JPS59119786A - Method of electrolessly plating copper for printed circuit board - Google Patents

Method of electrolessly plating copper for printed circuit board

Info

Publication number
JPS59119786A
JPS59119786A JP22675882A JP22675882A JPS59119786A JP S59119786 A JPS59119786 A JP S59119786A JP 22675882 A JP22675882 A JP 22675882A JP 22675882 A JP22675882 A JP 22675882A JP S59119786 A JPS59119786 A JP S59119786A
Authority
JP
Japan
Prior art keywords
plated
copper plating
electroless copper
bath
plating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22675882A
Other languages
Japanese (ja)
Other versions
JPH0376599B2 (en
Inventor
石川 隆和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP22675882A priority Critical patent/JPS59119786A/en
Publication of JPS59119786A publication Critical patent/JPS59119786A/en
Publication of JPH0376599B2 publication Critical patent/JPH0376599B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、プリント配線板用無電解銅メッキ方法に係シ
、特に本発明はメッキ膜が機械的特性に優れたプリント
配線板用無電解銅メッキ方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electroless copper plating method for printed wiring boards, and more particularly, the present invention relates to an electroless copper plating method for printed wiring boards in which the plating film has excellent mechanical properties. .

周知の如くラジオ、テレビ等の民生用電子機器から電子
計算機、情報産業用電子機器などの高級産業機器に至る
まで電子工業各分野に広く普及しているプリント配線板
は、従来その殆んどがエツチドフォイル法によって製造
されてきだが、近年電子機器産業が高度の発達をとげ、
益々高密度化。
As is well known, printed wiring boards are widely used in various fields of the electronic industry, from consumer electronic equipment such as radios and televisions to high-end industrial equipment such as computers and information industry electronic equipment. It has traditionally been manufactured using the etched foil method, but in recent years the electronic equipment industry has achieved a high level of development.
Increasingly high density.

高性能化が促進されてきた。このプリント配線板の高密
度化及び多層板化に伴ない、従来のエツチドフォイル法
において、エツチング工程でのアンダーカットや電気メ
ツキ工程におけるメッキ厚みのばらつきが大きいため、
パターン寸法精度が悪くなるばかシでなく、オーバーハ
ングによるブリッジ、多層板などの板厚の厚い基板に形
成される径の小さな穴、例えば板厚が3.211111
1程度で直径が1、00 a以下の穴に、メッキを施こ
す場合、穴のコーナ一部と中央部とのメッキ厚みの差が
大きく、時にはコーナ一部のみメッキが施され、穴の中
央部にメッキが施されないなどの欠点があった。そのた
め高密度配線や、高アスペクト比(板厚/穴径)のプリ
ント配線板の工業的な生産が難しくなってきている。ま
た、エツチドフォイル法では銅張り積層板を用いるため
、銅張り積層板へのパターン印刷後には、そのパターン
印刷部以外の銅箔をエツチング工程で除去しなければな
らず、そのエツチングで除去される無駄な銅箔は全体の
50〜80%であり、きわめて不経済であり、かつこの
様な銅箔除去処理を行なうエツチング液も塩化第二鉄、
塩化第二銅、あるいはアンモニア水等を主成分としてい
るため、誤って外部に流した場合、公害問題を引き起こ
す原因となる。いずれにしてもエツチドフォイル法は製
造工程の複雑化および銅箔の無駄等を避けることができ
ず経済上不利であった。
High performance has been promoted. As printed wiring boards become more dense and multilayered, the conventional etched foil method suffers from large undercuts in the etching process and large variations in plating thickness in the electroplating process.
This does not mean that pattern dimensional accuracy will deteriorate, but rather bridges due to overhangs, small diameter holes formed in thick substrates such as multilayer boards, for example, the board thickness is 3.211111.
When plating a hole with a diameter of 1,00 mm or less, there is a large difference in the plating thickness between some corners and the center of the hole, and sometimes only some corners are plated, and the center of the hole is There were drawbacks such as the lack of plating on the parts. This has made it difficult to industrially produce printed wiring boards with high density wiring and high aspect ratios (board thickness/hole diameter). In addition, since the etched foil method uses copper-clad laminates, after the pattern is printed on the copper-clad laminate, the copper foil other than the pattern-printed area must be removed in an etching process. The wasted copper foil accounts for 50 to 80% of the total, which is extremely uneconomical, and the etching solution used to remove the copper foil is ferric chloride, ferric chloride, etc.
Since the main ingredients are cupric chloride or aqueous ammonia, it can cause pollution problems if accidentally released outside. In any case, the etched foil method is economically disadvantageous because it cannot avoid complicating the manufacturing process and wasting copper foil.

したがって、最近電気メッキの代わりに無電解銅メッキ
でパターン及びスルーホールを形成させるアディティブ
法が注目されている。この方法によれは、電子機器の高
機能化、小型化、高信頼化、低コスト化という要望に答
えることができ、高密度配線や高アスペクト比のプリン
ト配線板の工業的な生産が可能となってきた。
Therefore, an additive method in which patterns and through holes are formed by electroless copper plating instead of electroplating has recently been attracting attention. This method can meet the demands for higher functionality, smaller size, higher reliability, and lower cost in electronic devices, and enables industrial production of high-density wiring and high aspect ratio printed wiring boards. It has become.

しかし、従来のプリント配線板用無電解銅メッキ方法に
よれば、まず被メツキ基板にアルカリ溶液を用いて脱脂
処理を施し、次に酸などによる表面粗化及び活性化処理
を施した後、無電解銅メッキ浴に浸漬し、一定時間恒温
に保持することにより、所望の厚みの無電解銅メッキ膜
を得ることができる。しかし、前記従来方法により得ら
れるメッキ膜は一般に脆く、実用上いまだ充分に満足さ
れていない。例えは、プリント配線板の導通パターン及
びスルーホールを無電解銅メッキ方法を用いてメッキす
る場合、メッキ膜が脆いためプリント配線板の加工や部
品装着の際に生じる機械的応力による歪によって、パタ
ーンの断線、スルーホール内のコーナークラックなどが
生じるという欠点がある。これに比べ、パターン及びス
ルーホールを電気銅メッキ方法を用いてメッキする場合
、無電解銅メッキのようなパターンの断線、ハガレ。
However, according to the conventional electroless copper plating method for printed wiring boards, the board to be plated is first degreased using an alkaline solution, then surface roughened and activated using acid, etc. An electroless copper plating film with a desired thickness can be obtained by immersing it in an electrolytic copper plating bath and maintaining it at a constant temperature for a certain period of time. However, the plating film obtained by the conventional method is generally brittle and is not yet fully satisfactory in practical terms. For example, when electroless copper plating is used to plate conductive patterns and through-holes on a printed wiring board, the plating film is brittle and may be distorted by mechanical stress that occurs when processing the printed wiring board or mounting parts. Disadvantages include wire breakage and corner cracks within the through holes. In contrast, when patterns and through-holes are plated using electrolytic copper plating, the patterns may be disconnected or peeled off like electroless copper plating.

キ裂及びスルーホール内のコーナークラックは生じない
。ところで、この電気銅メッキ方法で得られたメッキ膜
の機械的特性を測定した結果、メッキ膜の引張り強度3
0〜50Ky/mm2、伸び率3〜8係、180折シ曲
げ回数4回であった。
No cracks or corner cracks in through-holes occur. By the way, as a result of measuring the mechanical properties of the plated film obtained by this electrolytic copper plating method, the tensile strength of the plated film was 3.
The elongation rate was 0 to 50 Ky/mm2, the elongation rate was 3 to 8, and the number of bends was 4 times.

一方、銅塩、錯化剤、還元剤、pH調整剤から成る無電
解銅メッキ浴から得られるメッキ膜は、10〜20 K
y/m2の引張シ強度、0.5係程贋の伸び率、1回程
度の折り曲げ回数を有し、プリント配線板のパターンま
たはスルーホール用の銅膜としてほとんど信頼性に乏し
かった。そこで、メッキ膜の延性改良剤としてメルカプ
タンのような有機硫黄化合物、チオールまたはチオ化合
物、ゾピリジル、フェナントロリンのような複素環式化
合物、その他無機シアン化合物等を添加することにょシ
無電解銅メッキ膜の機械的特性の向上がはかられて今日
に至っている。このような無電解銅メッキ浴から得られ
るメッキ膜は、20〜35Ky/mm2の引張り強度、
1〜2%の伸び率、折り曲げ回数が2回程度の機械的特
性を有し、パブリント配線板のパターン及びスルーホー
ル用銅膜として実用に供せられる。しかし、さらに高信
頼性が要求されるようなプリント配線板の導通パターン
及びスルーホール用銅膜には、電気銅メッキ膜なみの機
械的特性が必要である。
On the other hand, a plating film obtained from an electroless copper plating bath consisting of a copper salt, a complexing agent, a reducing agent, and a pH adjuster has a temperature of 10 to 20 K.
It had a tensile strength of y/m2, an elongation rate of 0.5 degrees, and was bent about once, and had little reliability as a copper film for patterns or through holes on printed wiring boards. Therefore, it is recommended to add organic sulfur compounds such as mercaptans, thiol or thio compounds, heterocyclic compounds such as zopyridyl and phenanthroline, and other inorganic cyanide compounds to improve the ductility of electroless copper plating films. Improvements in mechanical properties have continued to this day. The plated film obtained from such an electroless copper plating bath has a tensile strength of 20 to 35 Ky/mm2,
It has mechanical properties such as an elongation rate of 1 to 2% and a bending frequency of about 2 times, and can be put to practical use as a pattern for printed circuit boards and a copper film for through holes. However, copper films for conductive patterns and through-holes of printed wiring boards, which require even higher reliability, require mechanical properties comparable to those of electroplated copper films.

そこで、従来無電解銅メッキ浴に新しく開発したり改良
した種々のメッキ膜の延性改良剤を添加することにより
、無電解銅メッキ膜の機械的特性を向上させる試みが終
始なされた。また、表面に接着剤層を設けることにより
、この接着剤層がクッションの役割を果たし、プリント
配線板の加工や部品装着の際に生じる機械的応力による
歪が和らげられると考えられたが、無電解銅メッキ膜と
の密着が非常に良い接着剤、絶縁性に優れた接着剤、あ
るいは耐熱性に優れた接着剤がほとんど見い出されなか
った。しかも無電解銅メッキ膜と接着剤、の密着性を上
げるためには、クロム、硫酸混酸などの非常に危険で有
害な酸を使用しなければならなかった。
Therefore, attempts have been made to improve the mechanical properties of electroless copper plating films by adding various newly developed or improved ductility improvers to electroless copper plating baths. In addition, it was thought that by providing an adhesive layer on the surface, this adhesive layer would act as a cushion and alleviate the strain caused by mechanical stress that occurs when processing printed wiring boards and installing parts, but this did not work. Almost no adhesives have been found that have very good adhesion to the electrolytic copper plating film, have excellent insulation properties, or have excellent heat resistance. Moreover, in order to improve the adhesion between the electroless copper plating film and the adhesive, extremely dangerous and harmful acids such as chromium and sulfuric acid mixed acid had to be used.

また、特開昭57−114657に記載の発明によれば
、被メツキ基板表面に無電解銅メッキ膜を形成するに当
り、銅塩、錯化剤、還元剤、pH調整剤を含む無電解銅
メッキ浴の基本組成に添加剤としてエチレンオキサイド
系非イオン界面活性剤。
Further, according to the invention described in JP-A-57-114657, when forming an electroless copper plating film on the surface of a substrate to be plated, electroless copper containing a copper salt, a complexing agent, a reducing agent, and a pH adjusting agent is used. Ethylene oxide nonionic surfactant as an additive to the basic composition of the plating bath.

ジピリジル、フェナントロリン誘導体、シアン化合物の
少なくとも1種を含む無電解銅メッキ浴と添加剤として
硫黄化合物、ケイ素化合物、燐化合物の少なくとも1棟
を含む無電解銅メッキ浴を交互に用いて、無電解銅メッ
キ層を重層せしめることによシ無電解銅メッキ膜の機械
的向上を計る方法が知られている。
An electroless copper plating bath containing at least one of dipyridyl, a phenanthroline derivative, and a cyanide compound and an electroless copper plating bath containing at least one of a sulfur compound, a silicon compound, and a phosphorus compound as an additive are used alternately. A known method is to improve the mechanical properties of an electroless copper plating film by overlapping plating layers.

しかし、この方法は添加剤の異なる2種類の無電解銅メ
ッキ浴を用意しなければならず、設備面、例えばメッキ
槽の数、設置面積、液量等の点において通常の2倍必要
である。また、被メツキ基板に無電解鋼メッキを施す際
、添加剤は微量であり、かつメッキ浴中には多量の防書
物が含まれているため、通常の分析方法では分析不可能
とされている添加剤をそれぞれのメッキ浴に対して管理
しなければならないという欠点を有する。
However, this method requires the preparation of two types of electroless copper plating baths with different additives, and requires twice as much equipment as usual in terms of the number of plating baths, installation area, liquid volume, etc. . Furthermore, when applying electroless steel plating to the substrate to be plated, the amount of additives used is very small, and the plating bath contains a large amount of hardwood, so it is considered impossible to analyze using normal analytical methods. It has the disadvantage that additives must be controlled for each plating bath.

本発明は、従来のプリント配線板用無電解銅メッキ方法
の欠点を改善し、機械的特性に優れたメッキ膜を与える
プリント配線板用無電解銅メッキ方法を提供することを
目的とし、特許請求の範囲記載の方法によって、上記目
的を達成することかできる。
The present invention aims to improve the drawbacks of conventional electroless copper plating methods for printed wiring boards, and to provide an electroless copper plating method for printed wiring boards that provides a plating film with excellent mechanical properties. The above object can be achieved by the method described in the scope of .

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明の特徴は、1種もしくは2種の無電解鋼メッキ浴
を用いて所望の回路厚みを得る際、無電解銅メッキの析
出を少なくとも1回中断させ、プリント配線板上の無電
解銅メッキ膜を複数のメッキ層として形成させることに
より、プリント配線板への部品装着及びプリント配線板
が使用される時に受ける機械的応力による歪を分散させ
て少なくし、プリント配線板の機械的特性の評価試験項
目である引張り強度、伸び率、折り曲げ回数を、従来の
無電解銅メッキ方法に比べて大きく向上させることがで
きる。
A feature of the present invention is that when obtaining a desired circuit thickness using one or two types of electroless steel plating baths, the deposition of electroless copper plating is interrupted at least once, and electroless copper plating on a printed wiring board is By forming the film as multiple plating layers, it is possible to disperse and reduce strain caused by mechanical stress experienced when components are mounted on a printed wiring board and when the printed wiring board is used, and this makes it possible to evaluate the mechanical properties of the printed wiring board. The test items such as tensile strength, elongation rate, and number of bends can be significantly improved compared to conventional electroless copper plating methods.

本発明は、プリント配線板の製造の際に施される方法と
同様、まず、表面をトリクレンなどの有機溶剤またはア
ルカリ性水溶液に浸漬もしくはスプレーによる脱脂及び
整面を施し、酸を用いてソフトエツチングし、さらに、
活性化処理を施したプリント配線板用基板、例えば、紙
基材エポキシ樹脂基板、合成繊維布基材エポキシ樹脂基
板、ガラス布基材エポキシ樹脂基板1紙基材フェノール
樹脂基板、または、市販されている触媒人積層板や紫外
線を照射する部分のみ触媒となる様な物質を含む積層板
を紫外線照射後、無電解銅メッキ浴中に一定時間浸漬し
、基板上に所望のメッキ厚みの無電解銅メッキ膜を得た
後、無電解膜メッキ浴から被メツキ基板を引き上げる。
In the present invention, the surface is first degreased and smoothed by immersion or spraying in an organic solvent such as Trichloride or an alkaline aqueous solution, and then soft etched using an acid, similar to the method used in manufacturing printed wiring boards. ,moreover,
A printed wiring board substrate subjected to activation treatment, for example, a paper-based epoxy resin substrate, a synthetic fiber cloth-based epoxy resin substrate, a glass cloth-based epoxy resin substrate, a paper-based phenolic resin substrate, or a commercially available After UV irradiation, a catalytic laminate or a laminate containing a substance that acts as a catalyst only in the part to be irradiated with UV rays is immersed in an electroless copper plating bath for a certain period of time to coat the substrate with electroless copper to the desired plating thickness. After obtaining the plated film, the substrate to be plated is pulled out of the electroless film plating bath.

次に、引き上げた被メツキ基板に必要によシ活性化処理
を施した後、前記無電解銅メッキ浴に再度浸漬する操作
を無電解銅メッキ最終仕上がり厚さになるまで少なくと
も1回繰返す。この様にして得られた無電解銅メッキ膜
は、無電解鋼メッキ層が層状に形成されているため、プ
リント配線板への部品装着及びプリント配線板の使用時
に受ける機械的応力による歪が分散されて少なくなり、
プリント配線板の機械的特性の評価試験項目である引張
り強度、伸び率、折り曲げ回数を従来の無電解鋼メッキ
方法で得られるメッキ膜に比べて大きく向上させること
ができる。
Next, the pulled substrate to be plated is subjected to an activation treatment as required, and then the operation of immersing it in the electroless copper plating bath is repeated at least once until the final finished thickness of electroless copper plating is reached. Since the electroless copper plating film obtained in this way has a layered electroless steel plating layer, the strain caused by the mechanical stress received when parts are attached to the printed wiring board and when the printed wiring board is used is dispersed. become less and less
The tensile strength, elongation rate, and number of bending times, which are test items for evaluating mechanical properties of printed wiring boards, can be greatly improved compared to plating films obtained by conventional electroless steel plating methods.

なお、被メツキ基板を一定時間無電解銅メツキ浴中に浸
漬し引き上げ、再度浴中に浸漬する操作を繰返し行なう
場合、1回毎に浸漬時間をそれぞれ変化させて無電解銅
メッキを施すか、もしくはそれぞれ同一時間で無電解鋼
メッキを施すかの2通シが考えられるが、浸漬時間をそ
れぞれ同一時間にする場合の方が浸漬時間をそれぞれ変
化させる場合よりも、引張シ強度、伸び率及び折り曲げ
回数が大となる。
In addition, when the substrate to be plated is repeatedly immersed in an electroless copper plating bath for a certain period of time, pulled up, and immersed in the bath again, the immersion time is changed each time and electroless copper plating is applied. Alternatively, it is conceivable to apply electroless steel plating for the same time each time, but if the immersion time is the same for each time, the tensile strength, elongation rate, and The number of bends becomes large.

また、被メツキ基板が無電解鋼メッキ浴中に浸漬される
際、1回の浸漬で基板上に析出させる無電解銅メッキ膜
の厚さは、無電解銅メッキ浴中に含まれる4成分、銅塩
、還元剤、  pH調整剤、錯化剤のそれぞれの濃度及
び無電解銅メッキ浴の温度により析出速度が決まるため
、被メツキ基板の浸漬時間を多くしたり少なくしたシし
て調整し、無電解銅メッキの最終仕上がり厚さの1/1
00〜1/2の範囲内とすることにより引張り強度、伸
び率及び折り曲げ回数が向上し、特K1150〜1/2
の範囲内とすることが最も好ましい。
In addition, when the substrate to be plated is immersed in an electroless steel plating bath, the thickness of the electroless copper plating film deposited on the substrate in one immersion is determined by the four components contained in the electroless copper plating bath, The deposition rate is determined by the concentration of the copper salt, reducing agent, pH adjuster, and complexing agent as well as the temperature of the electroless copper plating bath, so it can be adjusted by increasing or decreasing the immersion time of the substrate to be plated. 1/1 of the final finished thickness of electroless copper plating
By setting it within the range of 00 to 1/2, the tensile strength, elongation rate, and number of bends are improved, and the special K1150 to 1/2
It is most preferable to fall within the range of .

