JPS5912252A publication Critical patent/JPS5912252A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • F24S20/25Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants using direct solar radiation in combination with concentrated radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable to collect heat both at high temperatures and at low temperatures, by providing a heat-collecting member heated by the sunlight focused through a linear lens and a heat-collecting member heated by diffused light, and enable to take out electric energy, by connecting a thermoelectric converting element between the two heat-collecting members. CONSTITUTION:The sunlight available in the morning is focused on the first heat-collecting member 2 through the linear lens 1 to heat the member 2 to a high temperature of about 200 deg.C. Therefore, the first heat pipe 3 also starts to operate at about 200 deg.C, thereby heating a heat- transmitting medium flowing in the first heat-transmitting medium pipe 6. A controlling circuit 13 is operated by a signal from a temperature detector 12, whereby pumps P1, P2 intermediately provided in circulating passages 9a, 9b are operated, and solenoid change-over valves 10, 11 are so changed over as to communicate the passage 9a to a high-temperature heat-accumulating tank 8H. On the other hand, the second heat-collecting member 4 receives only the diffused light, so that it is heated only to about 40 deg.C, and a heat-transmitting medium of a low temperature is accumulated in a low-temperature heat-accumulating tank 8L. When the sun moves to its afternoon position, the system is changed over to a condition reverse to that during the morning by the temperature detector 12. In addition, a thermoelectromotive force corresponding to the temperature difference of 160 deg.C between the heat pipes 3, 5 is taken out by the thermoelectric converting element 15 through leads.

Description

【発明の詳細な説明】 本発明は太陽光エネルギーから熱を電気を取り出すよう
にした太陽光エネルギー変換器に関し特に熱エネルギー
は高温集熱と低温集熱が同時に行えるようにしたもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar energy converter that extracts heat and electricity from solar energy, and in particular, is capable of collecting high-temperature heat and low-temperature heat energy at the same time.

太陽光エネルギーの利用として一般家庭用は給湯が主体
であるので90°C以下の低温集熱でよいが産業用とし
ては 100〜200°Cの高温集熱が必要となってく
る。
Since the main use of solar energy is to heat hot water for general households, low-temperature heat collection of 90°C or less is sufficient, but for industrial use, high-temperature heat collection of 100 to 200°C is required.

従来は低温集熱と高温集熱は夫々専用の集熱器によって
行っていた。しかるに産業用であっても給湯用の低温集
熱が必要であり、又家庭用であっても冷房用として吸収
式冷凍機を利用する場合は高温集熱が必要となってくる
。     ゛従来であれば両専用集熱器を設置せねは
ならずコスト的にも又設置作業に問題があった。
Conventionally, low-temperature heat collection and high-temperature heat collection were performed using dedicated heat collectors. However, even for industrial use, low-temperature heat collection is required for hot water supply, and even for domestic use, high-temperature heat collection is required when absorption refrigerators are used for cooling. ``Conventionally, it was necessary to install dedicated heat collectors for both sides, which caused problems in terms of cost and installation work.

本発明は斯る点に鑑み、線形レンズで集光した太陽光に
て加熱される集熱部材と、拡散光にて加熱きれる集熱部
材とを設は高温から低温までの集熱を可能にすると共に
画集熱部材間に熱電変換素子を連結し温度差を利用して
電気工ネルキー同時に取出すものである。
In view of this, the present invention has a heat collecting member that is heated by sunlight focused by a linear lens and a heat collecting member that can be heated by diffused light, making it possible to collect heat from high to low temperatures. At the same time, a thermoelectric conversion element is connected between the image heat collecting members, and the electrician's key is taken out at the same time by utilizing the temperature difference.

