JPS59117273A - Manufacture of transparent conductive film - Google Patents

Manufacture of transparent conductive film

Info

Publication number
JPS59117273A
JPS59117273A JP57226405A JP22640582A JPS59117273A JP S59117273 A JPS59117273 A JP S59117273A JP 57226405 A JP57226405 A JP 57226405A JP 22640582 A JP22640582 A JP 22640582A JP S59117273 A JPS59117273 A JP S59117273A
Authority
JP
Japan
Prior art keywords
transparent conductive
film
gas
conductive film
oxygen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57226405A
Other languages
Japanese (ja)
Inventor
Kotaro Kasama
笠間 幸太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP57226405A priority Critical patent/JPS59117273A/en
Publication of JPS59117273A publication Critical patent/JPS59117273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To improve mass productivity, by setting an oxygen gas concentration so that an oxide layer is not formed on the surface of a target, forming a film by reactive sputtering, thereby facilitating control of sputtering condition. CONSTITUTION:With a transparent conductive metal material as a target, a sputtering gas is made to be mixed gas including an inactive gas and oxygen gas. The surface of the target is set to be a state of a layer that is not oxidized by the concentration of the oxygen gas. A film of a metal material is formed on a transparent substrate by reactive sputtering. Then heat treatment is performed in air or oxidizing atmosphere at 300-500 deg.C. Then the film is cooled. Indium, tin, or the like is used as a metal material for the transparent conductive film. Argon or the like is used as an inactive gas. Soda lime glass or the like is used for a transparent substrate. Oxygen gas or the like is used as oxidizing atmosphere.

Description

【発明の詳細な説明】 本発明は、反応性スパッタリングによる透明導電膜の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a transparent conductive film by reactive sputtering.

一般に、可視光領域において透明で、かつS電性を有す
る透明導電膜は、液晶ディスプレイ、ELディスプレイ
など新しいディスプレイ方式における透明電極や、アモ
ルファスシリコン太陽電池における透明電極として使用
され、またフォトマスクの帯電防止のための透明ガラス
基板上に成膜して使用されている。
In general, transparent conductive films that are transparent in the visible light region and have S conductivity are used as transparent electrodes in new display systems such as liquid crystal displays and EL displays, and as transparent electrodes in amorphous silicon solar cells. It is used by forming a film on a transparent glass substrate for prevention purposes.

これ等の透明導電膜は、インジウム、スズ、アンチモン
又はこれ等の合金、あるいは酸化物などから成る金属材
料をターゲットとして、アルゴンなどの不活性ガスと酸
素ガスなどの活性ガスを含む混合ガス中でスパッタリン
グ法により透明基板上に成膜される。
These transparent conductive films target metal materials such as indium, tin, antimony, their alloys, or oxides, in a mixed gas containing an inert gas such as argon and an active gas such as oxygen gas. A film is formed on a transparent substrate by a sputtering method.

この成膜時の透明導電膜は、透明度が高いものについて
は抵抗値が可なり大きいために、大気中に熱処理するこ
とにより、抵抗値を小さくさせている。
Since the transparent conductive film at the time of film formation has a considerably high resistance value if it is highly transparent, the resistance value is reduced by heat treatment in the atmosphere.

スパッタリングにおける酸素ガス濃度と成膜速度との関
係は、酸素ガス濃度が小→大になるに従って、成膜速度
が大→小に移行するが、その場合、ターゲット表面は酸
素ガス濃度が小のとき未酸化状態になり、その酸素ガス
濃度がある値を越えるど、酸化が急激に進行して高抵抗
の酸化膜となることから、従来のスパッタリング条件と
しては、ターゲット表面に酸化膜が形成される直前の状
態で行なわれていた。
The relationship between oxygen gas concentration and film formation rate in sputtering is that as the oxygen gas concentration increases from small to large, the film formation rate changes from large to small. When the target becomes unoxidized and its oxygen gas concentration exceeds a certain value, oxidation rapidly progresses to form a high-resistance oxide film. Therefore, under conventional sputtering conditions, an oxide film is formed on the target surface. This was done in the previous state.

しかしながら、この状態は、酸素ガス濃度の微減に対し
て成膜速度が急激に増大し、透過率が急激に低くなって
不透明になる欠点があった。また逆に、酸素ガス濃7、
度の微増に対して比抵抗が急激に増大づる欠点があった
。その結果、この状態でのスパッタリング法はその条件
の制御が困難であり、所望な透明導電膜を成膜させる点
で量産性に欠けていた。
However, this state has the disadvantage that the film formation rate increases rapidly in response to a slight decrease in the oxygen gas concentration, and the transmittance rapidly decreases, resulting in opacity. Conversely, oxygen gas concentration 7,
The drawback was that the resistivity increased rapidly with a slight increase in temperature. As a result, it is difficult to control the conditions of the sputtering method in this state, and it lacks mass productivity in terms of forming a desired transparent conductive film.