被メツキ基板を無電解銅メッキ浴中に一定時間浸漬し、
それから、無電解銅メッキ浴から被メツキ基板を引き上
げ、再び前記無電解銅メッキ浴に浸漬する操作を繰返す
際、無電解銅メッキ浴から引き上げた被メツキ基板を毎
回水洗処理を施すか、毎回活性化処理を施すか、もしく
は水洗または活性化処理のいずれか1種を施すことによ
り、無電解銅メッキの析出を中断させ、無電解銅メッキ
層を層状に形成させ、引張シ強度、伸び率及び折シ曲げ
回数を従来法よりも向上させることができる。
The substrate to be plated is immersed in an electroless copper plating bath for a certain period of time,
Then, when repeating the operation of pulling the board to be plated from the electroless copper plating bath and immersing it in the electroless copper plating bath again, the board to be plated that has been pulled out of the electroless copper plating bath is washed with water each time, or activated each time. The precipitation of electroless copper plating is interrupted by carrying out a chemical treatment, washing with water, or activation treatment, and the electroless copper plating layer is formed in a layered manner, and the tensile strength, elongation rate, and The number of times of folding can be increased compared to the conventional method.

前記活性化処理方法としては、無電解銅メッキ浴から引
き上げた被メツキ基板を水洗、無機酸に浸漬し、もう一
度水洗して無電解銅メッキ浴に戻す方法、引き上げた被
メツキ基板を水洗し、無機酸に浸漬し、水洗し、さらに
触媒付与を行った後無電解銅メッキ浴に浸漬する方法、
または引き上げた被メツキ基板を水洗し、触媒付与を行
った後無電解銅メッキ浴に浸漬する方法の3種が好まし
いO 前記活性化処理工程で使用する無機酸としては、いろい
ろ考えられるが、銅の酸化物を溶解可能な酸が好ましい
。例えば、硫酸、塩酸またはこの2種の酸の混合物が最
適である。浴の温度は0.5〜10規定、温度は5〜4
0C1被メツキ基板の1回の浸漬時間は1〜IO分間の
範囲内であれば、銅の酸化物の溶解が可能である。
The activation treatment method includes a method in which the substrate to be plated that has been pulled out of the electroless copper plating bath is washed with water, immersed in an inorganic acid, rinsed with water once again, and returned to the electroless copper plating bath; A method of immersing in an inorganic acid, washing with water, further applying a catalyst, and then immersing in an electroless copper plating bath,
Or, three methods are preferred: washing the pulled substrate to be plated with water, applying a catalyst, and then immersing it in an electroless copper plating bath.There are various possible inorganic acids to be used in the activation treatment step, but copper Acids that can dissolve the oxides are preferred. For example, sulfuric acid, hydrochloric acid or a mixture of these two acids are suitable. The temperature of the bath is 0.5 to 10 normal, the temperature is 5 to 4
If the immersion time of the substrate to be plated with 0C1 is within the range of 1 to 10 minutes, the copper oxide can be dissolved.

また、触媒付与は、触媒となりうる金属イオンを含む水
溶液、例えばPaCl2−5nCt2−ncz (コ。
Further, the catalyst can be applied using an aqueous solution containing metal ions that can serve as a catalyst, such as PaCl2-5nCt2-ncz (co.

イドタイゾ)、塩酸では作業環境を悪くするというので
、その改良型であるPdCl2−5nC42−NaCt
(コロイドタイプ)、パラジウム有機錯塩化合物、中性
鋼タイプの以上4種のいずれか1種の浴に被メツキ基板
を浸漬して、被メツキ基板上に金属イオンを吸着させる
。次に触媒となる金属イオンな金属に還元可能な液、例
えば硫酸とシュウ酸の混合液もしくは水酸化ナトリウム
または炭酸ナトリウム等のアルカリ性水酸化物とホウ水
素化合物との混合液に金属イオンが吸着した被メツキ基
板を浸漬する操作を少なくとも1回繰返すことにより、
被メツキ基板上に触媒を吸着させる方法である。
PdCl2-5nC42-NaCt, an improved version of hydrochloric acid, worsens the working environment.
The substrate to be plated is immersed in any one of the above four types of baths: (colloid type), palladium organic complex salt compound, and neutral steel type, and metal ions are adsorbed onto the substrate to be plated. Next, metal ions are adsorbed to a liquid that can be reduced to a metal ion as a catalyst, such as a mixture of sulfuric acid and oxalic acid, or a mixture of an alkaline hydroxide such as sodium hydroxide or sodium carbonate and a borohydride compound. By repeating the operation of dipping the substrate to be plated at least once,
This is a method in which a catalyst is adsorbed onto the substrate to be plated.

金属イオンを含む水溶液中の金属イオン濃度は20pp
mよシ薄いと被メツキ基板上に吸着する触媒の量が少な
く無電解銅メッキの析出が開始せず、2500 ppm
より濃いと触媒濃度をいくら上げても吸着する触媒の量
は一定であるため、20〜2500ppmの範囲内が好
ましい。浴の温度も管理の点から20〜60Cの範囲内
が好ましい。また、被メツキ基板の1回の浸漬時間につ
いても同様に、1分間より短いと触媒の吸着量が少なく
無電解銅メッキの析出が開始せず、10分間を越えて浸
漬しても吸着する触媒の量は一定であるため、1〜10
分間の範囲内が好ましい。
The metal ion concentration in an aqueous solution containing metal ions is 20 pp.
If it is thinner than m, the amount of catalyst adsorbed on the substrate to be plated will be small and electroless copper plating will not start to be deposited.
If the concentration is higher, the amount of adsorbed catalyst remains constant no matter how much the catalyst concentration is increased, so it is preferably within the range of 20 to 2500 ppm. The temperature of the bath is also preferably within the range of 20 to 60C from the viewpoint of control. Similarly, regarding the immersion time of the substrate to be plated once, if it is shorter than 1 minute, the amount of catalyst adsorbed is small and deposition of electroless copper plating does not start, and even if the substrate is immersed for more than 10 minutes, the adsorbed catalyst Since the amount of is constant, 1 to 10
Preferably within a minute range.

還元液浴の温度は、10Cより低いと還元反応が生起し
にくいし、50Cよシ高いと還元剤の自己分解が生起す
るため、10〜50Cの範囲内が好ましい。被メツキ基
板の1回の浸漬時間としては、2分間より短いと金属イ
オンから金属に還元される触媒の量が少ないため無電解
銅メッキの析出が開始せず%10分間程度の浸漬で被メ
ツキ基板上に吸着した金属イオンがほとんど金属に還元
されているため、これ以上浸漬させる必要はない。した
がって、被メツキ基板の浸漬時間は2〜10分間の範囲
内が好ましい。また、還元液浴の濃度は、前記とほぼ同
じ理由から、0.01〜1 matAの範囲内が好まし
い。
The temperature of the reducing solution bath is preferably within the range of 10 to 50 C, since the reduction reaction is difficult to occur if it is lower than 10 C, and self-decomposition of the reducing agent occurs if it is higher than 50 C. If the immersion time of the substrate to be plated is shorter than 2 minutes, the amount of catalyst that reduces metal ions to metal will be small, so electroless copper plating will not start to be deposited, and the plated substrate will be immersed for about 10 minutes. Since most of the metal ions adsorbed on the substrate have been reduced to metal, there is no need for further immersion. Therefore, the immersion time of the substrate to be plated is preferably within the range of 2 to 10 minutes. Further, the concentration of the reducing liquid bath is preferably within the range of 0.01 to 1 matA for almost the same reason as mentioned above.

本発明において用いられる無電解銅1メッキ浴は、従来
用いられている第二銅イオン源となる銅塩、銅イオンを
金属銅にするだめの還元剤、還元剤を有効に働かすアル
カリ性溶液にするためのpH調整剤、アルカリ性溶液中
で銅の沈殿を防ぐための錯化剤の4成分を含有し、その
他に必要により安定剤を含有させることができ、この安
定剤の働きは無電解銅メッキ浴の自己分解を防いで浴の
寿命を長くする。この様に浴の寿命が長くなる原因は−
価の銅及び銅粒子をそれぞれ安定剤でマスクするからで
ある。
The electroless copper 1 plating bath used in the present invention consists of a conventionally used copper salt as a source of cupric ions, a reducing agent for converting copper ions into metallic copper, and an alkaline solution that makes the reducing agent work effectively. Contains four components: a pH adjuster for electroless copper plating and a complexing agent for preventing precipitation of copper in alkaline solutions.Additionally, a stabilizer can be included if necessary, and the function of this stabilizer is to improve electroless copper plating. Prevents self-decomposition of the bath and prolongs the life of the bath. The reason for this long bath life is -
This is because the stabilizer masks the copper and copper particles, respectively.

安定剤としてはキレート剤及び高分子剤があり、キレー
ト剤としては、シアン化ナトリウム、シアン化カリウム
、シアン化ニッケルカリウム、シアン化鉄カリウム、シ
アン化コバルトカリウム、ソビリジル、2(2−ピリジ
ル)イミダシン、  2(2−f リジル)ベンゾイミ
ダゾール、  1.10 フェナントロリン、2.9−
ジメチル−1,10−フェナントロリン、4.7−シフ
エニルー1.10−7エナントロリン、4.7−ジフェ
ニル−2,9−ジメチル−1,1O−7エナントロリン
、チオ尿素、アリルチオ尿素t ロダニン、2−メルカ
プトベンゾチアゾールが知られておシ、高分子剤として
はポリエチレングリコール、ポリエチレンオキサイドな
どが知られている。
Stabilizers include chelating agents and polymeric agents, and chelating agents include sodium cyanide, potassium cyanide, nickel potassium cyanide, potassium iron cyanide, potassium cobalt cyanide, sobiridyl, 2(2-pyridyl)imidacine, 2 (2-f Lysyl)benzimidazole, 1.10 Phenanthroline, 2.9-
Dimethyl-1,10-phenanthroline, 4,7-sipheny-1,10-7 enanthroline, 4,7-diphenyl-2,9-dimethyl-1,1O-7 enanthroline, thiourea, allylthiourea t rhodanine, 2 -Mercaptobenzothiazole is known, and as polymeric agents, polyethylene glycol, polyethylene oxide, etc. are known.

銅塩としては、硫酸銅、塩化第二銅、酢酸銅。Copper salts include copper sulfate, cupric chloride, and copper acetate.

硝酸銅などを用いることができるが、コストの点から硫
酸銅が最も好ましい。還元剤は、ヒドラゾン、ホルマリ
ン、ホウ水素化合物1欠亜りん酸ナトリウムを用いるこ
とができるが、安定性及びコストの点からホルマリンが
最も好ましい。同様にpH調整剤は、水酸化ナトリウム
、水酸化カリウム、炭酸ナトリウム、アンモニア水等を
用いることができるが、水酸化ナトリウムが最も好まし
い。
Although copper nitrate or the like can be used, copper sulfate is most preferred from the viewpoint of cost. As the reducing agent, hydrazone, formalin, and borohydride compound mono-depleted sodium phosphite can be used, but formalin is most preferable in terms of stability and cost. Similarly, as the pH adjuster, sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia water, etc. can be used, but sodium hydroxide is most preferred.

錯化剤についても酒石酸ナトリウムカリウム及びエチレ
ンジアミン四酢酸ナトリウム塩の2種を用いることがで
きるが、浴の安定性、高速性の点がらエチレンジアミン
四酢酸ナトリウム塩が好ましい。
Two kinds of complexing agents, sodium potassium tartrate and sodium ethylenediaminetetraacetic acid salt, can be used, but sodium salt of ethylenediaminetetraacetic acid is preferred from the viewpoint of bath stability and high speed.

以上4成分のそれぞれの濃度は、銅塩の場合0、 O1
〜0.15 matA、還元剤0.1〜1 moLA、
pH調整剤0.1〜l mol々、錯化剤は銅イオンの
モル濃度の1〜3倍の範囲内が好ましい。
The concentration of each of the above four components is 0 in the case of copper salt, O1
~0.15 matA, reducing agent 0.1-1 moLA,
The pH adjuster is preferably in a range of 0.1 to 1 mol, and the complexing agent is preferably in a range of 1 to 3 times the molar concentration of copper ions.

また、無電解鋼メッキ浴の温度は、80Cよシ高いと浴
の分解が生起し、30Cよシ低いと析出速度が遅すぎ、
所望の無電解銅メッキ厚さを得るまでに時間がかかり過
ぎるため、30〜80 Cの範囲内が好ましい。
Furthermore, if the temperature of the electroless steel plating bath is higher than 80C, the bath will decompose, and if it is lower than 30C, the deposition rate will be too slow.
Since it takes too much time to obtain the desired electroless copper plating thickness, a range of 30 to 80 C is preferable.

被メツキ基板を無電解銅メッキ浴に一定時間浸漬し、メ
ッキ浴から被メツキ基板を引き上げ、その引き上げた被
メツキ基板を前記無電解銅メッキ浴に再度浸漬するまで
の時間は、45分間以内が好ましい。その理由は水洗水
または空気中に長時間放置すると銅表面に酸化膜が生成
し、この酸化膜上に析出させる銅との密着性が悪くなる
ため、45分間以内が好ましい。
The time required to immerse the substrate to be plated in an electroless copper plating bath for a certain period of time, lift the substrate to be plated from the plating bath, and immerse the lifted substrate to be plated in the electroless copper plating bath is within 45 minutes. preferable. The reason for this is that if the copper is left in washing water or air for a long time, an oxide film will be formed on the copper surface, and the adhesion with the copper deposited on this oxide film will deteriorate, so the time is preferably within 45 minutes.

また、本発明の無電解銅メッキ層を層状に形成させる方
法として、前記1種の無電解銅メッキ浴を用いる方法の
他に2種の無電解銅メッキ浴による方法について詳細に
説明する。
Further, as a method for forming the electroless copper plating layer of the present invention in a layered manner, a method using two types of electroless copper plating baths in addition to the method using the one type of electroless copper plating bath described above will be explained in detail.

この場合に用いる2種の無電解銅メッキ浴は、無電解銅
メッキ浴中に含まれる溶質の種類、特に添加剤の種類を
変える必要なく、各溶質の種類は同一であシ、各溶質の
組成比率、浴中の個々の溶質濃度、浴の温度の3種のう
ちいずれが少なくとも1種が異なった浴である。2種の
無電解銅メッキ浴に被メツキ基板を交互に浸漬する際、
無電解銅メッキ浴中に被メツキ基板を一定時間浸漬し、
所望のメッキ厚さになるまで無電解銅メッキを析出させ
た後、無電解鋼メッキ浴から被メツキ基板を引き上げ、
引き上げた被メツキ基板に必要により活性化処理を施し
た後、異なる無電解銅メッキ浴に浸漬する操作を無電解
銅メッキ最終仕上がシ厚さになるまでに少なくとも1回
繰返す。この様にして得られた無電解鋼メッキ膜は、無
電解銅メッキ層が層状に形成されているため、プリント
配線板への部品装着及びプリント配線板の使用時に受け
る機械的応力による歪が分散されて少なくなり、プリン
ト配線板の機械的特性である引張り強度、伸び率、折り
曲げ回数が、従来の無電解銅メッキ方法である無電解銅
メッキ浴に被メツキ基板を連続して浸漬し層状でない無
電解銅メッキ層を持つメッキ膜に比べて大きく向上する
In the two types of electroless copper plating baths used in this case, there is no need to change the type of solute contained in the electroless copper plating bath, especially the type of additives, and the type of each solute is the same. The baths differ in at least one of three types: composition ratio, concentration of individual solutes in the bath, and bath temperature. When the substrate to be plated is alternately immersed in two types of electroless copper plating baths,
The substrate to be plated is immersed in an electroless copper plating bath for a certain period of time,
After depositing electroless copper plating until the desired plating thickness is reached, the board to be plated is pulled out of the electroless steel plating bath.
After performing activation treatment on the pulled-up substrate to be plated as necessary, the operation of immersing it in a different electroless copper plating bath is repeated at least once until the final electroless copper plating finish reaches a thickness of 1. Since the electroless steel plating film obtained in this way has a layered electroless copper plating layer, the strain caused by the mechanical stress received when mounting components on a printed wiring board and when using the printed wiring board is dispersed. The mechanical properties of printed wiring boards, such as tensile strength, elongation rate, and number of bends, are reduced by continuously immersing the plated board in an electroless copper plating bath, which is the conventional electroless copper plating method. This is greatly improved compared to a plated film with an electroless copper plating layer.

2種の無電解銅メッキ浴の組合せは、1)無電解鋼メッ
キ浴中の各溶質の重量比率、浴中の個々の溶質濃度は同
一、浴の温度が異なった2種の無電解銅メッキ浴の組合
せ、2)無電解銅メッキ浴中の各溶質の重量比率は同一
、浴中の個々の溶質濃度が異なり、浴の温度が同一の2
種の無電解銅メツキ浴の組合せ、3)無電解銅メッキ浴
中の各溶質の重量比率と浴中の個々の溶質濃度とが異な
り、浴の温度が同一の2種の無電解鋼メッキ浴の組合せ
、4)無電解銅メッキ浴中の各溶質の重量比率は同一、
浴中の個々の溶質濃度と浴の温度が異なる2種の無電解
銅メッキ浴の組合せ、5)無電解銅メッキ浴中の各溶質
の重量比率、浴中の個々の溶質濃度及び浴の温度の3種
が全て異なる2種の無電解銅メッキ浴の組合せである。
The combination of two types of electroless copper plating baths is as follows: 1) Two types of electroless copper plating in which the weight ratio of each solute in the electroless steel plating bath and the concentration of each solute in the bath are the same, but the temperature of the bath is different. 2) The weight ratio of each solute in the electroless copper plating bath is the same, the concentration of each solute in the bath is different, and the temperature of the bath is the same.
3) two types of electroless steel plating baths in which the weight ratio of each solute in the electroless copper plating bath and the concentration of each solute in the bath are different, but the temperature of the bath is the same; 4) The weight ratio of each solute in the electroless copper plating bath is the same;
Combination of two types of electroless copper plating baths with different concentrations of individual solutes in the bath and temperature of the bath; 5) Weight ratio of each solute in the electroless copper plating bath, concentration of each solute in the bath and temperature of the bath All three types are a combination of two different electroless copper plating baths.

以上5種の組合せが可能であり、いずれの組合せにおい
ても、無電解銅メッキ浴に被メツキ基板を連続して浸漬
し、層状でない無電解鋼メッキ層を持つメッキ膜と比べ
て、引張シ強度、伸び率、折り曲げ回数が向上する。
The above five combinations are possible, and in any combination, the substrate to be plated is continuously immersed in an electroless copper plating bath, and the tensile strength is , elongation rate, and number of bends are improved.

また、被メツキ基板をそれぞれの無電解銅メッキ浴に浸
漬させて、被メツキ基板面に析出させる銅の厚さは、一
方の無電解銅メッキ浴では無電解銅メッキの最終仕上が
り厚さの1/30〜1/2の範囲内であり、もう一方の
浴においては1/100〜1/30の範囲内とすること
が好ましい。
In addition, the thickness of copper deposited on the surface of the plated substrate by immersing the plated substrate in each electroless copper plating bath is 1/2 of the final finished thickness of electroless copper plating in one electroless copper plating bath. It is preferably within the range of /30 to 1/2, and in the other bath it is preferably within the range of 1/100 to 1/30.

前記5種の組合せにより無電解銅メッキを施す場合、片
方の無電解銅メッキ浴中へ被メツキ基板を浸漬後、無電
解銅メッキ浴から被メツキ基板を引き上げ、異なる無電
解銅メッキ浴に浸漬する際、毎回引き上げた基板に水洗
を施し、被メツキ基板上の無電解鋼メッキ液を洗い落と
し、異なる無電解銅メッキ浴に浸漬する操作を繰返すこ
とにより、無電解銅メッキ層は層状に形成され、引張り
強度。
When performing electroless copper plating using a combination of the five types described above, the substrate to be plated is immersed in one of the electroless copper plating baths, then the substrate to be plated is pulled out of the electroless copper plating bath, and immersed in a different electroless copper plating bath. During this process, the electroless copper plating layer is formed in layers by rinsing the board that has been pulled up each time, washing off the electroless steel plating solution on the board to be plated, and immersing it in a different electroless copper plating bath. , tensile strength.