以下一実施例を図と共に説明すると(1)はフレネルレ
ンズ、カマボコレンス等の線形レンズで、集光した光が
点ではなく線状に焦点を結ふレンズである。(2)は線
形レンズ(1)の下方で且太陽(S)が日の出から止層
までの略午前中に位置している場合に照射される位置に
配設した第1集熱部材で、下面に気液二相に変化するフ
ロン等の作動液を封入した第1ヒートバイブ(3)が熱
気的に取着しである。従って第1集熱部相(2)は午前
中は線形レンズ(1)を通した太陽光が照射され高温集
熱が行なわれるが午後になると太陽の移動により線形レ
ンスク1)からの集光が照射されず拡散光のみで加熱さ
れるので低温集熱となる。(4)は前記第1集熱部材(
2)とは逆で太陽が止層から日没までの略午後に位置し
ている場合に照射される位置に配設した第2集熱部材で
、同様に第2ヒートバイブ(5)が取着されている。従
って第2集熱部材(4)は第1集熱部材〈2)と全く逆
に午前中は拡散光によ って加熱され低温集熱となり、
午後になると線形レンズ(1)を通した集光が照射され
高温集熱され る。(6)(7)は前記第1、第2ヒー
トバイブ(3)(5)の夫々の凝縮部(3’  )(5
’ )が突入され、内部を流れるフロン、水等の熱媒体
に潜熱を放出して熱媒体を加熱する第1、第2の熱媒管
である。
An embodiment will be described below with reference to the drawings. (1) is a linear lens such as a Fresnel lens or a kamaboko lens, which focuses the condensed light on a line rather than a point. (2) is the first heat collecting member disposed below the linear lens (1) and at a position where it is irradiated when the sun (S) is located approximately in the morning from sunrise to the stop; A first heat vibrator (3) filled with a working fluid such as fluorocarbon that changes into a gas-liquid two-phase state is attached in a thermal manner. Therefore, in the morning, the first heat collecting part (2) is irradiated with sunlight through the linear lens (1) and collects high temperature heat, but in the afternoon, due to the movement of the sun, the light is collected from the linear lens (1). Since it is not irradiated and heated only by diffused light, the heat is collected at a low temperature. (4) is the first heat collecting member (
Contrary to 2), the second heat vibrator (5) is installed in a position where the sun is irradiated when the sun is located approximately in the afternoon from the stop to sunset, and the second heat vibrator (5) is also installed. It is worn. Therefore, in the morning, the second heat collecting member (4) is heated by the diffused light and collects low temperature heat, which is completely opposite to the first heat collecting member (2).
In the afternoon, concentrated light passes through the linear lens (1) and heat is collected at a high temperature. (6) and (7) are the condensing parts (3') and (5) of the first and second heat vibrators (3) and (5), respectively.
) are inserted into the first and second heat medium tubes, which emit latent heat to a heat medium such as fluorocarbon or water flowing inside to heat the heat medium.