本発明の目的は、以上の欠点を除去した透明導電膜の製
造方法を提供することであり、すなわち、第1の目的は
、スパッタリング条件の制御を容易にして、量産性を向
上させた透明導電膜の製造方法を提供することであり、
第2の目的は、比抵抗の小さい透明導電膜の製造方法を
提供することである。
An object of the present invention is to provide a method for manufacturing a transparent conductive film that eliminates the above-mentioned drawbacks. That is, the first object is to provide a transparent conductive film that facilitates control of sputtering conditions and improves mass productivity. To provide a method for manufacturing a membrane,
The second objective is to provide a method for manufacturing a transparent conductive film with low specific resistance.

このような目的を達成させるために、本発明による透明
導電膜の製造方法は、透明導電膜用金属材料をターゲラ
1〜とし、スパッタガスを不活性ガスと酸素ガスを含む
混合ガスにし、前記酸素ガスの濃度によって前記ターゲ
ットの表面を未酸化層状態に設定して反応性スパッタリ
ングにより、前記金属材料を透明基板上に成膜した後、
大気中又は酸化性雰囲気中で300〜500℃にて熱処
理し、次に冷却することを特徴としている。ここで、[
透明導電膜用金属材料」としては、インジウム、スズ、
アンチモンなどの金属材料が挙げられる。
In order to achieve such an object, the method for producing a transparent conductive film according to the present invention uses Targetera 1 as the metal material for the transparent conductive film, uses a mixed gas containing an inert gas and oxygen gas as the sputtering gas, and uses the oxygen gas as the sputtering gas. After forming the metal material on the transparent substrate by reactive sputtering with the surface of the target set in an unoxidized layer state depending on the concentration of the gas,
It is characterized by heat treatment at 300 to 500°C in air or an oxidizing atmosphere, and then cooling. here,[
Metal materials for transparent conductive films include indium, tin,
Examples include metal materials such as antimony.

「不活性ガス」としては、アルゴン、ネオン、クリプト
ン、キセノンなどのガスが挙げられる。
Examples of the "inert gas" include gases such as argon, neon, krypton, and xenon.

「透明基板」としては、ソーダライムガラス、アルミノ
シリケートガラス、ボロンシリケートガラス、石英ガラ
スなどが挙げられる。「酸化性雰囲気」としては、酸素
ガス、二酸化炭素ガス、前記不活性ガス及び/または窒
素に酸素を含む混合ガスなどが挙げられる。
Examples of the "transparent substrate" include soda lime glass, aluminosilicate glass, boron silicate glass, and quartz glass. Examples of the "oxidizing atmosphere" include oxygen gas, carbon dioxide gas, the above-mentioned inert gas, and/or a mixed gas containing nitrogen and oxygen.

次に、スパッタリングにおける酸素ガスIi1度と成膜
速度の関係を説明する。第1図は酸素ガス流量と成膜速
度の関係を示す特性図であり、横軸は酸素流@ (S 
CCM : S tandard  cubic  c
entimcter  per  +n1llUte=
 1気圧、25℃の状態での1分間当りの流1i (Q
C) ) 、縦軸は成膜速度である。なお、不活性ガス
として流量7080 CMのアルゴンを使用し、同図中
、曲線aはスパッタリング電流1sp=0.’7A、曲
線すはI sp= 1 、’5A及び曲線Cは1sp=
2.5Aに設定している。
Next, the relationship between the oxygen gas Ii 1 degree and the film formation rate in sputtering will be explained. Figure 1 is a characteristic diagram showing the relationship between oxygen gas flow rate and film formation rate, and the horizontal axis is oxygen flow @ (S
CCM: Standard cubic c
entimcter per +n1llUte=
Flow 1i (Q
C) ), the vertical axis is the deposition rate. Incidentally, argon was used as the inert gas at a flow rate of 7080 CM, and in the figure, curve a indicates a sputtering current of 1sp=0. '7A, curve I sp= 1, '5A and curve C 1 sp=
It is set to 2.5A.

従来のスパッタリング条件は、前述したとおりターゲッ
ト表面に酸化膜が形成される直前の状態、すなわち曲線
a、b及びCにおいてそれぞれal、1)+及びC+の
各点近傍にて成膜していたために、各点より僅かだけ酸
素流量が少なくなった場合、成膜速度が急激に増大し、
透明な膜から茶色ないし脚色を呈した膜になって、透過
率が極端に低下し、一方、各点より僅かだけ酸素流量が
多くなった場合、透過率は変わらないものの、比抵抗が
3桁程度高くなってしまう。
As mentioned above, the conventional sputtering conditions were such that the film was formed in the state just before the oxide film was formed on the target surface, that is, in the vicinity of the points al, 1)+, and C+ on curves a, b, and C, respectively. , when the oxygen flow rate is slightly lower than at each point, the deposition rate increases rapidly,
The transparent film changes to a brown or colored film, and the transmittance drops dramatically.On the other hand, when the oxygen flow rate increases slightly from each point, the transmittance remains the same, but the resistivity decreases by three orders of magnitude. The level will be higher.