伸び率、折り曲げ回数が向上する。その他の方法として
、毎回引き上けた基板に活性化処理を施す方法、または
一方の無電解銅メッキ浴に被メツキ基板を浸漬する前に
水洗を施し、もう一方の無電解鋼メッキ浴に浸漬する前
に活性化処理を施すという、以上3種の方法があり、こ
れらのうちいずれの方法を用いても引張り強度、伸び率
、折り曲げ回数が向上する。
Improves elongation rate and number of bends. Other methods include applying an activation treatment to the board that is pulled up each time, or washing the board to be plated with water before immersing it in one electroless copper plating bath, and then immersing it in the other electroless steel plating bath. There are three methods of performing activation treatment beforehand, and any of these methods improves tensile strength, elongation, and number of bends.

無電解銅メッキ浴に浸漬される都度、被メツキ基板に施
される前記活性化処理は、被メツキ基板上についている
無電解銅メッキ液を水で洗い落とした後、無機酸に浸漬
して銅表面に生成した酸化物及び微量の金属銅を溶解さ
れることにより銅表面を洗浄し、次に被メツキ基板上に
ついている無機酸を水洗し、無電解銅メッキ浴に浸漬す
る方法。
The activation treatment that is applied to the plated substrate each time it is immersed in an electroless copper plating bath involves washing off the electroless copper plating solution on the plated substrate with water, and then immersing it in an inorganic acid to remove the copper surface. A method in which the copper surface is cleaned by dissolving the oxides and trace amounts of metallic copper generated during the process, and then the inorganic acid on the substrate to be plated is washed with water, and the substrate is immersed in an electroless copper plating bath.

またその他に、前記方法と同様に水洗で被メツキ基板に
付着した無電解銅メッキ液を洗し落とし、無機酸に浸漬
して銅表面を洗浄し、さらに触媒付与を施こした後、無
電解銅メッキ浴に浸漬する方法が好ましい。
In addition, in the same way as the above method, the electroless copper plating solution adhering to the substrate to be plated is washed off with water, the copper surface is cleaned by immersing it in an inorganic acid, and the copper surface is further coated with a catalyst. A method of immersion in a copper plating bath is preferred.

この2種の活性化処理方法で使用する無機酸は先はど述
べた通り、銅の酸化物を溶解することのできる無機酸で
ある。例えば、塩酸または硫酸の単純浴もしくは塩酸と
硫酸の混合浴が好ましい。
As mentioned above, the inorganic acids used in these two types of activation treatment methods are inorganic acids that can dissolve copper oxides. For example, a simple bath of hydrochloric acid or sulfuric acid or a mixed bath of hydrochloric acid and sulfuric acid is preferred.

無機酸の濃度は、0,5規定より薄いと銅の酸化物及び
金属銅の溶解がほとんど生起せず、10規定よシ濃いと
酸濃度を上げても銅の酸化物及び金属銅の溶解速度がほ
とんど変化しないため゛、0.5〜10規定の範囲内が
好ましい。また、浴の温度は5〜40Cの範囲内、1回
当りの被メツキ基板の浸漬時間は1〜10分間の範囲内
が好ましい。
If the concentration of the inorganic acid is less than 0.5N, dissolution of copper oxides and metallic copper will hardly occur, and if it is higher than 10N, the dissolution rate of copper oxides and metallic copper will decrease even if the acid concentration is increased. It is preferably within the range of 0.5 to 10 normal because there is almost no change in . Further, the temperature of the bath is preferably within the range of 5 to 40C, and the immersion time of the substrate to be plated per soak is preferably within the range of 1 to 10 minutes.

被メツキ基板を無電解銅メッキ浴に一定時間浸漬後、無
電解銅メッキ浴から被メツキ基板を引き上げ、異なる無
電解銅メッキ浴に浸漬する際、被メツキ基板に施される
活性化処理は、被メツキ基板上に付着した無電解銅メッ
キ液を水で洗い落とした後、触媒付与を施すという操作
も好ましく、前記2種を含め3種のうちいずれを用いて
も引張り強度、伸び率、折り曲げ回数が向上する。
After the substrate to be plated is immersed in an electroless copper plating bath for a certain period of time, the substrate to be plated is pulled up from the electroless copper plating bath and immersed in a different electroless copper plating bath.The activation treatment performed on the substrate to be plated is as follows. It is also preferable to apply a catalyst after washing off the electroless copper plating solution adhering to the substrate to be plated with water, and using any of the three types, including the two types mentioned above, will improve the tensile strength, elongation rate, and number of bends. will improve.

触媒付与は、触媒となシうる金属イオンを含む水溶液、
例えばPdCl2−8nC12−HCz (:I CI
イドタイプ)があり、その他に前記浴では塩酸のため作
業環境が悪くなるということで、その改良型であるPd
Cl2−8nC12−NaC1(コoイドタイプ)、パ
ラジウム有機錯塩化合物、中性鋼タイプの以上4種のう
ちのいずれか1種の浴に被メツキ基板を浸漬して、被メ
ツキ基板上に金属イオンを吸着させ次に、触媒となる金
属イオンを金属に還元可能な液、例えば硫酸とシュウ酸
の混合液、水酸化ナトリウムまたは炭酸ナトリウム等の
アルカリ性水酸化物とホウ水素化合物との混合液に、金
属イオンが吸着した基板を浸漬し、金属イオンを金属に
還元させる操作を少なくとも1回繰返すことにより被メ
ツキ基板上に触媒を吸着させる方法である。
Catalysis is applied using an aqueous solution containing metal ions that can act as a catalyst.
For example, PdCl2-8nC12-HCz (:I CI
In addition, since the working environment is poor due to the hydrochloric acid in the bath, an improved type of Pd is used.
The substrate to be plated is immersed in any one of the above four types of baths: Cl2-8nC12-NaC1 (coid type), palladium organic complex salt compound, and neutral steel type, and metal ions are applied onto the substrate to be plated. Next, the metal is adsorbed into a liquid capable of reducing the metal ion to the metal, such as a mixture of sulfuric acid and oxalic acid, a mixture of an alkaline hydroxide such as sodium hydroxide or sodium carbonate, and a borohydride compound. This is a method of adsorbing the catalyst onto the substrate to be plated by repeating the operation of immersing the substrate on which ions have been adsorbed and reducing the metal ions to metal at least once.

この触媒付与手段において使用する金属イオンを含む水
溶液の金属イオン濃度は、20 ppmより薄いと吸着
した金属イオンの量が少なく無電解銅メッキの析出が開
始しないし、2500ppmより誹い濃度では金属イオ
ン濃度をいくら上げても吸着する金属イオンの量は一定
となるため、20〜2500 ppmの範囲内が好まし
い。浴の温度は、20Cより低いと吸着する金属イオン
の量が少なく無電解銅メッキの析出しない部分があり、
60Cよシ高くなると浴の分解が生起するため、20〜
60Cの範囲内が好ましい。また、1回の被メツキ基板
の浸漬時間についても同様に、1分間よシ短いと金属イ
オンの吸Ntが少なく無電解銅メッキの析出が開始せず
、また、10分間より長く浸漬しても吸着する金属イオ
ンの量はほぼ一定であるため、1〜lO分間の範囲内が
好ましい。
If the metal ion concentration of the aqueous solution containing metal ions used in this catalyst application means is less than 20 ppm, the amount of adsorbed metal ions will be too small and precipitation of electroless copper plating will not start, and if the metal ion concentration is less than 2500 ppm, metal ions will Since the amount of metal ions adsorbed remains constant no matter how much the concentration is increased, it is preferably within the range of 20 to 2500 ppm. If the bath temperature is lower than 20C, the amount of adsorbed metal ions will be small and there will be areas where electroless copper plating will not precipitate.
When the temperature becomes higher than 60C, decomposition of the bath occurs, so
It is preferably within the range of 60C. Similarly, regarding the immersion time of the substrate to be plated once, if it is shorter than 1 minute, metal ions will not absorb enough nitrogen and electroless copper plating will not start to be deposited. Since the amount of metal ions adsorbed is approximately constant, it is preferably within the range of 1 to 10 minutes.

次に、金属イオンを金属に還元する還元液についてその
浴温度、濃度、浸漬時間についてそれぞれ説明すると、
浴の温度はIOCより低いと還元反応が生起しにく\、
、50Cより高いと還元剤の自己分解が生起するため、
lO〜50 Cの範囲内が好ましい。被メツキ基板の1
回の浸漬時間は、2分間より短いと金属イオンから金属
に還元される量が少ないため無電解銅メッキの析出が開
始せず、10分間程度の浸漬で基板上に吸着した金属イ
オンがほぼ全て金属に還元されるため、これ以上浸漬さ
せる必髪はなく、浸漬時間は2〜10分間の範囲内が好
ましい。還元液の法度は、0.01 motAより薄い
と金属への還元反応が生起せず、一方1 mot/Aよ
り濃いと金属イオンに対して過剰の量となり還元反応が
ほぼ一定の速度となるため、0.01〜1m04句の範
囲内が好ましい。
Next, we will explain the bath temperature, concentration, and immersion time of the reducing solution that reduces metal ions to metal.
If the temperature of the bath is lower than the IOC, the reduction reaction will not occur.
, since self-decomposition of the reducing agent occurs when the temperature is higher than 50C.
It is preferably within the range of 10 to 50C. 1 of the board to be plated
If the immersion time is shorter than 2 minutes, the amount of metal ions reduced to metal will be small, so electroless copper plating will not start to be deposited, and after about 10 minutes of immersion, almost all the metal ions adsorbed on the substrate will be removed. Since it is reduced to metal, there is no need to immerse the hair any longer, and the immersion time is preferably within the range of 2 to 10 minutes. The strength of the reducing solution is that if it is thinner than 0.01 mot/A, the reduction reaction to the metal will not occur, while if it is thicker than 1 mot/A, the amount will be in excess of the metal ions and the reduction reaction will occur at a nearly constant rate. , preferably within the range of 0.01 to 1 m04.

次に、本発明において使用する無電解銅メッキ浴は、従
来用いられている第二銅イオン源となる銅塩、銅イオン
を金桐銅にするための還元剤、還元剤を有効に働かすア
ルカリ性溶液にするだめのpH調整剤、アルカリ性溶液
中での銅の沈殿を防ぐだめの錯化剤の4成分を含有し、
その他必要により安定剤を含有させることができ、この
安定剤の働きは無電解銅メッキ浴の自己分解を防いで浴
の寿命を長ぐする。この様に浴の寿命が長くなる原因は
、−価の銅及び銅粒子を安定剤でマスクするからである
Next, the electroless copper plating bath used in the present invention includes a conventionally used copper salt as a source of cupric ions, a reducing agent for converting copper ions into gold paulownia copper, and an alkaline bath that makes the reducing agent effective. Contains four components: a pH adjuster to prevent copper from settling in an alkaline solution, and a complexing agent to prevent copper precipitation in an alkaline solution.
If necessary, a stabilizer may be included, and the function of this stabilizer is to prevent the electroless copper plating bath from self-decomposition and extend the life of the bath. The reason for this long bath life is that the -valent copper and copper particles are masked by the stabilizer.

安定剤としては、キレート剤及び高分子剤があり、キレ
ート剤としてはシアン化ナトリウム、シアン化カリウム
、シアン化ニッケルカリウム、シアン化鉄カリウム、シ
アン化コバルトカリウム。
Stabilizers include chelating agents and polymeric agents, and chelating agents include sodium cyanide, potassium cyanide, nickel potassium cyanide, potassium iron cyanide, and potassium cobalt cyanide.

ジピリジル、2(2−ピリジル)イミダシン、2(2−
ピリジル)ベンゾイミダゾール、  1.10−7エナ
ントロリン、4.7−ジフェニル−1,10−フエナン
トロリン、4.7−ジフェニル−2,9−Iメチル−1
,10−フェナントロリン、チオ尿素、アリルチオ尿素
・ ロダニン、2−メルカプトベンゾチアゾールが知ら
れており、高分子剤としてはポリエチレングリコール、
ポリエチレンオキサイドなどが知られている。
dipyridyl, 2(2-pyridyl)imidacine, 2(2-
pyridyl)benzimidazole, 1.10-7 enanthroline, 4.7-diphenyl-1,10-phenanthroline, 4.7-diphenyl-2,9-I methyl-1
, 10-phenanthroline, thiourea, allylthiourea/rhodanine, and 2-mercaptobenzothiazole, and as polymeric agents, polyethylene glycol,
Polyethylene oxide is known.

銅塩としては、硫酸銅、塩化第二銅、酢酸鋼。Copper salts include copper sulfate, cupric chloride, and steel acetate.

硝酸銅を用いることができるが、コストなどの点から硫
酸銅が好ましい。還元剤としては、ヒドラジン、ホルマ
リン、ホウ水素化合物2久亜リン酸ナトリウムを用いる
ことができるが、コスト及び安定性の点からホルマリン
が好ましい。同様に、pH調整剤として水酸化ナトリウ
ム、水酸化カリウム、炭酸ナトリウム、アンモニア水を
用いることができるが、コストの点から水酸化ナトリウ
ムが好ましい。錯化剤についても酒石酸ナトリウムカリ
ウム及びエチレンシアミン四酢酸ナトリウム塩の2種を
用いることができるが、無電解銅メッキ浴の安定性及び
析出速度の高速性の点からエチレンジアミン四酢酸ナト
リウム塩がより好ましい。
Although copper nitrate can be used, copper sulfate is preferred from the viewpoint of cost. As the reducing agent, hydrazine, formalin, and borohydride compound sodium phosphite can be used, but formalin is preferable from the viewpoint of cost and stability. Similarly, sodium hydroxide, potassium hydroxide, sodium carbonate, and aqueous ammonia can be used as the pH adjuster, but sodium hydroxide is preferred from the viewpoint of cost. Two kinds of complexing agents can be used: sodium potassium tartrate and sodium ethylenecyaminetetraacetic acid salt, but sodium ethylenediaminetetraacetic acid salt is more preferred in terms of stability of the electroless copper plating bath and high-speed deposition rate. preferable.

無電解銅メッキ浴の4成分のそれぞれの濃度は銅塩の場
合、0.01 mat/13より薄いと無電解銅メッキ
の析出が起こらず、0.15motβより濃いと無電解
銅メッキの際、液中に銅粒子が生成するいわゆる無電解
銅メッキ浴の分解が生起するため、0.01〜0.15
mok影の範囲内が好ましい。還元剤は、0、1 mo
l/13より薄いと二価の銅イオンが金属銅に還元され
る反応が生起せず、l mob/43程度で銅の析出速
度がほぼ一定となるため、0.1〜1mat/Aの範囲
内が好ましい。pH調整剤濃度は0.1 mo4/21
i!よシ薄いと無電解銅メッキの析出が起こらず、1m
oL/pよシ濃いと無電解銅メッキ浴の分解が起こるた
め、0.1〜l mo々1の範囲内が好ましい。錯化剤
は、二価の銅イオンが水酸化物と反応して水酸化銅の沈
殿を生成させないようにするために添加し、その濃度は
銅イオンのモル濃度の1〜3倍の範囲内が好ましい。
If the concentration of each of the four components of the electroless copper plating bath is copper salt, if it is thinner than 0.01 mat/13, precipitation of electroless copper plating will not occur, and if it is thicker than 0.15 mot β, precipitation will occur during electroless copper plating. 0.01 to 0.15 due to decomposition of the so-called electroless copper plating bath in which copper particles are generated in the solution.
Preferably within the mok shadow. The reducing agent is 0, 1 mo
If it is thinner than l/13, the reaction in which divalent copper ions are reduced to metallic copper does not occur, and the copper precipitation rate becomes almost constant at about l mob/43, so the range of 0.1 to 1 mat/A is Inside is preferable. pH adjuster concentration is 0.1 mo4/21
i! If it is very thin, electroless copper plating will not deposit, and the thickness of 1 m
If the concentration is higher than oL/p, decomposition of the electroless copper plating bath will occur, so it is preferably within the range of 0.1 to 1 mo. The complexing agent is added to prevent divalent copper ions from reacting with hydroxide to form a copper hydroxide precipitate, and its concentration is within the range of 1 to 3 times the molar concentration of copper ions. is preferred.

また、無電解銅メッキ浴の温度は、30Cより低いと析
出速度が遅すぎるため、所望の無電解銅メッキ厚さを得
るまでに時間がかかり過ぎ、一方、80C以上では無電
解銅メッキ浴の分解が起こるため、30〜80Cの範囲
内が好ましい。
Furthermore, if the temperature of the electroless copper plating bath is lower than 30C, the deposition rate is too slow and it takes too much time to obtain the desired electroless copper plating thickness. Since decomposition occurs, the temperature is preferably within the range of 30 to 80C.

被メツキ基板を無電解銅メッキ浴に一定時間浸漬し、メ
ッキ浴から被メツキ基板を引き上げ、その引き上げた基
板を異なる無電解銅メッキ浴に浸漬するまでの時間は、
45分間以内が好ましい。その理由は、水洗水または空
気中に被メツキ基板を長時間放置すると銅表面に酸化膜
が生成し、この酸化膜上に析出させる銅との密着性が悪
くなシ、乾燥程度の熱的歪でもふくれなどを生じるので
、45分以内が好ましい。
The time it takes to immerse the board to be plated in an electroless copper plating bath for a certain period of time, lift the board to be plated from the plating bath, and immerse the pulled board in a different electroless copper plating bath is:
Preferably within 45 minutes. The reason for this is that if the substrate to be plated is left in washing water or in the air for a long time, an oxide film will form on the copper surface, and the adhesion with the copper deposited on this oxide film will be poor, and the thermal distortion caused by drying will cause However, it may cause blistering, so it is preferable to leave it within 45 minutes.

以上で1種または2種の無電解銅メッキ浴を用いて、無
電解銅メッキ層を層状に形成させ、プリント配線板の機
械的特性の評価試験項目である引張り強度、伸び率、折
り曲げ回数が電気銅メッキ膜と同等の無電解銅メッキ膜
を得る方法を詳細に説明した。
Using one or two types of electroless copper plating baths, an electroless copper plating layer is formed in a layered manner, and the tensile strength, elongation rate, and number of bending times, which are test items for evaluating the mechanical properties of printed wiring boards, are evaluated. A method for obtaining an electroless copper plating film equivalent to an electrolytic copper plating film was explained in detail.

本発明の他の態様方法によれば、無電解銅メッキ浴中に
含まれる各々の溶質の種類は同一であり、浴中の溶質の
重量比率、浴中の溶質の濃度、浴の温度のいずれか少な
くとも1種が異なる3種以上の無電解銅メッキ浴に被メ
ツキ基板を順次浸漬させることによシ、無電解銅メッキ
層を層状に形成させることができ、電気銅メッキ膜と同
等の引張り強度、伸び率、折り曲げ回数を有する無電解
銅メッキ膜を得ることができる。
According to another aspect of the method of the present invention, the type of each solute contained in the electroless copper plating bath is the same, and the weight ratio of the solute in the bath, the concentration of the solute in the bath, and the temperature of the bath are different. By sequentially immersing the substrate to be plated in three or more electroless copper plating baths in which at least one of It is possible to obtain an electroless copper plating film having good strength, elongation rate, and number of times of bending.

以下に本発明を実施例について更に詳細に説明する。The present invention will be described in more detail below with reference to Examples.

実施例1 表面を機械的に研摩したステンレススチール板を10 
tAの水酸化ナトリウム水溶液を用いて脱脂した後、シ
ブレイ社製キャタポジット44水溶液及び同社製アクセ
ラレータ−19を使用して、表面に触媒付与を行なった
。これを被メッキ板とした。浴温度が60Cの第1表記
載の組成1の無電解銅メッキ浴に前記被メッキ板を連続
して浸漬し、被メツキ板上に厚さが35〜4Q/aの無
電解銅メッキ膜を形成させた。このメッキ膜をステンレ
ススチール板より剥がして、幅I Q ttm 、長さ
100 Mに切断し、東洋ボールドウィン社製の引張り
試験機を用いて引張り強度及び伸び率を測定した。また
、別のサンダルを180°折り曲げ、また元に戻すとい
う折り曲げ試験を行ない、折り目に割れを生じるまでの
回数を測定した。その結果を第2表に示す。
Example 1 10 stainless steel plates with mechanically polished surfaces
After degreasing using an aqueous sodium hydroxide solution of tA, a catalyst was applied to the surface using an aqueous solution of Cataposit 44 manufactured by Sibley and Accelerator-19 manufactured by Sibley. This was used as a plated plate. The board to be plated is continuously immersed in an electroless copper plating bath having a composition 1 listed in Table 1 at a bath temperature of 60C, and an electroless copper plating film having a thickness of 35 to 4 Q/a is formed on the board to be plated. formed. This plating film was peeled off from the stainless steel plate and cut into pieces with a width I Q ttm and a length of 100 M, and the tensile strength and elongation rate were measured using a tensile tester manufactured by Toyo Baldwin. In addition, a bending test was conducted in which another sandal was bent 180 degrees and then returned to its original position, and the number of times until cracking occurred at the crease was measured. The results are shown in Table 2.