(88)(8L)は高温蓄熱槽と低温蓄熱槽で前記第1
、第2熱媒管(6)(71と独立した循環路(9a)(
9b)で連通し又各循環路<9a)(9b>には別々の
循環ポンプ(Pa、>(P2)が介装されている。(1
0)は第1循環路(9a)を高温と低温蓄熱槽(8B>
(8L)に切換える一対の電磁切換弁(11)は第2循
環路(9b)を高温と低温蓄熱槽(8H)(8L)に切
換える一対の電磁切換弁で夫々の切換弁(10)(11
)は第1集熱部材(3〉又は第2集熱部材(5)にて加
熱された熱媒体温度を感知する温度検知器(12)から
の信号により制御回路(13)が働いて同時にともらか
一方に切換るようになっている。(14H)(14L)
は夫々の蓄熱槽(8H)(8L)に挿入し、た熱交換コ
イルで低温蓄熱槽(8L)での熱交換は低温の用途に使
用し、高温蓄熱槽(8H)での熱交換は高温の用途に使
用する。 (15)は第1ヒートバイブ(3)と第2ヒ
ートバイブ(5)との間に熱気的に連結した熱電変換素
子で、P型半導体(例えはB 12Te3− S b2
T3)とN型半導体(例えはPbTe)をヒートバイブ
(3)(5)に対し電気的に絶縁する絶縁層(16)を
介して固着してあり電極(17)からリード線(18)
により電気を取出している。
(88) (8L) is a high temperature heat storage tank and a low temperature heat storage tank.
, second heat medium pipe (6) (71 and independent circulation path (9a) (
9b), and each circulation path <9a) (9b> is interposed with a separate circulation pump (Pa, >(P2).(1
0) connects the first circulation path (9a) to a high temperature and low temperature heat storage tank (8B>
A pair of electromagnetic switching valves (11) switch the second circulation path (9b) to high temperature and low temperature heat storage tanks (8H) (8L), respectively.
) is simultaneously activated by a control circuit (13) activated by a signal from a temperature sensor (12) that detects the temperature of the heat medium heated by the first heat collecting member (3) or the second heat collecting member (5). (14H) (14L)
is inserted into each heat storage tank (8H) (8L), and the heat exchange coil in the low temperature heat storage tank (8L) is used for low temperature applications, and the heat exchange in the high temperature heat storage tank (8H) is used for high temperature applications. used for purposes. (15) is a thermoelectric conversion element thermally connected between the first heat vibe (3) and the second heat vibe (5), which is made of a P-type semiconductor (for example, B12Te3-S b2
T3) and an N-type semiconductor (for example, PbTe) are fixed via an insulating layer (16) that electrically insulates them from the heat vibrator (3) and (5), and a lead wire (18) is connected from the electrode (17).
electricity is extracted.

この熱電変換素子り15)は一方のh−hバイブ(3)
が高温集熱(約200℃)のとき他方のヒートパイプ(
5)が低温集熱(約40°C)であるのでその温度差1
60°Cに応した熱起電力がリード線(18)から取り
出される。高温、低温の集熱状態(即ち温度レベル)が
逆になった場合はリード線(18)と負荷への接続を切
換えればよい。
This thermoelectric conversion element 15) is connected to one of the hh vibes (3).
When is collecting high temperature heat (approximately 200℃), the other heat pipe (
5) is a low-temperature heat collection (approximately 40°C), so the temperature difference 1
A thermoelectromotive force corresponding to 60°C is taken out from the lead wire (18). If the high temperature and low temperature heat collection states (that is, temperature levels) are reversed, the connection between the lead wire (18) and the load may be switched.

次に本発明の動作を先ず集熱について簡単に説明すると
、午前中の太陽位置からの太陽光は線形レンズ(1)を
通して第1集熱部材(2)上に焦点を結び該第1集熱部
材(2)を約200°Cの高温にする。従って第1集熱
部材(2〉により第1ヒートバイブ(3)も約2 G 
O’Cで作動を始め、第1熱媒管(6)内を流れる熱媒
体を加熱する。従って温度検知器(12)が働きその信
号により制御回路(13)を動作し、それにより各循環
路(9a)(9b)に介装きれたポンプ(Pi)(P2
)を作動すると共に電磁切換弁(10〉(11)を第1
循環路(9a)が高温蓄熱槽(8H)に連通ずるように
切換える。−実弟2集熱部材(4)は線形レンズ(1)
による焦点を結はないので拡散光しか受光しないので約
40℃の加熱しかなく従って低温の熱媒体を低温蓄熱槽
(8L丹こ貯溜する。
Next, to explain the operation of the present invention briefly about heat collection, sunlight from the position of the sun in the morning is focused on the first heat collection member (2) through the linear lens (1), and the first heat collection member Heat component (2) to a high temperature of about 200°C. Therefore, the first heat vibrator (3) also has a power of about 2 G due to the first heat collecting member (2>).
It starts operating at O'C and heats the heat medium flowing in the first heat medium pipe (6). Therefore, the temperature sensor (12) operates and the control circuit (13) is operated based on the signal, thereby pumps (Pi) (P2) installed in each circulation path (9a) (9b).
) and the solenoid switching valve (10>(11)
The circulation path (9a) is switched to communicate with the high temperature heat storage tank (8H). -Brother 2 Heat collecting member (4) is a linear lens (1)
Since there is no focus, only diffused light is received, and the heating is only about 40 degrees Celsius.Therefore, the low temperature heat medium is stored in a low temperature heat storage tank (8L).