第2表 メッキ膜の機械的特性 また、大きさ100IlDI+×100闘、厚さ1.6
111111のガラス布基材エポキシ樹脂系銅張り・積
層板にドリルを用いて直径1.00 aの穴を250個
あけた。次に、前記被メツキ基板をシゾレイ社製アルキ
レート水溶液を用いて脱脂し、同社コンディショナー1
160水溶液を用いて整面し、過硫酸アンモニウム水溶
液を用いて銅表面を粗化し、さらにシブレイ社製キャタ
ポジット44水溶液及び同社製アクセラレータ−19を
使用して表面に触媒付与を行なった。
Table 2: Mechanical properties of plating film, size: 100IlDI+×100mm, thickness: 1.6
A drill was used to drill 250 holes with a diameter of 1.00 a in a glass cloth-based epoxy resin copper-clad laminate of No. 111111. Next, the substrate to be plated was degreased using an aqueous alkylate solution manufactured by Schizolei, and conditioner 1 of the same company was used.
160 aqueous solution, the copper surface was roughened using ammonium persulfate aqueous solution, and a catalyst was applied to the surface using Cataposit 44 aqueous solution manufactured by Sibley and Accelerator-19 manufactured by Sibley.

前記と同様の組成と浴温度を持つ無電解銅メッキ浴を用
いて、前記と同様の方法により厚さが35〜40μmの
無電解鋼メッキ膜を前記被メツキ基板上に形成させた。
Using an electroless copper plating bath having the same composition and bath temperature as described above, an electroless steel plating film having a thickness of 35 to 40 μm was formed on the substrate to be plated in the same manner as described above.

前記方法により得られた被メツキ基板について260C
のはんだ槽に10秒浸漬し、5秒放冷後、室温のトリク
レンに10秒浸漬する操作を1サイクルとし、穴のコー
ナ一部にクラックが生じる最小回数を測定した。このは
んだディップ試験の結果を第3表に示す。
Regarding the substrate to be plated obtained by the above method, 260C
One cycle consisted of immersing the sample in a solder bath for 10 seconds, cooling it for 5 seconds, and then immersing it in trichlorene at room temperature for 10 seconds, and measured the minimum number of times a crack would occur in a part of the corner of the hole. The results of this solder dip test are shown in Table 3.

第3表 はんだディップ 表面を機稠的に研摩したステンレススチール板を1oP
/、13の水酸化ナトリウム水溶液を用いて脱脂した後
、水洗し、3.6規定の硫酸水溶液で中和した。次に、
硫酸銅メッキを行ない、板上に厚さが35〜40μmの
電気銅メッキ膜を形成させた。この膜をステンレススチ
ール板より剥がして、実施例1と同様の方法により引張
り強度、伸び率及び折り曲げ回数を測定した。その結果
を第2表に示す。
Table 3 1oP stainless steel plate with mechanically polished solder dip surface
After degreasing using an aqueous sodium hydroxide solution of No. 1/13, it was washed with water and neutralized with a 3.6N aqueous sulfuric acid solution. next,
Copper sulfate plating was performed to form an electrolytic copper plating film with a thickness of 35 to 40 μm on the board. This film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴明けを行なったガラス布基材
エポキシ樹脂系銅張シ積層板をシブレイ社製ニュートラ
クリーン水溶液を用いて脱脂し、過硫酸アンモニウム水
溶液を用いて銅表面を粗化し、さらに、3.6規定の硫
酸水溶1液・に浸漬し、表面の酸化物を溶解させた。次
に、硫酸銅メッキを行ない、神メッキ基板上に厚さが3
′5y4oμmの電気銅メッキ膜を形成させた。前記方
法により得られた被メツキ基板についてはんだディップ
試験を行ない、穴のコーナ一部にクラックが生じる最小
回数を測定した。その結果を第3表に示す。
In addition, a glass cloth-based epoxy resin-based copper-clad laminate with holes drilled in the same manner as in Example 1 was degreased using a Nutraclean aqueous solution manufactured by Sibley, and the copper surface was roughened using an ammonium persulfate aqueous solution. Furthermore, it was immersed in a 3.6 N sulfuric acid aqueous solution to dissolve the oxides on the surface. Next, copper sulfate plating is applied to the plated board to a thickness of 3.
An electrolytic copper plating film of '5y4oμm was formed. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例3 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 3 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度60C1組成1の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ2μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水で
前記被メツキ板上に付着している無電解銅メッキ液を洗
い落とした後、前記被メッキ板を前記無電解銅メッキ浴
に浸漬する一連の操作を繰返し行ない、被メツキ板上に
厚さ35〜40μmの無電解銅メッキ膜を形成させた。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 60C and a composition of 1 to form a plated film with a thickness of 2 μm. Next, the board to be plated is lifted from the plating bath, and after washing off the electroless copper plating solution adhering to the board to be plated with water, the board to be plated is immersed in the electroless copper plating bath. A series of operations were repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the board to be plated.

このメッキ膜をステンレススチール板より剥がして、実
施例1と同様の方法によシ引張り強度、伸び率及び折シ
曲げ回数を測定した。その結果を第2表に示す。
This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴明けを行なったガラス布基材
エポキシ樹脂系鋼張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度60C1組成1の無
電解銅メッキ浴を用いて、前記と同様のメッキ方法によ
り、被メツキ基板上に厚さ35〜40μmのメッキ膜を
形成させた。前記方法によシ得られた被メツキ基板につ
いてはんだディップ試験を行ない、穴のコーナ一部にク
ラックが生じる最小回数を測定した。その結果を第3表
に示す。
Further, a catalyst was applied to a glass cloth-based epoxy resin steel-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using an electroless copper plating bath with a bath temperature of 60C and a composition of 1, a plating film with a thickness of 35 to 40 μm was formed on the substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例4 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 4 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度80C1組成2の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ1μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
した後、前記被メッキ板を前記無電解銅メッキ浴に浸漬
する一連の操作を繰返し行ない、被メツキ板上に厚さ3
5〜40μmの無電解銅メッキ膜を形成させた。このメ
ッキ膜をステンレススチール板より剥がして、実施例1
と同様の方法によシ引張り強度、伸び率及び折シ曲げ回
数を測定した。その結果を第2表に示す。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 80C and a composition of 2 to form a plated film with a thickness of 1 μm. Next, the board to be plated is pulled out of the plating bath, washed with water, and then the board to be plated is immersed in the electroless copper plating bath.A series of operations is repeated to coat the board to be plated with a thickness of 3.
An electroless copper plating film of 5 to 40 μm was formed. This plating film was peeled off from the stainless steel plate and Example 1
The tensile strength, elongation rate and number of folds were measured in the same manner as above. The results are shown in Table 2.

壕だ、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に同様の方法を用いて触媒
付与を行なった。浴温度80C1組成2の無電解銅メッ
キ浴を用いて、前記と同様のメッキ方法によシ、被メツ
キ基板上に厚さ35〜40μmのメッキ膜を形成させた
。前記方法により得られた被メツキ基板について、はん
だディップ試験を行ない、穴のコーナ一部にクラックが
生じる最小回数を測定した。その結果を第3表に示す。
A catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method. Using an electroless copper plating bath with a bath temperature of 80C and a composition of 2, a plating film with a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例5 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 5 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度60C1組成3の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ4μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、1.0規定、20Cの塩酸水溶液に被メッキ板を5
分間浸漬し、水洗後、前記被メッキ板を前記無電解銅メ
ッキ浴に浸漬する一連の操作を繰返し行ない、被メツキ
板上に厚さ35〜40μmの無電解銅メッキ膜を形成さ
せた。このメッキ膜をステンレススチール板よシ剥がし
て、実施例1と同様の方法によシ引張り強度、伸び率及
び折り曲げ回数を測定した。その結果を第2表に示す。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 60C and a composition of 3 to form a plating film with a thickness of 4 μm. Next, the plated plate was taken out of the plating bath, washed with water, and the plated plate was immersed in a 1.0N, 20C aqueous solution of hydrochloric acid for 5 minutes.
After dipping for a minute and washing with water, a series of operations of dipping the board to be plated in the electroless copper plating bath were repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the board to be plated. This plating film was peeled off from a stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度60C1組成3の無
電解銅メッキ浴を用いて、前記と同様のメッキ方法によ
り、被メツキ基板上に厚さ35〜40μmのメッキ膜を
形成させた。前記方法により得られた被メツキ基板につ
いて、はんだディップ試験を行ない、穴のコーナ一部に
クラックが生じる最小回数を測定した。その結果を第3
表に示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using an electroless copper plating bath having a bath temperature of 60C and a composition of 3, a plating film with a thickness of 35 to 40 μm was formed on the substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The result is the third
Shown in the table.

実施例6 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 6 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度50C1組成4の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ2μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、1.0規定、400の塩酸水溶液に被メッキ板を2
分間浸漬し、水洗後、前記被メッキ板を前記無電解銅メ
ッキ浴に浸漬する一連の操作を繰返し行ない被メツキ板
上に厚さ35〜40μmの無電解銅メッキ膜を形成させ
た。このメッキ膜をステンレススチール板より剥がして
、実施例1と同様の方法により引張り強度、伸び率及び
折り曲げ回数を測定した。その結果を第2表に示す。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 50C and a composition of 4 to form a plated film with a thickness of 2 μm. Next, the plated plate was taken out of the plating bath, washed with water, and the plated plate was placed in a 1.0 normal, 400 aqueous hydrochloric acid solution for 2 hours.
After being immersed for 1 minute and rinsing with water, a series of operations of immersing the board to be plated in the electroless copper plating bath was repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the board to be plated. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張シ積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度50C,組成4の無
電解銅メッキ浴を用い゛C1前記と同様のメッキ方法に
よシ、被メツキ基板上に厚さ35〜40μmのメッキ膜
を形成させた。前記方法により得られた被メツキ基板に
ついて、はんだディップ試験を行ない、穴のコーナ一部
にクラックが生じる最小回数を測定した。その結果を第
3表に示す。
Further, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using an electroless copper plating bath having a bath temperature of 50C and a composition of 4, a plating film having a thickness of 35 to 40 .mu.m was formed on the substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例7 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 7 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度70C1組成1の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ2μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、36規定、30Cの硫酸水溶液に被メッキ板を1分
間浸漬し、水洗後、前記被メッキ板を前記無電解鋼メッ
キ浴に浸漬する一連の操作を繰返し行ない、被メツキ板
上に厚さ35〜40μmの無電解銅メッキ膜を形成させ
た。このメッキ膜をステンレススチール板より剥がして
、実施例1と同様の方法により引張り強度、伸び率及び
折シ曲げ回数を測定した。その結果を第2表に示す。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 70C and a composition of 1 to form a plated film with a thickness of 2 μm. Next, the board to be plated is pulled out of the plating bath, washed with water, immersed in a 36N, 30C sulfuric acid aqueous solution for 1 minute, and after washing with water, the board to be plated is immersed in the electroless steel plating bath. This series of operations was repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the board to be plated. This plated film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度70C1組成lの無
電解銅メッキ浴を用いて、前記と同様のメッキ方法によ
り、被メツキ基板上に厚さ35〜40μmのメッキ膜を
形成させた。前記方法により得られた被メツキ基板につ
いて、はんだディップ試験を行ない、穴のコーナ一部に
クラックが生じる最小回数を測定した。その結果を第3
表に示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. A plating film having a thickness of 35 to 40 μm was formed on the substrate to be plated by the same plating method as described above using an electroless copper plating bath having a bath temperature of 70 C and a composition of 1. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The result is the third
Shown in the table.

実施例8 表面を機梯的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 8 A catalyst was applied to a stainless steel plate whose surface had been selectively polished using the same method as in Example 1. This was used as a plated plate.

浴温度60tl’、組成4の無電解銅メッキ浴に前記被
メッキ板を浸漬して厚さ5μmのメッキ膜を形成させた
。次に前記被メッキ板を前記メッキ浴から引き上げ、水
洗し、7.2規定、50cの硫酸水溶液に被メッキ板を
1分間浸漬し、水洗後、前記被メッキ板を前記無電解銅
メッキ浴に浸漬する一連の操作を繰返し行ない、被メッ
キ板−ヒに厚さ35゜〜40μmの無電解銅メッキ膜を
形成させた。このメッキ膜をステンレススチール板より
剥がして、実施例1と同様の方法により引張り強度、伸
び率及び折り曲げ回数を測定した。その結果を第2表に
示す。
The plated plate was immersed in an electroless copper plating bath having composition 4 at a bath temperature of 60 tl' to form a plated film with a thickness of 5 μm. Next, the board to be plated is taken out of the plating bath, washed with water, immersed in a 7.2N, 50C sulfuric acid aqueous solution for 1 minute, and after washing, the board is placed in the electroless copper plating bath. A series of dipping operations were repeated to form an electroless copper plating film with a thickness of 35° to 40 μm on the plated plate. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系鋼張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度60C1組成4の無
電解鋼メッキ浴を用いて、前記と同様のメッキ方法によ
り被メツキ基板上に厚さ35〜40μmのメッキ膜を形
成させた。前記方法により得られた被メツキ基板につい
て、はんだディップ試験を行ない、穴のコーナ一部にク
ラックが生じる最小回数を測定した。その結果を第3表
に示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin steel-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using an electroless steel plating bath having a bath temperature of 60C and a composition of 4, a plating film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例9 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 9 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度60C,組成5の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ3μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、3.6規定、30Cの硫酸水溶液に被メッキ板を2
分間浸漬し、水洗後、500ppm、50CのPaCl
2−5nCt2−HCt溶液に被メッキ板を3分間浸漬
した。被メッキ板を引き上げ、水洗し、各々0.5 m
oを影の硫酸・シュウ酸を含む40Cの水溶液に8分間
浸漬し、さらに水洗した後前記被メッキ板を前記無電解
銅メッキ浴に浸漬する一連の操作を繰返し行ない、被メ
ツキ板上に厚さ35〜40μmの無電解銅メッキ膜を形
成させた。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 60 C and a composition of 5 to form a plated film with a thickness of 3 μm. Next, the plated plate was taken out of the plating bath, washed with water, and the plated plate was placed in a 3.6N, 30C aqueous sulfuric acid solution for 2 hours.
500ppm, 50C PaCl after soaking for minutes and washing with water.
The board to be plated was immersed in the 2-5nCt2-HCt solution for 3 minutes. Pull up the plates to be plated, wash them with water, and remove them to a length of 0.5 m each.
The series of operations of immersing the plate in a 40C aqueous solution containing sulfuric acid and oxalic acid for 8 minutes, washing with water, and then immersing the plated plate in the electroless copper plating bath is repeated to form a thick layer on the plated plate. An electroless copper plating film with a thickness of 35 to 40 μm was formed.

このメッキ膜をステンレススチール板より剥がして、実
施例1と同様の方法により引張り強度、伸び率及び折り
曲げ回数を測定した。その結果を第2表に示す。
This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度60C1組成5の無
電解銅メッキ浴を用い1、前記と同様のメッキ方法によ
り被メツキ基板に厚さ35〜40μmのメッキ膜を形成
させた。前記方法により得られた被メツキ基板について
、はんだディツノ試験を行ない、穴のコーナ一部にクラ
ックが生じる最小回数を測定した。その結果を第3表に
示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using an electroless copper plating bath having a bath temperature of 60C and a composition of 5, a plating film with a thickness of 35 to 40 μm was formed on the substrate to be plated by the same plating method as described above. A soldering test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack appeared in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例10 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 10 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度60C1組成3の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ2μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、1.2規定、40Cの塩酸水溶液に被メッキ板を1
分間浸漬し、水洗後、250ppm、40CのPaCl
2−5nCt2−HCL溶液に被メッキ板を6分間浸漬
した。被メッキ板を引き上げ、水洗し、各々0.4 m
ol々の硫酸・シュウ酸を含む50iCの水溶液に7分
間浸漬し、さらに水洗した後前記被メッキ板を前記無電
解銅メッキ浴に浸漬する一連の操作を繰返し行ない、被
メツキ板上に厚さ35〜40μmの無電解銅メッキ膜を
形成させた。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 60C and a composition of 3 to form a plated film with a thickness of 2 μm. Next, the plated plate was taken out of the plating bath, washed with water, and the plated plate was immersed in a 1.2N, 40C aqueous solution of hydrochloric acid.
250 ppm, 40C PaCl after soaking for minutes and washing with water.
The board to be plated was immersed in the 2-5nCt2-HCL solution for 6 minutes. Pull up the plates to be plated, wash them with water, and remove them to a length of 0.4 m each.
The board to be plated is immersed in a 50iC aqueous solution containing sulfuric acid and oxalic acid for 7 minutes, and then rinsed with water, followed by immersion in the electroless copper plating bath. An electroless copper plating film of 35 to 40 μm was formed.

このメッキ膜をステンレススチール板より剥がして、実
施例1と同様の方法により引張り強度、伸び率及び折り
曲げ回数を測定した。その結果を第2表に示す。
This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系鋼張シ積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度6001組成3の無
電解銅メッキ浴を用いて、前記と同様のメッキ方法によ
シ被メッキ基板に厚さ35〜40μmのメッキ膜を形成
させた。前記方法てより得られた被メツキ基板について
、はんだディップ試験を行ない、穴のコーナ一部にクラ
ックが生じる最小回数を測定した。その結果を第3表に
示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin-based steel clad laminate that had been drilled in the same manner as in Example 1 using the same method as in Example 1. Using an electroless copper plating bath having a bath temperature of 6000 and a composition of 3, a plating film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例11 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 11 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度70C1組成2の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ1μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、3.6規定、40Cの硫酸水溶液に被メッキ板を5
分間浸漬し、水洗後、300ppm、 50CのPaC
l2−5nCt2−NaCt溶液に被メッキ板を5分間
浸漬した。被メッキ板を引き上げ、水洗し、各々0.3
 mo7/4の硫酸・シュウ酸を含む30Cの水溶液に
10分間浸漬し、さらに水洗した後、前記被メッキ板を
前記無電解銅メッキ浴に浸漬する一連の操作を繰返し行
ない、被メツキ板上に厚さ35〜40μmの無電解鋼メ
ッキ膜を形成させた。このメッキ膜をステンレススチー
ル板よす剥がして、実施例1と同様の方法により引張り
強度。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 70C and a composition of 2 to form a plated film with a thickness of 1 μm. Next, the plated plate was taken out of the plating bath, washed with water, and the plated plate was placed in a 3.6N, 40C aqueous sulfuric acid solution for 5 minutes.
After soaking for 1 minute and washing with water, 300 ppm, 50C PaC
The board to be plated was immersed in the l2-5nCt2-NaCt solution for 5 minutes. Pull up the plates to be plated, wash them with water, and give each plate 0.3
After immersing in a 30C aqueous solution containing mo7/4 sulfuric acid and oxalic acid for 10 minutes and further rinsing with water, the plated plate was immersed in the electroless copper plating bath. An electroless steel plating film with a thickness of 35 to 40 μm was formed. This plating film was peeled off from a stainless steel plate, and the tensile strength was measured in the same manner as in Example 1.

伸び率及び折り曲げ回数を測定した。その結果を第2表
に示す。
The elongation rate and number of bends were measured. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系鋼張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度70C1組成2の無
電解銅メッキ浴を用いて、前記と同様のメッキ方法によ
り被メツキ基板に厚さ35〜40μmのメッキ膜を形成
させた。前記方法によシ得られた被メツキ基板について
はんだディップ試験を行ない、穴のコーナ一部にクラッ
クが生じる最小回数を測定した。その結果を第3表に示
す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin steel-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using an electroless copper plating bath having a bath temperature of 70C and a composition of 2, a plating film having a thickness of 35 to 40 μm was formed on the substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例12 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 12 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度70C1組成6の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ5μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、1.2規定、20Cの塩酸水溶液に被メッキ板を8
分間浸漬し、水洗後、200ppm、60CのPdC2
2−5nC12−NaC1溶液に被メッキ板を8分間浸
漬した。被メツキ基を引き上け、水洗し、各々0.4 
mat/J3の硫酸・シュウ酸を含む400の水溶液に
6分間浸漬し、さらに水洗した後前記被メッキ板を前記
無電解銅メッキ浴に浸漬する一連の操作を繰返し行ない
、被メツキ板上に厚さ°35〜40μmの無電解銅メッ
キ膜を形成させた。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 70C and a composition of 6 to form a plated film with a thickness of 5 μm. Next, the plated plate was taken out of the plating bath, washed with water, and the plated plate was soaked in a 1.2N, 20C aqueous hydrochloric acid solution for 8 hours.
After soaking for minutes and washing with water, 200 ppm, 60C PdC2
The board to be plated was immersed in the 2-5nC12-NaCl solution for 8 minutes. Pull up the group to be plated, wash with water, each 0.4
The plated plate is immersed in a 400 aqueous solution containing mat/J3 sulfuric acid and oxalic acid for 6 minutes, and then rinsed with water. The plated plate is then immersed in the electroless copper plating bath. A series of operations is repeated to form a thick layer on the plated plate. An electroless copper plating film having a thickness of 35 to 40 μm was formed.

このメッキ膜をステンレススチール板より 剥がして、
実施例1と同様の方法により引張り強度、伸び率及び折
り曲げ回数を測定した。その結果を第2表に示す。
Peel off this plating film from the stainless steel plate,
The tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度70C1組成6の無
電解銅メッキ浴を用いて、前記と同様のメッキ方法によ
り被メツキ基板に厚さ35〜40μmのメッキ膜を形成
させた。前記方法により得られた被メツキ基板について
はんだディップ試験を行ない、穴のコーナ一部にクラン
クが生じる最小回数を測定した。その結果を第3表に示
す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using an electroless copper plating bath having a bath temperature of 70C and a composition of 6, a plating film with a thickness of 35 to 40 μm was formed on the substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crank would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例13 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 13 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度50C1組成4の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ2μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、2.4規定、30Cの塩酸水溶液に被メッキ板を3
分間浸漬し、水洗後、300ppm 、 30 Cのパ
ラジウム有機錯塩化合物を含む水溶液に被メッキ板を6
分間浸漬した。被メッキ板を引き上げ、各々0.2 m
o々■の水酸化ナトリウム。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 50C and a composition of 4 to form a plated film with a thickness of 2 μm. Next, the plated plate was taken out of the plating bath, washed with water, and the plated plate was placed in a 2.4N, 30C aqueous hydrochloric acid solution for 30 minutes.
After soaking for 6 minutes and rinsing with water, the plated plate was soaked in an aqueous solution containing a palladium organic complex salt compound of 300 ppm and 30 C.
Soaked for minutes. Pull up the plates to be plated, each 0.2 m
Sodium hydroxide.

ホウ水素化合物を含む30Cの水溶液に 4分間浸漬し
、さらに水洗した後、前記無電解鋼メッキ浴に浸漬する
一連の操作を繰返し行ない、被メツキ板上に厚さ35〜
40μmの無電解銅メッキ膜を形成させた。このメッキ
膜をステンレススチール板よシ剥がして、実施例1と同
様の方法により引張シ強度、伸び率及び折り曲げ回数を
測定した。その結果を第2表に示す。
After 4 minutes of immersion in a 30C aqueous solution containing a borohydride compound, and further rinsing with water, the series of operations of immersion in the electroless steel plating bath was repeated to coat the board to be plated with a thickness of 35 to 30 cm.
An electroless copper plating film of 40 μm was formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張シ積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度50C1組成4の無
電解銅メッキ浴を用いて、前記と同様のメッキ方法によ
シ被メッキ基板に厚さ35〜40μmのメッキ膜を形成
させた。前記方法によシ得られた被メツキ基板について
はんだディップ試験を行ない、穴のコーナ一部にクラッ
クが生じる最小回数を測定した。その結果を第3表に示
す。
Further, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using an electroless copper plating bath having a bath temperature of 50 C and a composition of 4, a plating film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例14 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 14 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度70C,紹成1の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ3μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、各々J、6規定で、30Gの塩酸、硫酸混合液に被
メッキ板を1分間浸漬し、水洗後、200ppm、40
Cのパラジウム有機錯塩化合物を含む水溶液に被メッキ
板を8分間浸漬した。
The plated plate was immersed in an electroless copper plating bath of Shaise 1 at a bath temperature of 70 C to form a plated film with a thickness of 3 μm. Next, the board to be plated was taken out of the plating bath, washed with water, and immersed for 1 minute in a mixed solution of 30G hydrochloric acid and sulfuric acid at J, 6 standards, respectively.
The board to be plated was immersed in an aqueous solution containing a palladium organic complex salt compound of C for 8 minutes.

次に被メッキ板を引き上げ、各々0.4 mot/J3
の水酸化ナトリウム、ホウ水素化合物を含む30Cの水
溶液に4分間浸漬し、さらに水洗した後、前記無電解銅
メッキ浴に浸漬する一連の操作を繰返し行ない、被メツ
キ板上に厚さ35〜40μmの無電解銅メッキ膜を形成
させた。このメッキ膜をステンレススチール板より剥が
して、実施例1と同様の方法により引張り強度、伸び率
及び折り曲げ回数を測定した。その結果を第2表に示す
Next, pull up the plates to be plated, each with 0.4 mot/J3
The series of operations of immersion in a 30C aqueous solution containing sodium hydroxide and borohydride compounds for 4 minutes, further washing with water, and immersion in the electroless copper plating bath is repeated to form a layer of 35 to 40 μm thick on the board to be plated. An electroless copper plating film was formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度70C,組成1の無
電解銅メッキ浴を用いて、前記と同様のメッキ方法によ
り被メツキ基板上に厚さ35〜40μmのメッキ膜を形
成させた。前記方法に上り得られた被メツキ基板につい
てはんだディップ試験を行ない、穴のコーナ一部にクラ
ックが生じる最小回数を測定した。その結果を第3表に
示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using an electroless copper plating bath having a bath temperature of 70 C and a composition of 1, a plating film with a thickness of 35 to 40 μm was formed on the substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例15 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 15 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度6001組成3の無電解銅メッキ浴に前記破メッ
キ板を浸漬して厚さ2μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、250ppm、50CのPdCl2−8nC12−
NaCt水溶液に4分間浸漬し、水洗し、Q、 4 m
at/lの硫酸、0.8 mol、/43の’/ユウ酸
の30Cの混合液に7分間浸漬した。水洗後、前記無電
解鋼メッキ浴に浸漬する一連の操作を繰返し行ない、被
メツキ板上に厚さ35〜40μmの無電解銅メッキ膜を
形成させた。このメッキ膜をステンレススチール板より
剥がして、実施例1と同様の方法によシ引張り強度、伸
び率及び折り曲げ回数を測定した。その結果を第2表に
示す。
The broken plated plate was immersed in an electroless copper plating bath having a bath temperature of 6000 and a composition of 3 to form a plated film with a thickness of 2 μm. Next, the board to be plated was pulled out of the plating bath, washed with water, and 250 ppm, 50C PdCl2-8nC12-
Immersed in NaCt aqueous solution for 4 minutes, washed with water, Q, 4 m
It was immersed for 7 minutes in a 30C mixture of at/l sulfuric acid, 0.8 mol, and /43'/yelic acid. After rinsing with water, the series of operations of immersing in the electroless steel plating bath was repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the plated board. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度60C1組成3の無
電解銅メッキ浴を用いて、前記と同様のメッキ方法によ
シ被メッキ基板に厚さ35〜40μmのメッキ膜を形成
させた。前記方法により得られた被メツキ基板について
はんだディップ試験を行ない、穴のコーナ一部にクラッ
クが生じる最小回数を測定した。その結果を第3表に示
す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using an electroless copper plating bath having a bath temperature of 60C and a composition of 3, a plating film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例16 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 16 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度60C1組成1の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ3μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、2001)pm、45UのPaCl2−5nCt2
−NaCt水溶液に6分間浸漬し、水洗し、0、4 m
at/J3の硫酸、0.8 mot/43のシュウ酸を
含む30Cの混合液に7分間浸漬した。 水洗後、もう
一度前記PdCl2−5nCt2−NaC1水溶液に6
分間浸漬し、水洗し、前記還元液に浸漬し、水洗し、前
記無電解銅メッキ浴に浸漬する一連の操作を繰返し行な
い、被メツキ板上に厚さ35〜40μmの無電解銅メッ
キ膜を形成させた。このメッキ膜をステンレススチール
板より剥がして、実施例1と同様の方法によシ引張り強
度、伸び率及び折り曲げ回数を測定した。その結果を第
2表に示す。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 60C and a composition of 1 to form a plated film with a thickness of 3 μm. Next, the plated plate was pulled out of the plating bath, washed with water, and
- Immersed in NaCt aqueous solution for 6 minutes, washed with water, 0.4 m
It was immersed for 7 minutes in a 30C mixed solution containing at/J3 sulfuric acid and 0.8 mot/43 oxalic acid. After washing with water, add 6% to the PdCl2-5nCt2-NaCl aqueous solution once again.
The series of operations of immersing for a minute, rinsing with water, immersing in the reducing solution, rinsing with water, and immersing in the electroless copper plating bath is repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the board to be plated. formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例11と同様の方法
を用いて触媒付与を行なった。浴温度60C1組成1の
無電解鋼メッキ浴を用いて、前記と同様のメッキ方法に
より被メツキ基板に厚さ35〜40μmのメッキ膜を形
成させた。前記方法により得られた被メツキ基板につい
てはんだディップ試験を行ない、穴のコーナ一部にクラ
ックが生じる最小回数を測定した。その結果を第3表に
示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 11. Using an electroless steel plating bath having a bath temperature of 60C and a composition of 1, a plating film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例17 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 17 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度60C1組成7の無電解鋼メッキ浴に前記被メッ
キ板を浸漬して厚さ2μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
した後、浴温度60’C1組成8の無電解銅メッキ浴に
前記被メッキ板を浸漬して厚さ0.5μmのメッキ膜を
形成させた。もう−朋、前記被メッキ板をメッキ浴から
引き上げ、水洗後、前記浴温度60C1組成7の無電解
銅メッキ浴に浸漬する一連の操作を繰返し行ない、被メ
ツキ板上に厚さ35〜40μmの無電解銅メッキ膜を形
成させた。このメッキ膜をステンレススチール板よす剥
がして、実施例1と同様の方法により引張り強度。
The plated plate was immersed in an electroless steel plating bath having a bath temperature of 60C and a composition of 7 to form a plated film with a thickness of 2 μm. Next, the board to be plated is taken out of the plating bath, washed with water, and then immersed in an electroless copper plating bath with a bath temperature of 60'C and a composition of 8 to form a plating film with a thickness of 0.5 μm. I let it happen. Now, I pulled the board to be plated from the plating bath, washed it with water, and then repeatedly immersed it in the electroless copper plating bath with a bath temperature of 60C and a composition of 7. An electroless copper plating film was formed. This plating film was peeled off from a stainless steel plate, and the tensile strength was measured in the same manner as in Example 1.

伸び率及び折り曲げ回数を測定した。その結果を第2表
に示す。
The elongation rate and number of bends were measured. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張シ積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度60C2組成7及び
浴温度60r、組成8の2種の無電解銅メッキ浴を用い
て、前記と同様のメッキ方法によシ被メッキ基板に厚さ
35〜40μmのメッキ膜を形成させた。前記方法によ
り得られた被メツキ基板についてはんだディップ試験を
行ない、穴のコーナ一部にクラックが生じる最小回数を
測定した。その結果を第3表に示す。
Further, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. A plating film with a thickness of 35 to 40 μm was formed on the substrate to be plated by the same plating method as described above using two types of electroless copper plating baths, one having a bath temperature of 60C and a composition 7 and a bath temperature of 60R and a composition 8. . A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例18 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 18 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度60C1組成7の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ2μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
した後、浴温度50c、組成7の無電解銅メッキ浴に被
メッキ板を浸漬して0.7μmのメッキ膜を形成させた
。もう一度、前記被メッキ板をメッキ浴から引き上げ、
水洗後、前記浴温度60r、組成7の無電解鋼メッキ浴
に浸漬する一連の操作を繰返し行ない、被メツキ板上に
厚さ35〜40μmの無電解銅メッキ膜を形成さぜた。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 60C and a composition of 7 to form a plated film with a thickness of 2 μm. Next, the plated plate was taken out of the plating bath, washed with water, and then immersed in an electroless copper plating bath of composition 7 at a bath temperature of 50°C to form a plating film of 0.7 μm. Once again, pull up the plated plate from the plating bath,
After washing with water, a series of operations of immersion in an electroless steel plating bath of composition 7 at a bath temperature of 60 r was repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the board to be plated.

このメッキ膜をステンレススチール板より剥がして、実
施例1と同様の方法により引張り強度、伸び率及び折り
曲げ回数を測定した。その結果を第2表に示す。
This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度60C2組成7及び
浴温度50tll’、組成7の2種の無電解銅メッキ浴
を用いて、@記と同様のメッ上方法により被メツキ基板
に厚さ35〜40μmのメッキ膜を形成させた。前記方
法により得ら゛れた被メツキ基板についてはんだディッ
プ試験を行ない、穴のコーナ一部にクラックが生じる最
小回数を測定した。その結果を第3表に示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using two types of electroless copper plating baths with a bath temperature of 60C2 and composition 7 and a bath temperature of 50tll' and composition 7, a plating film with a thickness of 35 to 40 μm was formed on the substrate to be plated by the same plating method as described in @. Ta. A solder dipping test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack appeared in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例19 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 19 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度60C1組成7の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ3μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
した後、浴温度70C1組成9の無電解銅メッキ浴に被
メッキ板を浸漬して0.5μmのメッキ膜を形成させた
。もう一度、前記被メッキ板をメッキ浴から引き上げ、
水洗後、前記浴温度60C1組成7の無電解銅メッキ浴
に浸漬する一連の操作を繰返し行ない、被メツキ板上に
厚さ35〜40μmの無電解銅メッキ膜を形成させた。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 60C and a composition of 7 to form a plated film with a thickness of 3 μm. Next, the plated plate was taken out of the plating bath, washed with water, and then immersed in an electroless copper plating bath with a bath temperature of 70C and a composition of 9 to form a 0.5 μm plating film. Once again, pull up the plated plate from the plating bath,
After washing with water, a series of operations of immersing the board in an electroless copper plating bath having a bath temperature of 60C and a composition of 7 was repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the board to be plated.

このメッキ膜をステンレススチール板よシ剥がして、実
施例1と同様の方法により引張り強度、伸び率及び折シ
曲げ回数を測定した。その結果を第2表に示す。
This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系鋼張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度60C2組成7及び
浴温度60C2組成9の2種の無電解銅メッキ浴を用い
て前記と同様のメッキ方法によ#)被メツキ基板に厚さ
35〜40μmのメッキ膜を形成させた。前記方法によ
り得られた被メツキ基板についてはんだディップ試験を
行ない、穴のコーナ一部にクラックが生じる最小回数を
測定した。その結果を第3表に示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin steel-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. A plating film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above using two types of electroless copper plating baths having a bath temperature of 60C and a composition of 7 and a bath temperature of 60C and a composition of 9. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例20 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板としだ。
Example 20 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This is used as the plated plate.

浴温度60C1組成7の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ4μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
した後、浴温度70C1組成8の無電解銅メッキ浴に被
メッキ板を浸漬して08μmのメッキ膜を形成させた。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 60C and a composition of 7 to form a plating film with a thickness of 4 μm. Next, the board to be plated was taken out of the plating bath, washed with water, and then immersed in an electroless copper plating bath with a bath temperature of 70C and a composition of 8 to form a plating film of 0.08 μm.

もう一度、前記被メッキ板をメッキ浴から帽き上げ、水
洗後、前記浴温度60C1組成7の無電解鋼メッキ浴に
浸漬する一連の操作を繰返し行ない、被メツキ板上に厚
さ35〜40μmの無電解銅メッキ膜を形成させた。
Once again, the plated plate was lifted from the plating bath, washed with water, and then immersed in the electroless steel plating bath with a bath temperature of 60C and a composition of 7.A series of operations was repeated to form a layer of 35 to 40 μm thick on the plated plate. An electroless copper plating film was formed.

このメッキ膜をステンレススチール板より剥がして、実
施例1と同様の方法により引張シ強度、伸び率及び折り
曲げ回数を測定した。その結果を第2表に示す。
This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張シ積層板に一実施例1と同様の方法
を用いて触媒付与を行なった。浴温度60C1組成7及
び浴温度70C1組成8の2種の無電解銅メッキ浴を用
いて、前記と同様のメッキ方法により被メツキ基板に厚
さ35〜40μmのメッキ膜を形成させた。前記方法に
より得られた被メツキ基板についてはんだディップ試験
を行ない、穴のコーナーにクラックが生じる最小回数を
測定した。その結果を第3表に示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using two types of electroless copper plating baths, one having a bath temperature of 60 C and a composition of 7 and a bath temperature of 70 C and a composition of 8, a plated film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times cracks would occur at the corners of the holes was measured. The results are shown in Table 3.

実施例21 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板としだ。
Example 21 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This is used as the plated plate.

浴温度60C1組成7の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ3μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
した後、浴温度60C1組成9の無電解銅メッキ浴に被
メッキ板を浸漬して0.6μmのメッキ膜を形成させた
。もう一度、前記被メッキ板をメッキ浴から引き上げ、
水洗後、前記浴温度60C1組成7の無電解銅メッキ浴
に浸漬する一連の操作を繰返し行ない、被メツキ板上に
厚さ35〜40μmの無電解銅メッキ膜を形成させた。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 60C and a composition of 7 to form a plated film with a thickness of 3 μm. Next, the board to be plated was taken out of the plating bath, washed with water, and then immersed in an electroless copper plating bath with a bath temperature of 60C and a composition of 9 to form a plating film of 0.6 μm. Once again, pull up the plated plate from the plating bath,
After washing with water, a series of operations of immersing the board in an electroless copper plating bath having a bath temperature of 60C and a composition of 7 was repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the board to be plated.

このメッキ膜をステンレススチール板より剥がして、実
施例1と同様の方法によシ引張り強度、伸び率及び折り
曲げ回数を測定した。その結果を第2表に示す。
This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度60C1組成7及び
浴温度60C1組成9の2種の無電解銅メッキ浴を用い
て、前記と同様のメッキ方法により被メツキ基板に厚さ
35〜40μmのメッキ膜を形成させた。前記方法によ
り得られた被メツキ基板についてはんだディップ試験を
行ない、穴のコーナ一部にクラックが生じる最小回数を
測定した。その結果を第3表に示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using two types of electroless copper plating baths having a bath temperature of 60C and composition 7 and a bath temperature of 60C and composition 9, a plating film with a thickness of 35 to 40 μm was formed on the substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例22 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メツキ基とした。
Example 22 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as the base to be plated.

浴温度60C1組成8の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ2μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
した後、浴温度60C1組成7の無電解銅メッキ浴に被
メッキ板を浸漬して0.5μmのメッキ膜を形成させた
。もう一度、前記被メッキ板をメッキ浴から引き上げ、
水洗後、前記浴温度60C1組成8の無電解銅メッキ浴
に浸漬する一連の操作を繰返し行ない、被メツキ板上に
厚さ35〜40μmの無電解銅メッキ膜を形成させた。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 60C and a composition of 8 to form a plated film with a thickness of 2 μm. Next, the plated plate was taken out of the plating bath, washed with water, and then immersed in an electroless copper plating bath with a bath temperature of 60C and a composition of 7 to form a 0.5 μm plating film. Once again, pull up the plated plate from the plating bath,
After washing with water, a series of operations of immersing the board in an electroless copper plating bath having a bath temperature of 60C and a composition of 8 was repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the board to be plated.