太陽が移動し午後の位置になると線形レンズ(1)を通
した太陽光は第2集熱部材(4)上に焦点を結び、逆に
第1集熱部材(2)は拡散光で夫々加熱され午前と逆に
なる。温度検知器〈12〉により!磁切換弁(tO)0
1)が切換り第2集熱部材(4)で加熱された高温の熱
媒体が高温蓄熱槽(8■)に、又第1集熱部材(4)で
加熱された低温の熱媒体が低温蓄熱槽(8L〉に夫々貯
溜きれる。
When the sun moves to the afternoon position, the sunlight passing through the linear lens (1) focuses on the second heat collecting member (4), and conversely, the first heat collecting member (2) is heated by the diffused light. It will be the opposite of the morning. By temperature detector <12>! Magnetic switching valve (tO) 0
1) is switched, the high temperature heat medium heated by the second heat collection member (4) is transferred to the high temperature heat storage tank (8■), and the low temperature heat medium heated by the first heat collection member (4) is transferred to the low temperature heat storage tank (8■). Each can be stored in a heat storage tank (8L).

電気出力については前記したので省略する。Since the electrical output has been described above, it will be omitted.

本発明は以上の通りであるので線形レンズの焦点位置に
応して常に温度レベルの異る熱出力と温度差に応した電
気出力の両方を同時に得ることができる他、高温集熱と
低温集熱をも行なうことができ広範囲な用途に利用でき
る。
Since the present invention is as described above, it is possible to simultaneously obtain both thermal output at different temperature levels and electric output corresponding to the temperature difference depending on the focal position of the linear lens, as well as high-temperature heat collection and low-temperature heat collection. It can also generate heat and can be used in a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のもので、第1図は要部断面図、第2図は同
じく平面図、第3図は要部平面図、第4図はシステム図
である。 〈1)、線形レシス   (2)  第1集熱部材(4
)  第2集熱部材 (15)  熱電変換素子第1図 第2図
The drawings are of the present invention; FIG. 1 is a sectional view of the main part, FIG. 2 is a plan view of the same, FIG. 3 is a plan view of the main part, and FIG. 4 is a system diagram. <1), linear resistance (2) first heat collecting member (4)
) Second heat collection member (15) Thermoelectric conversion element Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)線形レンズとこの下方に配置した一対の集熱部材
とからなり、太陽光の線形レンズへの入射角度によって
異なる集熱部材を照射加熱するようにし、照射されてい
る側の集熱部材を高温集熱、照射されていない側の集熱
部材を低温集熱とすると共に夫夫独立して集熱されるよ
うにし、該一対の集熱部材間に熱電変換素子を連結せし
めてなる太陽光エネルギー変換器。
(1) Consisting of a linear lens and a pair of heat collecting members arranged below the linear lens, different heat collecting members are irradiated and heated depending on the angle of incidence of sunlight on the linear lens, and the heat collecting member on the irradiated side solar radiation, which collects high-temperature heat and collects low-temperature heat from the heat-collecting member on the side that is not irradiated, and collects heat independently from the husband and wife, and connects a thermoelectric conversion element between the pair of heat-collecting members. energy converter.
JP57121557A 1982-07-12 1982-07-12 Sunlight energy converter Pending JPS5912252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57121557A JPS5912252A (en) 1982-07-12 1982-07-12 Sunlight energy converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57121557A JPS5912252A (en) 1982-07-12 1982-07-12 Sunlight energy converter

Publications (1)