このメッキ膜をステンレススチール板よシ剥がして、実
施例1と同様の方法により引張り強度、伸び率及び折シ
曲げ回数を測定した。その結果を第2表に示す。
This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度60C1組成8及び
浴温度60C1組成702種の無電解銅メッキ浴を用い
て、前記と同様のメッキ方法により被メツキ基板に厚さ
35〜40μmのメッキ膜を形成させた。前記方法によ
り得られた被メツキ基板についてはんだディップ試験を
行ない、穴のコーナ一部にクラックが生じる最小回数を
測定した。その結果を第3表に示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. A plating film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above using electroless copper plating baths having a bath temperature of 60 C and a composition of 8 and a bath temperature of 60 C and a composition of 702 types. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例23 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 23 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度70C1組成9の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ一5μmのメッキ膜を形成させた。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 70C and a composition of 9 to form a plated film with a thickness of 15 μm.

次に、前記被メッキ板を前記メッキ浴から引き上げ、水
洗し、3.6規定、30Cの硫酸水溶液に2分間浸漬し
た。水洗した後、浴温度60C1組成8の無電解鋼メッ
キ浴に被メッキ板を浸漬して0.4μmのメッキ膜を形
成させた。被メッキ板をメッキ浴から引き上げ、前記活
性化処理操作をもう一度繰返した後、前記浴温度70C
1組成9の無電解銅メッキ浴に浸漬する一連の操作を繰
返し行ない、被メツキ板上に厚さ35〜40μmの無電
解銅メッキ膜を形成させた。このメッキ膜をステンレス
スチール板より剥がして、実施例1と同様の方法によシ
引張シ強度、伸び率及び折シ曲げ回数を測定した。その
結果を第2表に示す。
Next, the plated plate was taken out of the plating bath, washed with water, and immersed in a 3.6N, 30C sulfuric acid aqueous solution for 2 minutes. After washing with water, the plated plate was immersed in an electroless steel plating bath having a bath temperature of 60C and a composition of 8 to form a plating film of 0.4 μm. After pulling the plated plate out of the plating bath and repeating the activation process once again, the bath temperature was increased to 70C.
A series of operations of immersing the board in an electroless copper plating bath having a composition of 9 was repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the board to be plated. This plated film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度70C1組成9及び
浴温度60C1組成8の2種の無電解銅メッキ浴を用い
て、前記と同様のメッキ方法によシ被メッキ基板に厚さ
35〜40μmのメッキ膜を形成させた。前記方法によ
シ得られた被メツキ基板についてはんだディップ試験を
行ない、穴のコーナ一部にクランクが生じる最小回数を
測定した。その結果を第3表に示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using two types of electroless copper plating baths, one having a bath temperature of 70 C and a composition of 8 and a bath temperature of 60 C and a composition of 8, a plating film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated board obtained by the above method, and the minimum number of times a crank would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例24 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 24 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度50C1組成7の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ2μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、1.2規定、40Cの塩酸水溶液に3分間浸漬した
。被メッキ板を水洗した後、250 ppm 、 50
 CのPdCl2−8nC62−NaC1水溶液に6分
間浸漬し、もう一度水洗後、各々0.4 motAの硫
酸、シュウ酸を含む水溶液に7分間浸漬した。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 50C and a composition of 7 to form a plated film with a thickness of 2 μm. Next, the plated plate was taken out of the plating bath, washed with water, and immersed in a 1.2N, 40C hydrochloric acid aqueous solution for 3 minutes. After washing the plated plate with water, 250 ppm, 50
The sample was immersed in a PdCl2-8nC62-NaCl aqueous solution of C for 6 minutes, washed once again with water, and then immersed in an aqueous solution containing 0.4 motA of sulfuric acid and oxalic acid for 7 minutes.

水洗した後、浴温度70C1組成9の無電解銅メッキ浴
に浸漬して厚さ0.5μmのメッキ膜を形成させた。被
メッキ板をメッキ浴から引き上げ、前記活性化処理操作
をもう一度繰返した後、前記浴温度50G、&l’l成
7の無電解銅メッキ浴に浸漬する一連の操作を繰返し行
ない、被メツキ板上に厚さ35〜40μmの無電解銅メ
ッキ膜を形成させた。このメッキ膜をステンレススチー
ル板より剥がして、実施例1と同様の方法により引張シ
強度、伸び率及び折り曲げ回数を測定した。その結果を
第2表に示す。
After washing with water, it was immersed in an electroless copper plating bath with a bath temperature of 70C and a composition of 9 to form a plated film with a thickness of 0.5 μm. The board to be plated is lifted from the plating bath, the activation treatment operation is repeated once more, and then the series of operations of immersing the board in the electroless copper plating bath at a temperature of 50 G and 7 is repeated, and the plated board is removed from the plating bath. An electroless copper plating film having a thickness of 35 to 40 μm was formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったがラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度50C,組成7及び
浴温度70C1組成9の2種の無電解銅メッキ浴を用い
て、前記と同様のメッキ方法により被メツキ基板に厚さ
35〜40μmのメッキ膜を形成させた。前記方法によ
り得られた被メツキ基板についてはんだディップ試験を
行ない、穴のコーナ一部にクラックが生じる最小回数を
測定した。その結果を第3表に示す。
Further, holes were made in the same manner as in Example 1, but a catalyst was applied to the lath fabric base epoxy resin copper-clad laminate using the same method as in Example 1. Using two types of electroless copper plating baths, one having a bath temperature of 50C and a composition 7 and a bath temperature 70C1 and a composition 9, a plated film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度60C1組成7の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ3μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、250ppm、45tl’のPaCl2−5nC1
2−NaC1水溶液に5分間浸漬した。さらに水洗し、
各々0.4 mol/13の硫酸、シュウ酸を含む40
Cの水溶液に6分間浸漬した。もう一度水洗後、浴温度
70C1組成8の無電解銅メッキ浴に被メッキ板を浸漬
して厚さ0.6μmのメッキ膜を形成させた。被メッキ
板をメッキ浴から引き上げ前記活性化処理操作をもう一
度繰返した後、前記浴温度60C1組成7の無電解銅メ
ッキ浴に浸漬する一連の操作を繰返し行ない、被メツキ
板上に厚さ35〜40μmの無電解銅メッキ膜を形成さ
せた。このメッキ膜をステンレススチール板より剥がし
て、実施例1と同様の方法により引張り強度、伸び率及
び折り曲げ回数を測定した。その結果を第2表に示す。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 60C and a composition of 7 to form a plated film with a thickness of 3 μm. Next, the board to be plated was pulled out of the plating bath, washed with water, and treated with 250 ppm, 45 tl' of PaCl2-5nC1.
It was immersed in a 2-NaCl aqueous solution for 5 minutes. Further wash with water,
40 containing 0.4 mol/13 sulfuric acid and oxalic acid each
It was immersed in an aqueous solution of C for 6 minutes. After washing once again with water, the plated plate was immersed in an electroless copper plating bath with a bath temperature of 70C and a composition of 8 to form a plated film with a thickness of 0.6 μm. After the board to be plated is lifted from the plating bath and the activation process is repeated once more, a series of operations of immersing it in an electroless copper plating bath having a bath temperature of 60C and a composition of 7 is repeated, and a thickness of 35 to 35 cm is formed on the board to be plated. An electroless copper plating film of 40 μm was formed. This plating film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

捷だ、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度60C1組成7及び
浴温度70C1組成8の2種の無電解銅メッキ浴を用い
て、前記と同様のメッキ方法により被メツキ基板に厚さ
35〜40μmのメッキ膜を形成させた。前記方法によ
シ得られた被メツキ基板についてはんだディップ試験を
行ない、穴のコーナ一部にクラックが生じる最小回数を
測定した。その結果を第3表に示す。
A catalyst was applied to a glass cloth-based epoxy resin-based copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. Using two types of electroless copper plating baths, one having a bath temperature of 60 C and a composition of 7 and a bath temperature of 70 C and a composition of 8, a plated film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例26 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板とした。
Example 26 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This was used as a plated plate.

浴温度70C1組成9の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ4μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、3.6規定、30Cの硫酸に3分間浸漬し、水洗し
た後、浴温度60C,組成9の無電解銅メッキ浴に被メ
ッキ板を浸漬して厚さ0.7μmのメッキ膜を形成させ
た。さらに被メッキ板をメッキ浴から引き上げ、水洗し
て、前記浴温度70C1組成9の無電解銅メッキ浴に浸
漬する一連の操作を繰返し行ない、被メツキ板上に厚さ
35〜40μmの無電解銅メッキ膜を形成させた。この
メッキ膜をステンレススチール板より剥がして、実施例
1と同様の方法により引張り強度、伸び率及び折シ曲げ
回数を測定した。その結果を第2表に示す。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 70C and a composition of 9 to form a plating film with a thickness of 4 μm. Next, the plated plate was taken out of the plating bath, washed with water, immersed in 3.6N sulfuric acid at 30C for 3 minutes, washed with water, and then plated in an electroless copper plating bath with a bath temperature of 60C and a composition of 9. A plated film having a thickness of 0.7 μm was formed by dipping the plate. Further, the plate to be plated is removed from the plating bath, washed with water, and immersed in an electroless copper plating bath with a bath temperature of 70C and a composition of 9. A series of operations is repeated to deposit electroless copper plating with a thickness of 35 to 40 μm on the plated plate. A plating film was formed. This plated film was peeled off from the stainless steel plate, and the tensile strength, elongation rate, and number of bends were measured in the same manner as in Example 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1−と同様の方法
を用いて触媒付与を行なった。浴温度70C1組成9及
び浴温度60C1組成9の2種の無電解銅メッキ浴を用
いて、前記と同様のメッキ方法によシ被メッキ基板に厚
さ35〜40μmのメッキ膜を形成させた。前記方法に
ょシ得られた被メツキ基板についてはんだディップ試験
を行ない、穴のコーナ一部にクラックが生じる最小回数
を測定した。その結果を第3表に示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1-. A plating film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above using two types of electroless copper plating baths, one having a bath temperature of 70C and a composition of 9 and a bath temperature of 60C and a composition of 9. A solder dip test was conducted on the plated substrate obtained using the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

実施例27 表面を機械的に研摩したステンレススチール板上に実施
例1と同様の方法を用いて触媒付与を行なった。これを
被メッキ板としだ。
Example 27 A catalyst was applied to a stainless steel plate whose surface had been mechanically polished using the same method as in Example 1. This is used as the plated plate.

浴温度70C1組成8の無電解銅メッキ浴に前記被メッ
キ板を浸漬して厚さ2μmのメッキ膜を形成させた。次
に、前記被メッキ板を前記メッキ浴から引き上げ、水洗
し、浴温度6001組成9の無電解銅メッキ浴に浸漬し
て厚さ0.5μmのメッキ膜を形成させた。次に、前記
被メッキ板をメッキ浴から引き上げ、水洗し、250 
ppm 、 50 CのPaCl2−8nC42−Na
Cj水溶液に被メッキ板を5分間浸漬した。もう一度水
洗し、各々9.3 mot屑の硫酸・シュウ酸を含む3
0Cの水溶液に被メッキ板を8分間浸漬した。さら罠水
洗した後、前記浴温v7oc、組成8の無電解銅メッキ
浴に浸漬する一連の操作を繰返し行ない、被メツキ板上
に厚さ35〜40μmの無電解銅メッキ膜を形成させた
。このメッキ膜をステンレススチール板より剥がして、
実施例)1と同様の方法により引張り強度、伸び率及び
折シ曲げ回数を測定した。その結果を第2表に示す。
The plated plate was immersed in an electroless copper plating bath having a bath temperature of 70C and a composition of 8 to form a plated film with a thickness of 2 μm. Next, the plated plate was taken out of the plating bath, washed with water, and immersed in an electroless copper plating bath having a bath temperature of 6001 and a composition of 9 to form a plated film with a thickness of 0.5 μm. Next, the plated plate was taken out of the plating bath, washed with water, and
ppm, PaCl2-8nC42-Na at 50C
The board to be plated was immersed in the Cj aqueous solution for 5 minutes. Rinse with water again and remove 9.3 mots of sulfuric acid and oxalic acid.
The board to be plated was immersed in an aqueous solution at 0C for 8 minutes. After rinsing with water, a series of operations of immersion in an electroless copper plating bath having a composition of 8 and a bath temperature of V7OC were repeated to form an electroless copper plating film with a thickness of 35 to 40 μm on the board to be plated. Peel off this plating film from the stainless steel plate,
Example) Tensile strength, elongation rate, and number of folds were measured in the same manner as in 1. The results are shown in Table 2.

また、実施例1と同様の穴あけを行なったガラス布基材
エポキシ樹脂系銅張り積層板に実施例1と同様の方法を
用いて触媒付与を行なった。浴温度70C1組成8及び
浴温度60C1組成902種の無電解銅メッキ浴を用い
て、前記と同様のメッキ方法により被メツキ基板に厚さ
35〜40μmのメッキ膜を形成させた。前記方法によ
り得られた被メツキ基板についてはんだディップ試験を
行ない、穴のコーナ一部にクラックが生じる最小回数を
測定した。その結果を第3表に示す。
In addition, a catalyst was applied to a glass cloth-based epoxy resin copper-clad laminate in which holes were drilled in the same manner as in Example 1 using the same method as in Example 1. A plating film having a thickness of 35 to 40 μm was formed on a substrate to be plated by the same plating method as described above using electroless copper plating baths having a bath temperature of 70 C and a composition of 8 and a bath temperature of 60 C and a composition of 902. A solder dip test was conducted on the plated substrate obtained by the above method, and the minimum number of times a crack would occur in a part of the corner of the hole was measured. The results are shown in Table 3.

以上、第2表、第3表から明らかなように、本発明によ
り得られる無電解銅メッキ膜は、引張シ強度36〜48
にシー2、伸び率3.4〜5.6%、折シ曲げ回数3〜
4回という機械的特性を有し、電気銅メッキ膜の引張り
強度30〜5QK5+/wm2、伸び率3〜8%、折シ
曲げ回数4回と比戟するとほぼ同等の値であることがわ
かる。したがって、不発ツJの方法によれば、゛電気銅
メッキ膜と開城の機械的特性を有する無電解銅メッキ膜
を得ることができる。
As is clear from Tables 2 and 3, the electroless copper plating film obtained by the present invention has a tensile strength of 36 to 48.
Seat 2, elongation rate 3.4-5.6%, number of folds 3-
It has mechanical properties of 4 folds, and when compared with the electrolytic copper plating film, which has a tensile strength of 30 to 5QK5+/wm2, an elongation rate of 3 to 8%, and a folding count of 4, it can be seen that the values are almost the same. Therefore, according to the method of Futsu J, it is possible to obtain an electroless copper plating film having mechanical properties similar to those of an electrolytic copper plating film and Kaesong.

特許出願人 イビデン株式会社 代理人弁理士 村  1)  政  治手続補正書 昭和57年3月2−日 特許庁長宮若杉和夫殿 1、事件の表示 昭和57年 特 許 願第226758号2・ 発明の
名称 プリント配線板用無電解銅メッキ方法3 補正を
する者 事件との関係  特許出願人 、 ヶ   岐阜県大垣市神田町二丁目一番地よ ゎ、
よ、  +015)イビデン株式会社代表者  多 賀
 潤一部 4、 代  理  人  〒104 6、補正により増加する発明の数  なし7、補正の対
象 補正の内容 1. 明細書の特許請求の範囲の欄の記載を別紙のよう
に訂正する。
Patent Applicant IBIDEN Co., Ltd. Representative Patent Attorney Mura 1) Written Amendment to Political Procedures March 2, 1981 Kazuo Miyawakasugi, Commissioner of the Japan Patent Office 1 Indication of Case Patent Application No. 226758 1988 2. Invention Name Electroless copper plating method for printed wiring boards 3 Relationship to the case of the person making the amendment Patent applicant: 2-1, Kanda-cho, Ogaki City, Gifu Prefecture ゎ
+015) IBIDEN Co., Ltd. Representative Jun Taga 4, Agent 104 6, Number of inventions increased by amendment None 7, Contents of amendment subject to amendment 1. The statement in the scope of claims column of the specification is corrected as shown in the attached sheet.

2 明細書節18頁第15行、第19頁第19行、第2
1頁第1行、同頁第4行、第22頁第6行、第44頁第
7行および同頁第16行の「電気」を「劃1とそれぞれ
訂正する。
2 Specification Section, page 18, line 15, page 19, line 19, line 2
In the 1st line of page 1, the 4th line of the same page, the 6th line of the 22nd page, the 7th line of the 44th page, and the 16th line of the same page, ``Electricity'' is corrected to ``Page 1''.

3、 同書第22頁第11行の「表面」を「メッキ膜と
基板との間」と訂正する。
3. In the same book, page 22, line 11, "surface" is corrected to "between the plating film and the substrate."

4、 同書第23頁第19行の「防害物」を1妨害物」
と訂正する。。
4. ``Harm prevention object'' on page 23, line 19 of the same book is ``1 obstruction.''
I am corrected. .

5、 同書第27頁第12行の「水洗または」を「水洗
およびまたは」に訂正する。
5. In the same book, page 27, line 12, "washing or" is corrected to "washing and or."

6、同書第33頁第15行の「各溶質の組成比率、」を
削除し、第16行の13種」を「2種」と訂正する。
6. In the same book, page 33, line 15, delete ``composition ratio of each solute,'' and correct line 16, ``13 types'' to ``2 types.''

7、 同書第34頁第16行の「各溶質の重量比率、浴
中の」および第19行の「各溶質の重量比率は同一、浴
中の」をそれぞれ削除する。
7. Delete ``The weight ratio of each solute in the bath,'' on page 34 of the same book, line 16, and ``The weight ratio of each solute, in the bath, is the same'' in line 19, respectively.

8、 同書第35頁第1〜4行の「無電解銅メッキ・・
・率は同一、」および第6〜9行の「、5)無電解・・
・浴の組合せ」をそれぞれ削除し、また第9行の「5種
」を「3種」と訂正する。
8. “Electroless copper plating...
・Rate is the same," and lines 6 to 9 ", 5) Electroless...
・Delete "Bath combinations" and correct "5 types" in line 9 to "3 types."

9、 同書第36頁第1行の「5種」を13種」と訂正
する。
9. In the first line of page 36 of the same book, ``5 types'' is corrected to ``13 types''.

10、  同書第44頁第12行の[洛中の溶質の重量
比率、」を削除する。
10. Delete "[Weight ratio of solutes in Rakuchu,"] on page 44, line 12 of the same book.

別紙 [特許請求の範囲 一げる工程。Attachment [Claims One step process.

は、前記めっき浴中の各溶質濃度、めっき浴の温度およ
び浸漬時間をそれぞれ制御することにげる工程。
The step includes controlling the concentration of each solute in the plating bath, the temperature of the plating bath, and the immersion time.

げる工程。process.

げる工程。process.

程。Moderate.

(b)  洗浄された基板を、1種もしくは2種以上の
無機酸から成る水溶液に浸漬する工程。
(b) A step of immersing the cleaned substrate in an aqueous solution consisting of one or more inorganic acids.

程、および 程。degree, and Moderate.

および は第り項記載の方法: および 範囲第1夕項記載の方法。and The method described in section 1: and The method described in the first item of the scope.

調整剤及び錯化剤を含むことを特徴とする特許2!r、
前記銅塩は硫酸鋼、塩化第二銅、酢酸銅、硝の方法。
Patent 2 characterized by containing a modifier and a complexing agent! r,
The copper salts include steel sulfate, cupric chloride, copper acetate, and nitric acid.

J(7,前記めっき浴中のpH調整剤の濃度はQ、1m
ot解銅めつき方法において、下記(a)〜(d)の工
程の少なくとも1回の繰返しから成ることを特徴とる工
程。
J (7, The concentration of the pH adjuster in the plating bath is Q, 1 m
A process characterized by repeating the following steps (a) to (d) at least once in an OT copper plating method.

および 0】jb− 7、前記1 目のめつき浴中の各々の溶質の濃度は前記
2番目のめつき浴のそれと異なるが、1−番目のめつき
浴の温度は2番目のそれと同一で記載の方法。
and 0]jb-7, the concentration of each solute in the first plating bath is different from that in the second plating bath, but the temperature of the first plating bath is the same as that of the second plating bath. Method described.

の方法。the method of.

法。Law.

4to、下記(a)〜(f)の工程の少なくとも1回の
繰返しから成ることを特徴とする特許請求の範囲第3り
漬する工程。
4to, and repeating the following steps (a) to (f) at least once.

漬する工程。The process of soaking.

(C)  引き上げられた基板に活性化処理を施す工」
1と 漬する工程。
(C) Process of applying activation treatment to the lifted substrate.”
1 and the soaking process.

程・ (f)  引き上げられた基板に活性化処理を施す工程
(f) Process of applying activation treatment to the pulled up substrate.

載の方法: および の方法: および (b)  洗浄された基板に触媒を付与する工程。How to install: and the method of: and (b) A step of applying a catalyst to the cleaned substrate.

桔、前記活性化処理方法は下記(a)〜(e)の工程の
少の方法: 程。
The activation treatment method includes the following steps (a) to (e):

(d)  引き上げられた基板を水で洗浄する工程。(d) A step of cleaning the lifted substrate with water.

および とする特許請求の範囲第96項記載の方法。and 97. The method of claim 96.

の方法。the method of.

、1LL (e)  基板を還元液から引き上げる工程。, 1LL (e) Step of lifting the substrate from the reducing solution.

載の方法。How to put it on.

方法。Method.

ら選ばれるいずれか少なくとも1種を含む水溶記載の方
法。
A water-soluble method containing at least one selected from the following.

コ、前記2種のめつき洛中の銅塩の濃度は各々0−01
 mol/1〜0.15 mol/lの範囲内であるこ
とを特徴とする特許請求の範囲第6Q項記載の方法、の
方法。
The concentration of copper salt in the above two types of metsukiraku is 0-01, respectively.
The method according to claim 6Q, characterized in that the amount is within the range of mol/1 to 0.15 mol/l.

Claims (1)

【特許請求の範囲】 /、プリント配線板の製造の際に施される無電解銅メッ
キ方法において、1種の無電解銅メッキ浴中に被メツキ
基板を浸漬した後、前記被メツキ基板を前記無電解銅メ
ッキ浴から引き上げ、次に、引き上げた基板に必要によ
シ水洗処理。 活性化処理、水洗処理のうちから選ばれるいずれか11
種または2種以上の処理を順次節した後、前記被メツキ
基板を前記無電解銅メッキ浴に浸漬する操作を少なくと
も1回繰返すことにより無電解銅メッキ層を層状に形成
させることを特徴とするプリント配線板用無電解銅メッ
キ方法。 λ、被メッキ基板を無電解銅メッキ浴中に繰返し浸漬さ
せる際、浸漬時間をそれぞれ同一時間とすることを特徴
とする特許請求の範囲第1項記載の方法。 3、被メツキ基板を無電解銅メッキ浴中に浸漬させる際
、1回の浸漬で前記被メツキ基板に析出する銅の厚さは
、無電解銅メッキ浴の濃度、温度及び浸漬時間をそれぞ
れ制御することにより、無電解鋼メッキ最終仕上がり厚
さの1/100〜1/2の範囲内とすることを特徴とす
る特許請求の範囲第2項記載の方法。 ≠、被メッキ基板が無電解銅メッキ浴中に浸漬された際
、1回の浸漬で前記被メツキ基板に析出する銅の厚さは
、無電解銅メッキ最終仕上がり厚さの1150〜1/2
の範囲内とすることを特徴とする特許請求の範囲第3項
記載の方法。 ± 被メツキ基板を無電解鋼メッキ浴から引き上げ、次
に引き上げた被メツキ基板に水洗を施しだ後、前記無電
解銅メッキ浴に浸漬する一連の操作を少なくとも1回繰
返すことを特徴とする特許請求の範囲第4項記載の方法
。 6、被メツキ基板を無電解鋼、メッキ浴から引き上け、
次に引き上げた被メツキ基板に活性化処理を施した後、
前記無電解銅メッキ浴に浸漬する一連の操作を少なくと
も1回繰返すことを特徴とする特許請求の範囲第4項記
載の方法。 7.前記活性化処理は無電解銅メッキ浴から引き上げら
れた被メツキ基板を(イ)水洗し、無機酸に浸漬し、水
洗する処理、無電解銅メッキ浴から引き上げられた被メ
ツキ基板を(ロ)水洗し、触媒付与する処理である0)
、(ロ)のいずれか1種または2種の処理である特許請
求の範囲第1項記載の方法。 ?、前記活性化処理手段として、被メツキ基板を無電解
銅メッキ浴から引き上げ、次に引き上げた基板を水洗し
、無機酸に浸漬し、さらに水洗を順次行なうことを特徴
とする特許請求の範囲第7項記載の方法。 り、前記活性化処理手段として、被メツキ基板を無電解
銅メッキ浴から引き上げ、次に引き上げた被メツキ基板
を水洗、無機酸に浸漬、水洗、触媒付与を順次行なうこ
とを特徴とする特許請求の範囲第7項記載の方法。 IO前記無機酸は、銅の酸化物を溶解することのできる
無機酸であることを特徴とする特許請求の範囲第7項記
載の方法。 //6 前記無機酸は、硫酸及び塩酸の中から選ばれる
いずれか少なくとも1種の酸であることを特徴とする特
許請求の範囲第10項記載の方法。 lλ、前記無機酸の濃度は、0.5〜10規定の範囲内
であることを特徴とする特許請求の範囲第11項記載の
方法。 /3.前記無機酸への被メツキ基板の1回の浸漬時間は
、1〜10分間の範囲内であることを特徴とする特許請
求の範囲第11項記載の方法。 /へ 前記無機酸浴の温度は、5〜40Cの範囲内であ
ることを特徴とする特許請求の範囲第11項記載の方法
。 /よ 前記活性化処理手段として、被メツキ基板を無電
解銅メッキ浴から引き上け、次に引き上げた基板を水洗
後触媒付与を行なうことを特徴とする特許請求の範囲第
7項記載の方法。 /6.前記触媒付与手段として、触媒となシうる金属イ
オンを含む水溶液及び前記金捕イオンを金属に還元する
ことのできる還元液に順次被メツキ基板を浸漬する操作
を少なくとも1回繰返すことを特徴とする特許請求の範
囲第7項記載の方法。 /7.  前記触媒となりうる金属イオンを含む水溶液
は、PaCl2−5nC12−HCt(:y aイドタ
イツ)、PaCl2−8nC12−NaC1(コoイド
タイプ)、パラジウム有機錯塩化合物及び中性銅タイプ
の中から選ばれるいずれか1種であることを特徴とする
特許請求の範囲第16項記載の方法。 it、前記触媒となシうる金属イオンを含む水溶液は、
金属イオン濃度が20〜2500 ppmの範囲内であ
ることを特徴とする特許請求の範囲第17項記載の方法
。 lり、前記触媒となりうる金属イオンを含む水溶液浴の
温度が20〜60Cの範囲内であることを特徴とする特
許請求の範囲第17項記載の方法。 コθ 前記触媒となシうる金鴇イオンを含む水溶液への
被メツキ基板の1回の浸漬時間は、1〜1゜分間の範囲
内であることを特徴とする特許請求の範囲第17項記載
の方法。 21、前記還元液は、硫酸・シュウ酸・水酸化ナトリウ
ム・炭酸ナトリウム及びホウ水素化合物の中から選ばれ
るいずれか少なくとも1種を含む水溶液であることを特
徴とする特許請求の範囲第16項記載の方法。 2コ、前記還元液の溶質濃度は、0.01〜l mat
/1の範囲内であることを特徴とする特許請求の範囲第
21項記載の方法。 23、前記還元液浴の温度は、10〜50Cの範囲内で
あることを特徴とする特許請求の範囲第21項記載の方
法。 2代 前記還元液への被メツキ基板の1回の浸漬時間は
、2〜10分間の範囲内であることを特徴とする特許請
求の範囲第21項記載の方法。 2左 前記無電解銅メッキ浴は、銅塩、還元剤、 pH
調整剤及び錯化剤を含む無電解銅メッキ浴であることを
特徴とする特許請求の範囲第7項記載の方法。 3、前記銅塩は、硫酸銅・塩化第二銅・酢酸銅・硝酸銅
の中から選ばれるいずれか1種であることを特徴とする
特許請求の範囲第25項記載の方法。 コア、前記銅塩の濃度は、0.01〜0.15mol/
lの範囲内であることを特徴とする特許請求の範囲第2
6項記載の方法。 λg、前記還元剤は、ヒドラジン、ポルマリン、ホウ水
素化合物2久亜リン酸ナトリウムの中から選ばれるいず
れか1種であることを特徴とする特許請求の範囲第25
項記載の方法。 λり、前記還元剤の濃度は、0.1〜1 ’mol/1
.の範囲内であることを特徴とする特許請求の範囲第2
8項記載の方法。 3θ 前記pHz整剤は、水酸化ナト17ウム、水酸化
カリウム、炭酸ナトリウム、アンモニア水の中から選ば
れるいずれか1種であることを特徴とする特許請求の範
囲第25項記載の方法。 3/、前記pH調整剤の濃度は、0.1〜1 mat/
l (D範囲内であることを特徴とする特許請求の範囲
第30項記載の方法。 32、前記錯化剤は、酒石酸ナトリウムカリウム。 エチレンシアミン四酢酸ナトリウム塩の中から選ばれる
いずれか1種であることを特徴とする特許請求の範囲第
25項記載の方法。 33、前記錯化剤の濃度は、銅イオンのモル濃度の1〜
3倍の範囲内であることを特徴とする特許請求の範囲第
32項記載の方法。 3弘、前記無電解鋼メッキ浴の温度は、30〜80Cの
範囲内であることを特徴とする特許請求の範囲第25項
記載の方法。 3A:  被メツキ基板を無電解銅メッキ浴から引き上
げた後、前記引き上げた被メツキ基板を前記無電解銅メ
ッキ浴に浸漬するまでの時間は、毎回45分間以内であ
ることを特徴とする特許請求の範囲第1項記載の方法。 36、プリント配線板の製造の際に施される無電解銅メ
ッキ方法において、2種の無電解銅メッキ浴を用いるに
当り、無電解銅メッキ浴中に含まれる各溶質の種類は同
一であるが、各溶質の重量比率2個々の溶質の濃度、浴
の温度の3種の条件のいずれか少なくとも1種が異なっ
た2種の無電解銅メッキ浴であって、それぞれ前記無電
解銅メッキ浴に被メツキ基板を交互に浸漬するに轟り、
必要により各無電解銅メッキ浴に浸漬する前に水洗処理
、活性化処理、水洗処理のうちから選ばれるいずれか1
種または2種以上の処理を順次施した後、被メツキ基板
を異なる無電解鋼メッキ浴に浸漬させる操作を少なくと
も1回繰返すことてより無電解銅メッキ層を層状に形成
させることを特徴とするプリント配線板用無電解銅メッ
キ方法。 37、前記2種の無電解鋼メッキ浴において、無電解銅
メッキ浴中の溶質の種類は同一であシ、各溶質の重量比
率ならびに個々の溶質の濃度は同一であって、浴の温度
が異なる2種の無電解銅メッキ浴であることを特徴とす
る特許請求の範囲第36項記載の方法。 3♂、前記2種の無電解銅メッキ浴において、無電解銅
メッキ浴中の溶質の種類は同一であシ、各溶質の重量比
率は同一であり、個々の溶質の濃度が異なり、浴の温度
は同一である2種の無電解銅メッキ浴であることを特徴
とする特許請求の範囲第36項記載の方法。 3り、前記2種の無電解銅メッキ浴において、無電解銅
メッキ浴中の溶質の種類は同一であり、各溶質の重量比
率ならびに個々の溶質の濃度はそれぞれ異なり、浴の温
度が同一である2種の無電解銅メッキ浴であることを特
徴とする特許請求の範囲第36項記載の方法。 弘0 前記2種の無電解銅メッキ浴において、無電解銅
メッキ浴中の溶質の種類は同一であり、各溶質の重量比
率は同一であり、個々の溶質の濃度ならびに浴の温度が
それぞれ異なる2種の無電解銅メッキ浴であることを特
徴とする特許請求の範囲第36項記載の方法。 弘1.前記2種の無電解銅メッキ浴において、無電解銅
メッキ浴中の溶質の種類は同一であり、各溶質の重量比
率2個々の溶質の濃度ならびに浴の温度はそれぞれ異な
る2種の無電解銅メッキ浴であることを特徴とする特許
請求の範囲第36項記載の方法。 ≠2.被メッキ基板がそれぞれの無電解銅メッキ浴に浸
漬された際、前記被メツキ基板面に析出する銅の厚さは
、それぞれの無電解銅メッキ浴の濃度、温度及び時間を
それぞれ制御することにより、一方の無電解銅メッキ浴
では無電解銅メッキの最終仕上がシ厚さの1/30〜1
/2の範囲内となし、もう一方の浴では1/100〜1
/30の範囲となすことを特徴とする特許請求の範囲第
36項記載の方法。 弘3.無電解銅メッキ浴に被メツキ基板を交互に浸漬す
る前に、水洗を施した後の前記被メツキ基板を異なる無
電解銅メッキ浴に交互に浸漬させる操作を少なくとも1
回繰返すことを特徴とする特許請求の範囲第42項記載
の方法。 4L<z、  無電解鋼メッキ浴に被メツキ基板を交互
に浸漬する際、少なくともいずれか一方の浴に浸漬する
前に、活性化処理を施した後の前記被メツキ基板を異な
る無電解銅メッキ浴に浸漬させる操作を少なくとも1回
繰返すことを特徴とする特許請求の範囲第42項記載の
方法。 耐 2つの無電解銅メッキ浴に被メツキ基板を交互に浸
漬する前に、活性化処理を施した後の前記被メツキ基板
を異なる無電解銅メッキ浴に交互に浸漬させる操作を少
なくとも1回繰返すことを特徴とする特許請求の範囲第
42項記載の方法。 ≠6.前記活性化処理は無電解銅メッキ浴から引き上げ
られた被メツキ基板を、(イ)水洗し、無機酸に浸漬し
水洗する処理;無電解銅メッキ浴から引き上げられた被
メツキ基板を、(ロ)水洗し、触媒付与する処理である
(イ)、(ロ)のいずれか1種または2種の処理である
特許請求の範囲第45項記載の方法。 弘7.被メッキ基板を無電解鋼メッキ浴に浸漬する前に
施される活性化処理手段として、水洗、無機酸に浸漬、
水洗を順次行なうことを特徴とする特許請求の範囲第4
6項記載の方法。 4L♂、被メツキ基板を無電解銅メッキ浴に浸漬する前
に施される活性化処理手段として、水洗、無機酸に浸漬
、水洗、触媒付与を順次行なうことを特徴とする特許請
求の範囲第46項記載の方法。 ≠り、前記無機酸は、銅の酸化物を溶解することのでき
る無機酸であることを特徴とする特許請求の範囲第46
項記載の方法。 SO,前記無機酸は、硫酸、塩酸の中から選ばれるいず
れか少なくとも1種の酸であることを特徴とする特許請
求の範囲第49項記載の方法。 り/、前記無機酸の濃度は、0.5〜10規定の範囲内
であることを特徴とする特許請求の範囲第50項記載の
方法。 !r2.前2゜機酸への被メツキ基板の1回毎の浸漬時
間は、1〜10分間の範囲内であることを特徴とする特
許請求の範囲第50項記載の方法。 jt3.  前記無機酸浴の温度は、5〜40Cの範囲
内であることを特徴とする特許請求の範囲第50項記載
の方法。 5弘、被メツキ基板を無電解銅メッキ浴に浸漬する前に
施される活性化処理手段として、水洗後触媒付与を行な
うことを特徴とする特許請求の範囲第46項記載の方法
。 SS、  前記触媒付与手段として、触媒となりうる金
属イオンを含む水溶液及び前記金属イオンを金属に還元
することのできる還元液に被メツキ基板を順次浸漬する
操作を少なくとも1回縁返すことを特徴とする特許請求
の範囲第46項記載の方法。 56、前記触媒となりうる金属イオンを含む水溶液は、
PdCl2−8nC42−HCl (−r oイドタイ
プ)、PdCl2−8nC12−NaCL (:IOイ
ドタイf)、 パラジウム有機錯塩化合物及び中性鋼の
中から選ばれるいずれか1種であることを特徴とする特
許請求の範囲第55項記載の方法。 57、前記触媒となりうる金属イオンを含む水溶液は、
金属イオン濃度が20〜2500 ppmの範囲内であ
ることを特徴とする特許請求の範囲第56項記載の方法
。 5g、前記触媒となりうる金属イオンを含む水溶液浴の
温度は、20〜601Cの範囲内であることを特徴とす
る特許請求の範囲第56項記載の方法。 jり、前記触媒となりうる金稿イオンを含む水溶液への
被メツキ基板の1回の浸漬時間は、1〜10分間の範囲
であることを特徴とする特許請求の範囲第56項記載の
方法。 tro、  前記還元液は、硫酸、シュウ酸、水酸化ナ
トリウム、炭酸ナトリウム、ホウ水素化合物の中から選
ばれるいずれか少なくとも1mを含む水溶液であること
を特徴とする特許請求の範囲第55項記載の方法。 6/、前記還元液の溶質濃度は、0.01〜1 mat
/1の範囲内であることを特徴とする特許請求の範囲第
60項記載の方法。 62、前記還元液浴の温度は、10〜50Cの範囲内で
あることを特徴とする特許請求の範囲第60項記載の方
法。 63、前記還元液への被メツキ基板の1回の浸漬時間は
2〜10分間の範囲内であることを特徴とする特許請求
の範囲第60項記載の方法。 A4L、’前記無電解銅メッキ浴は、銅塩、還元剤、p
H調整剤及び錯化剤を含む無電解銅メッキ浴であること
を特徴とする特許請求の範囲第46項記載の方法。 65、前記銅塩は、硫酸鋼、塩化第二銅、酢酸銅・硝酸
鋼の中から選ばれるいずれか1種であることを特徴とす
る特許請求の範囲第64項記載の方法。 66、前記銅塩の濃度は、0. O1〜0.15 mo
l/lの範囲内であることを特徴とする特許請求の範囲
第65項記載の方法。 67、前記還元剤は、ヒドラジン、ホルマリン、ホウ水
素化合物2欠亜リン酸す) IJウムの中から選ばれる
いずれか1種であることを特徴とする特許請求の範囲第
64項記載の方法。 6g、前記還元剤の濃度は、01〜1 mol/lの範
囲内であることを特徴とする特許請求の範囲第67項記
載の方法。 6り、前記pH調整剤は、水酸化ナトIJウム、水酸化
カリウム、炭酸ナトリウム、アンモニア水の中から選ば
れるいずれか1種であることを特徴とする特許請求の範
囲第64項記載の方法。 7o、  前記pH調整剤の濃度は、0.1〜1 mo
l/lの範囲内であることを特徴とする特許請求の範囲
第69項記載の方法。 7/、前記錯化剤は、酒石酸ナトリウムカリウム。 エチレンジアミン四酢酸ナトリウム塩の中から選ばれる
いずれか1種であることを特徴とする特許請求の範囲第
64項記載の方法。 7コ、前記錯化剤の濃度は、銅イオンのモル濃度の1〜
3倍の範囲内であることを特徴とする特許請求の範囲第
71項記載の方法。 73、前記無電解銅メッキ浴の温度は、30〜80Cの
範囲内であることを特徴とする特許請求の範囲第64項
記載の方法。 74A、被メツキ基板を無電解銅メッキ浴から引き上げ
た後、前記引き上げた被メツキ基板を異なる無電解銅メ
ッキ浴に浸漬するまでの時間は、毎回45分間以内であ
ることを特徴とする特許請求の範囲第36項記載の方法
[Claims] / In an electroless copper plating method performed during the manufacture of printed wiring boards, a substrate to be plated is immersed in one type of electroless copper plating bath, and then the substrate to be plated is immersed in the electroless copper plating bath. The board is removed from the electroless copper plating bath and then subjected to the necessary water washing treatment. Any 11 selected from activation treatment and water washing treatment
After sequentially performing one or more types of treatments, an operation of immersing the substrate to be plated in the electroless copper plating bath is repeated at least once, thereby forming an electroless copper plating layer in a layered manner. Electroless copper plating method for printed wiring boards. 2. The method according to claim 1, wherein when the substrate to be plated is repeatedly immersed in the electroless copper plating bath, the immersion time is the same each time. 3. When the substrate to be plated is immersed in an electroless copper plating bath, the thickness of copper deposited on the substrate to be plated in one immersion is controlled by controlling the concentration, temperature, and immersion time of the electroless copper plating bath. 3. The method according to claim 2, wherein the thickness is within the range of 1/100 to 1/2 of the final finished electroless steel plating thickness. ≠ When the substrate to be plated is immersed in an electroless copper plating bath, the thickness of copper deposited on the substrate in one immersion is 1150 to 1/2 of the final finished thickness of electroless copper plating.
The method according to claim 3, characterized in that the method is within the scope of. ± A patent characterized in that the series of operations of lifting a board to be plated from an electroless steel plating bath, washing the board to be plated with water, and then immersing it in the electroless copper plating bath is repeated at least once. The method according to claim 4. 6. Pull up the substrate to be plated from the electroless steel plating bath,
Next, after applying activation treatment to the pulled up board to be plated,
5. The method according to claim 4, wherein the series of operations of immersing in the electroless copper plating bath is repeated at least once. 7. The activation process involves (a) washing the substrate to be plated that has been pulled out of the electroless copper plating bath, immersing it in an inorganic acid, and washing it with water, and (b) washing the substrate to be plated that has been pulled out of the electroless copper plating bath 0) which is a process of washing with water and applying a catalyst.
The method according to claim 1, which is any one or two treatments of (b). ? , the activation processing means is characterized in that the board to be plated is pulled up from the electroless copper plating bath, the pulled up board is then washed with water, immersed in an inorganic acid, and further washed with water in this order. The method described in Section 7. A patent claim characterized in that, as the activation treatment means, the substrate to be plated is lifted from an electroless copper plating bath, and then the pulled substrate to be plated is washed with water, immersed in an inorganic acid, washed with water, and provided with a catalyst. The method described in item 7. 8. The method according to claim 7, wherein the inorganic acid is an inorganic acid capable of dissolving copper oxide. //6 The method according to claim 10, wherein the inorganic acid is at least one acid selected from sulfuric acid and hydrochloric acid. 12. The method according to claim 11, wherein lλ, the concentration of the inorganic acid is within the range of 0.5 to 10 normal. /3. 12. The method according to claim 11, wherein the time for one immersion of the substrate to be plated in the inorganic acid is within a range of 1 to 10 minutes. 12. The method according to claim 11, wherein the temperature of the inorganic acid bath is within a range of 5 to 40C. /yo The method according to claim 7, wherein the activation treatment means involves lifting the board to be plated from an electroless copper plating bath, and then applying a catalyst to the pulled board after washing it with water. . /6. The catalyst applying means is characterized in that an operation of sequentially immersing the substrate to be plated in an aqueous solution containing metal ions that can act as a catalyst and a reducing solution that can reduce the gold-captured ions to metal is repeated at least once. The method according to claim 7. /7. The aqueous solution containing a metal ion that can serve as a catalyst is one selected from PaCl2-5nC12-HCt (:ya dot tights), PaCl2-8nC12-NaC1 (coid type), palladium organic complex salt compound, and neutral copper type. 17. The method according to claim 16, wherein the method is one type. It, the aqueous solution containing metal ions that can serve as the catalyst,
18. The method of claim 17, wherein the metal ion concentration is in the range of 20 to 2500 ppm. 18. The method according to claim 17, wherein the temperature of the aqueous solution bath containing metal ions that can serve as the catalyst is within the range of 20 to 60C. (θ) The time period for one immersion of the substrate to be plated in the aqueous solution containing gold ions that can serve as the catalyst is within the range of 1 to 1 minute. the method of. 21. Claim 16, characterized in that the reducing liquid is an aqueous solution containing at least one selected from sulfuric acid, oxalic acid, sodium hydroxide, sodium carbonate, and borohydride compounds. the method of. 2. The solute concentration of the reducing solution is 0.01~l mat
22. The method according to claim 21, wherein the value is within the range of /1. 23. The method according to claim 21, wherein the temperature of the reducing liquid bath is within a range of 10 to 50C. 22. The method according to claim 21, wherein the time for one immersion of the substrate to be plated in the reducing solution is within a range of 2 to 10 minutes. 2 Left The electroless copper plating bath contains copper salt, reducing agent, pH
8. A method according to claim 7, characterized in that it is an electroless copper plating bath containing a conditioning agent and a complexing agent. 3. The method according to claim 25, wherein the copper salt is any one selected from copper sulfate, cupric chloride, copper acetate, and copper nitrate. The concentration of the copper salt in the core is 0.01 to 0.15 mol/
Claim 2 characterized in that it is within the scope of l.
The method described in Section 6. λg, the reducing agent is any one selected from hydrazine, polymerine, and borohydride compound sodium phosphite, Claim 25
The method described in section. λ, the concentration of the reducing agent is 0.1 to 1'mol/1
.. Claim 2 characterized in that it is within the scope of
The method described in Section 8. 26. The method according to claim 25, wherein the 3θ pH adjuster is any one selected from sodium hydroxide, potassium hydroxide, sodium carbonate, and aqueous ammonia. 3/, the concentration of the pH adjuster is 0.1 to 1 mat/
32. The complexing agent is sodium potassium tartrate. Any one selected from ethylenecyaminetetraacetic acid sodium salt. 26. The method according to claim 25, characterized in that the complexing agent has a concentration of 1 to 1 molar concentration of copper ions.
33. A method according to claim 32, characterized in that it is within the range of 3 times. 3. The method according to claim 25, wherein the temperature of the electroless steel plating bath is within the range of 30 to 80C. 3A: A patent claim characterized in that the time from when the substrate to be plated is pulled up from the electroless copper plating bath to when the pulled substrate to be plated is immersed in the electroless copper plating bath is within 45 minutes each time. The method described in item 1. 36. When two types of electroless copper plating baths are used in the electroless copper plating method used in the manufacture of printed wiring boards, the types of solutes contained in the electroless copper plating baths are the same. are two types of electroless copper plating baths that differ in at least one of the three conditions of the weight ratio of each solute, the concentration of each solute, and the temperature of the bath, each of which is different from the electroless copper plating bath. The board to be plated is alternately immersed in the
If necessary, any one selected from water washing treatment, activation treatment, and water washing treatment may be performed before immersion in each electroless copper plating bath.
The method is characterized in that after sequentially applying one or more types of treatments, the operation of immersing the substrate to be plated in a different electroless steel plating bath is repeated at least once, thereby forming a layered electroless copper plating layer. Electroless copper plating method for printed wiring boards. 37. In the above two types of electroless steel plating baths, the type of solute in the electroless copper plating bath is the same, the weight ratio of each solute and the concentration of each solute are the same, and the temperature of the bath is the same. 37. The method of claim 36, characterized in that two different electroless copper plating baths are used. 3♂. In the above two types of electroless copper plating baths, the types of solutes in the electroless copper plating baths are the same, the weight ratio of each solute is the same, and the concentration of each solute is different. 37. A method as claimed in claim 36, characterized in that there are two electroless copper plating baths at the same temperature. 3. In the above two types of electroless copper plating baths, the type of solute in the electroless copper plating bath is the same, the weight ratio of each solute and the concentration of each solute are different, and the temperature of the bath is the same. 37. The method of claim 36, wherein the method comprises two electroless copper plating baths. Hiroshi 0 In the above two types of electroless copper plating baths, the type of solute in the electroless copper plating bath is the same, the weight ratio of each solute is the same, and the concentration of each solute and the temperature of the bath are different. 37. The method of claim 36, characterized in that there are two electroless copper plating baths. Hiro 1. In the above two types of electroless copper plating baths, the type of solute in the electroless copper plating bath is the same, and the weight ratio of each solute is 2. The concentration of each solute and the temperature of the bath are different between the two types of electroless copper plating baths. 37. The method of claim 36, wherein the method is a plating bath. ≠2. When the substrate to be plated is immersed in each electroless copper plating bath, the thickness of copper deposited on the surface of the plated substrate can be controlled by controlling the concentration, temperature, and time of each electroless copper plating bath. On the other hand, in the electroless copper plating bath, the final finish of electroless copper plating is 1/30 to 1 of the thickness of the electroless copper plating bath.
/2 range and none, and 1/100 to 1 in the other bath
37. The method according to claim 36, wherein the range is /30. Hiro 3. Before the substrates to be plated are alternately immersed in the electroless copper plating bath, at least one operation is performed in which the substrates to be plated after being washed with water are alternately immersed in different electroless copper plating baths.
43. A method according to claim 42, characterized in that it is repeated several times. 4L<z, when the substrates to be plated are alternately immersed in electroless steel plating baths, the substrates to be plated are subjected to activation treatment before being immersed in at least one of the baths, and the substrates to be plated are plated with different electroless copper platings. 43. A method according to claim 42, characterized in that the immersion in the bath is repeated at least once. Before alternately immersing the substrate to be plated in two electroless copper plating baths, the operation of alternately immersing the substrate to be plated after the activation treatment in different electroless copper plating baths is repeated at least once. 43. A method according to claim 42, characterized in that: ≠6. The activation process involves (a) washing the substrate to be plated that has been pulled out of the electroless copper plating bath, immersing it in an inorganic acid, and washing it with water; 46. The method according to claim 45, which is a treatment of one or two of (a) and (b), which is a treatment of washing with water and applying a catalyst. Hiro 7. Activation treatments performed before dipping the substrate to be plated in an electroless steel plating bath include washing with water, dipping in inorganic acid,
Claim 4, characterized in that washing with water is performed sequentially.
The method described in Section 6. 4L♂, Claim No. 4, characterized in that the activation treatment performed before dipping the substrate to be plated in an electroless copper plating bath includes washing with water, dipping in an inorganic acid, washing with water, and applying a catalyst in this order. The method according to item 46. Claim 46, wherein the inorganic acid is an inorganic acid capable of dissolving copper oxide.
The method described in section. 50. The method according to claim 49, wherein SO and the inorganic acid are at least one acid selected from sulfuric acid and hydrochloric acid. 51. The method according to claim 50, wherein the concentration of the inorganic acid is within the range of 0.5 to 10 normal. ! r2. 51. The method according to claim 50, wherein the time for each immersion of the substrate to be plated in the 2 DEG acid is within the range of 1 to 10 minutes. jt3. 51. The method of claim 50, wherein the temperature of the inorganic acid bath is within the range of 5 to 40C. 5. The method according to claim 46, wherein the activation treatment performed before the substrate to be plated is immersed in the electroless copper plating bath includes applying a catalyst after washing with water. SS, the catalyst applying means is characterized in that the substrate to be plated is sequentially immersed at least once in an aqueous solution containing metal ions that can serve as a catalyst and a reducing solution that can reduce the metal ions to metal. A method according to claim 46. 56. The aqueous solution containing metal ions that can serve as a catalyst is
A patent claim characterized in that the material is any one selected from PdCl2-8nC42-HCl (-r oid type), PdCl2-8nC12-NaCL (:IO id type f), palladium organic complex salt compound, and neutral steel. The method according to item 55. 57. The aqueous solution containing metal ions that can serve as a catalyst is
57. The method of claim 56, wherein the metal ion concentration is in the range of 20 to 2500 ppm. 57. The method according to claim 56, wherein the temperature of the aqueous solution bath containing 5g of metal ions that can serve as the catalyst is within the range of 20 to 601C. 57. The method according to claim 56, wherein the time for one immersion of the substrate to be plated in the aqueous solution containing metal ions that can serve as the catalyst is in the range of 1 to 10 minutes. tro, the reducing solution is an aqueous solution containing at least 1 m of any one selected from sulfuric acid, oxalic acid, sodium hydroxide, sodium carbonate, and a borohydride compound. Method. 6/, the solute concentration of the reducing solution is 0.01 to 1 mat
61. The method according to claim 60, characterized in that it is within the range of /1. 62. The method according to claim 60, wherein the temperature of the reducing liquid bath is within the range of 10 to 50C. 63. The method according to claim 60, wherein the time for one immersion of the substrate to be plated in the reducing solution is within a range of 2 to 10 minutes. A4L, 'The electroless copper plating bath contains a copper salt, a reducing agent, p
47. The method of claim 46, wherein the bath is an electroless copper plating bath containing an H modifier and a complexing agent. 65. The method according to claim 64, wherein the copper salt is any one selected from sulfuric acid steel, cupric chloride, and copper acetate/nitric acid steel. 66. The concentration of the copper salt is 0. O1~0.15 mo
66. A method according to claim 65, characterized in that it is within the range of l/l. 67. The method according to claim 64, wherein the reducing agent is any one selected from hydrazine, formalin, borohydride compound, diphosphorous acid, IJium. 68. A method according to claim 67, characterized in that the concentration of the reducing agent is in the range of 0.6 g to 1 mol/l. 6. The method according to claim 64, wherein the pH adjuster is any one selected from sodium hydroxide, potassium hydroxide, sodium carbonate, and aqueous ammonia. . 7o, the concentration of the pH adjuster is 0.1 to 1 mo
70. A method according to claim 69, characterized in that it is within the range of l/l. 7/. The complexing agent is sodium potassium tartrate. 65. The method according to claim 64, wherein the method is any one selected from ethylenediaminetetraacetic acid sodium salt. 7. The concentration of the complexing agent is 1 to 1 molar concentration of copper ions.
72. A method according to claim 71, characterized in that the range is within 3 times. 73. The method of claim 64, wherein the temperature of the electroless copper plating bath is within the range of 30 to 80C. 74A, a patent claim characterized in that the time from when the substrate to be plated is pulled up from the electroless copper plating bath to when the pulled substrate to be plated is immersed in a different electroless copper plating bath is within 45 minutes each time. The method according to item 36.
JP22675882A 1982-12-27 1982-12-27 Method of electrolessly plating copper for printed circuit board Granted JPS59119786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22675882A JPS59119786A (en) 1982-12-27 1982-12-27 Method of electrolessly plating copper for printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22675882A JPS59119786A (en) 1982-12-27 1982-12-27 Method of electrolessly plating copper for printed circuit board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1100289A Division JPH02191393A (en) 1989-01-21 1989-01-21 Electroless copper plating of printed wiring board