Publication Number Publication Date
JPS5912252A true JPS5912252A (en) 1984-01-21

Family

ID=14814181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57121557A Pending JPS5912252A (en) 1982-07-12 1982-07-12 Sunlight energy converter

Country Status (1)

Country Link
JP (1) JPS5912252A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088443A1 (en) * 2000-05-19 2001-11-22 Power Pulse Holding Ag Solar plant provided with radiation concentrating optics and a first radiation converter
WO2011072708A1 (en) * 2009-12-18 2011-06-23 Siemens Aktiengesellschaft Solar power generator module
CN102721202A (en) * 2012-06-08 2012-10-10 无锡旭能光热电能源有限公司 Bi-pass thermovoltaic vacuum tube
CN102748881A (en) * 2012-05-28 2012-10-24 无锡旭能光热电能源有限公司 Inner condensation thermovoltaic vacuum tube
CN105529956A (en) * 2016-01-19 2016-04-27 河南鸿昌电子有限公司 Semiconductor power generation device
CN109087989A (en) * 2018-07-24 2018-12-25 北京航空航天大学 A kind of preparation method of Multifunction thermoelectric film power generation and light intensity sensor part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088443A1 (en) * 2000-05-19 2001-11-22 Power Pulse Holding Ag Solar plant provided with radiation concentrating optics and a first radiation converter
WO2011072708A1 (en) * 2009-12-18 2011-06-23 Siemens Aktiengesellschaft Solar power generator module
CN102748881A (en) * 2012-05-28 2012-10-24 无锡旭能光热电能源有限公司 Inner condensation thermovoltaic vacuum tube
CN102721202A (en) * 2012-06-08 2012-10-10 无锡旭能光热电能源有限公司 Bi-pass thermovoltaic vacuum tube
CN105529956A (en) * 2016-01-19 2016-04-27 河南鸿昌电子有限公司 Semiconductor power generation device
CN109087989A (en) * 2018-07-24 2018-12-25 北京航空航天大学 A kind of preparation method of Multifunction thermoelectric film power generation and light intensity sensor part

Similar Documents

Publication Publication Date Title
Karthick et al. Evaluation of solar thermal system configurations for thermoelectric generator applications: A critical review
CN101826823B (en) Thermoelectric-conversion solar thermal power generation system
US4292579A (en) Thermoelectric generator
He et al. Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes
AU2009312347B2 (en) Solar thermal power plant and dual-purpose pipe for use therewith
JP5298138B2 (en) Thermoelectric generator
EP2592363A1 (en) Energy conversion device
RU2569403C1 (en) Self-sustained power and heat supply system for building
EP0020758A1 (en) Energy production and storage apparatus
JPS5912252A (en) Sunlight energy converter
JP2001153470A (en) Solar heat power generating system
KR20150136455A (en) Thermoelectric generation system and hybrid boiler using the same
US9964337B2 (en) Progressive air temperature booster powered by the sun
JP2013069975A (en) Thermoelectric power generation device and thermoelectric power generation method
WO2009101586A2 (en) Solar energy collector and system
KR20070077210A (en) To combin semicircle shape heat pipe and thermoelectircity generation semiconductor solar thermoelectricity generation glass
CN201869133U (en) Thermoelectric conversion type solar thermal power generation system
Song et al. Annual analysis of the photovoltaic direct-expansion heat pump assisted by double condensing equipment for secondary power generation
CN105577032B (en) The photoelectric heat electric hot water hybrid system that the modular full spectrum of solar energy is utilized
JPH11187682A (en) Heat accumulation-cold accumulation system power storing equipment
Sami Prediction of performance of a novel concept of solar photovoltaic-thermal panel and heat pipe hybrid system
JP2002106964A (en) Water heater using solar heat
KR101019275B1 (en) Condensing Type Solar Heat And Ray Cogeneration System
JPH07234020A (en) Hybrid type solar system
KR101434315B1 (en) Heating devide using concentrating solar cell