Publications (2)

Publication Number Publication Date
JPS59119786A true JPS59119786A (en) 1984-07-11
JPH0376599B2 JPH0376599B2 (en) 1991-12-05

Family

ID=16850148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22675882A Granted JPS59119786A (en) 1982-12-27 1982-12-27 Method of electrolessly plating copper for printed circuit board

Country Status (1)

Country Link
JP (1) JPS59119786A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063987A (en) * 1983-09-17 1985-04-12 沖電気工業株式会社 Method of producing printed circuit board
JPS61199692A (en) * 1985-02-28 1986-09-04 日立コンデンサ株式会社 Manufacture of full aditive wiring board
JPS6457799A (en) * 1987-08-28 1989-03-06 Nippon Sanmo Deying Ferrite with conductive metal film and manufacture thereof
JPH01238094A (en) * 1988-03-18 1989-09-22 Elna Co Ltd Plating of printed board
JPH02191393A (en) * 1989-01-21 1990-07-27 Ibiden Co Ltd Electroless copper plating of printed wiring board
WO1996020294A1 (en) * 1994-12-27 1996-07-04 Ibiden Co., Ltd. Pretreatment solution for electroless plating, electroless plating bath and electroless plating method
US6495934B1 (en) 1998-03-13 2002-12-17 Nikon Corporation Method of manufacturing linear motor, linear motor, stage apparatus equipped with linear motor and exposure apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6035540B2 (en) 2012-12-21 2016-11-30 奥野製薬工業株式会社 Conductive film forming bath
JP6024044B2 (en) 2014-01-27 2016-11-09 奥野製薬工業株式会社 Conductive film forming bath

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117299A (en) * 1979-03-05 1980-09-09 Hitachi Ltd Method of fabricating printed circuit board by noovoltage copper plating
JPS56163256A (en) * 1980-05-21 1981-12-15 Hitachi Ltd Plating method for printed wiring substrate having iron core
JPS57192099A (en) * 1981-05-22 1982-11-26 Hitachi Ltd Method of producing printed board
JPS58128790A (en) * 1982-01-27 1983-08-01 株式会社日立製作所 Method of producing printed board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117299A (en) * 1979-03-05 1980-09-09 Hitachi Ltd Method of fabricating printed circuit board by noovoltage copper plating
JPS56163256A (en) * 1980-05-21 1981-12-15 Hitachi Ltd Plating method for printed wiring substrate having iron core
JPS57192099A (en) * 1981-05-22 1982-11-26 Hitachi Ltd Method of producing printed board
JPS58128790A (en) * 1982-01-27 1983-08-01 株式会社日立製作所 Method of producing printed board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063987A (en) * 1983-09-17 1985-04-12 沖電気工業株式会社 Method of producing printed circuit board
JPS61199692A (en) * 1985-02-28 1986-09-04 日立コンデンサ株式会社 Manufacture of full aditive wiring board
JPS6457799A (en) * 1987-08-28 1989-03-06 Nippon Sanmo Deying Ferrite with conductive metal film and manufacture thereof
JPH01238094A (en) * 1988-03-18 1989-09-22 Elna Co Ltd Plating of printed board
JPH02191393A (en) * 1989-01-21 1990-07-27 Ibiden Co Ltd Electroless copper plating of printed wiring board
JPH0455550B2 (en) * 1989-01-21 1992-09-03 Ibiden Co Ltd
WO1996020294A1 (en) * 1994-12-27 1996-07-04 Ibiden Co., Ltd. Pretreatment solution for electroless plating, electroless plating bath and electroless plating method
US6146700A (en) * 1994-12-27 2000-11-14 Ibiden Co., Ltd. Pretreating solution for electroless plating, electroless plating bath and electroless plating process
US6174353B1 (en) 1994-12-27 2001-01-16 Ibiden Co., Ltd. Pretreating solution for electroless plating, electroless plating bath and electroless plating process
US6495934B1 (en) 1998-03-13 2002-12-17 Nikon Corporation Method of manufacturing linear motor, linear motor, stage apparatus equipped with linear motor and exposure apparatus

Also Published As

Publication number Publication date
JPH0376599B2 (en) 1991-12-05

Similar Documents

Publication Publication Date Title
US9072203B2 (en) Solderability enhancement by silver immersion printed circuit board manufacture
US3962494A (en) Sensitized substrates for chemical metallization
US4632857A (en) Electrolessly plated product having a polymetallic catalytic film underlayer
US4232060A (en) Method of preparing substrate surface for electroless plating and products produced thereby
US4643793A (en) Process for treating metal surface
JPH0711487A (en) Method for self-promoting replenishment-type immersion coating and composition therefor
EP0795043A1 (en) Silver plating
JP2769954B2 (en) Method for electrodepositing metal plating directly on plastic substrates
JPS59119786A (en) Method of electrolessly plating copper for printed circuit board
US20140072706A1 (en) Direct Electroless Palladium Plating on Copper
US5076840A (en) Electroless copper plating solution
JP5978587B2 (en) Semiconductor package and manufacturing method thereof
US4693907A (en) Process or non-electrolytic copper plating for printed circuit board
KR100404369B1 (en) Electroless Nickel Plating Solution and Method
JP3276919B2 (en) High adhesion plating method for resin substrate and copper plating solution used for the method
JPH02191393A (en) Electroless copper plating of printed wiring board
US20040154929A1 (en) Electroless copper plating of electronic device components
TWI755094B (en) Electroless copper plating and counteracting passivation
JPH0714107B2 (en) Method for manufacturing metal pattern on insulating substrate
GB2253415A (en) Selective process for printed circuit board manufacturing employing noble metal oxide catalyst.
CA1169304A (en) Preparing substrate surface for electroless plating
CA1176118A (en) Preparing substrate surface for electroless plating and products produced thereby
JPS6235843A (en) Manufacture of laminate of metal and resin layer
JP3465016B2 (en) Method for improving adhesion of resin to copper surface and high adhesion electroless copper plating bath used for the method
WO2000050230A1 (en) Board with nickel-plated thru-holes and/or blind vias