したがって、従来のスパッタリング条件は、各点におけ
る酸素ガス流量の許容量を極めて少なくしなければなら
ず、点a1にて±0.53CCM程度、点b1にて±0
.3SCCM程度、点c1にて±0.38CCM弱にし
なければならない。このように許容量を少なくすること
は、当然にして酸素ガス流量のコントロールを制約させ
ることになってしまう。また、その許容量を比較的多く
した場合、すなわち点a1にて±0.58CCMの場合
には、スパッタリング電流が比較的小さいことがら、成
膜速度が低くなってしまう。
Therefore, in conventional sputtering conditions, the permissible amount of oxygen gas flow rate at each point must be extremely small, approximately ±0.53 CCM at point a1 and ±0 at point b1.
.. It has to be about 3SCCM, a little less than ±0.38CCM at point c1. Reducing the allowable amount in this way naturally limits the control of the oxygen gas flow rate. Furthermore, when the allowable amount is relatively large, that is, ±0.58 CCM at point a1, the sputtering current is relatively small, so the film formation rate becomes low.

一方、本発明では、酸素ガス濃度とターゲラ1−表面に
酸化層が形成されない、すなわち未酸化層状態に酸素ガ
ス濃度を′設定して反応性スパッタリングにより成膜す
ることから、8曲1ma 、 b及びCにおいて、az
□ab、bl〜b)及びc2〜c5の間の領域、すなわ
ち〃[容量としてはそれぞれ1〜88CCM、2〜20
3 CCM及び4〜328CCMのような広い領域まで
得られる。、また、これらの領域に45ける成膜速度は
、従来の□点a1、bl及びclに比べて10(8程度
速くすることができる。
On the other hand, in the present invention, since the oxygen gas concentration and the target layer 1 are formed by reactive sputtering with the oxygen gas concentration set so that no oxidized layer is formed on the surface of the target layer 1, that is, in an unoxidized layer state, and in C, az
□Area between ab, bl~b) and c2~c5, i.e. [Capacity: 1~88CCM, 2~20CCM, respectively]
3 CCM and wide ranges such as 4-328 CCM are obtained. Furthermore, the film formation rate in these regions can be increased by about 10 (about 8) compared to the conventional □ points a1, bl, and cl.

そして、本発明は透明手段として、成膜後、大気中又は
酸化性雰囲気中で300〜500℃にて熱処理し、比抵
抗を低くする手段として、熱処理の降温の際、その冷却
速度を40〜1oO℃/分で冷却する。
In the present invention, as a transparent means, after the film is formed, heat treatment is performed at 300 to 500°C in the air or an oxidizing atmosphere, and as a means for lowering the specific resistance, the cooling rate is set at 40 to 500° C. Cool at 1oO<0>C/min.

透明導電膜の電気伝導を左右する要因には、例えば酸化
インジウム中に含まれるスズ、酸化スズ中に含まれるア
ンチモンのような不純物の他に、酸素の空格子点の量、
粒子の大きさ及び結晶の配向性など様々なパラメータが
ある。本発明では上記要因のうち、主に酸素の空格子点
の形成に際して、その量を均一かつ最適にして、比抵抗
の低い透明導電膜を形成させる。この酸素の空格子点は
、ある温度で多く生成し、電気伝導に大きく寄与する。
Factors that affect the electrical conductivity of transparent conductive films include impurities such as tin contained in indium oxide and antimony contained in tin oxide, as well as the amount of oxygen vacancies,
There are various parameters such as particle size and crystal orientation. In the present invention, among the above-mentioned factors, the amount of oxygen vacancies is uniformly and optimally formed mainly to form a transparent conductive film with low specific resistance. These oxygen vacancies are generated in large numbers at a certain temperature and greatly contribute to electrical conduction.

通常、この温度は300〜500℃程度であり、これ以
下の温度では空格子の生成量が少なくなる。
Usually, this temperature is about 300 to 500°C, and at temperatures below this, the amount of vacancies produced decreases.

したがって、降温の際、温度を徐々に下げると、空格子
量はその温度における量に追従するために、少なくなる
Therefore, when the temperature is gradually lowered, the amount of vacancies follows the amount at that temperature, and thus decreases.

一方、本発明によれば、基板と膜が破壊されない程度の
降温で急冷する。すなわち40〜100”C/分の冷却
速度で冷却することにより、徐々に降温するときよりも
、空格子量を多く存在させて、比抵抗を大幅に低減させ
ることができる。
On the other hand, according to the present invention, the temperature is rapidly cooled to such an extent that the substrate and film are not destroyed. That is, by cooling at a cooling rate of 40 to 100''C/min, the specific resistance can be significantly reduced by creating a larger amount of vacancies than when the temperature is gradually lowered.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

(実施例1) ターゲットとしてt5wt%のスズを含むインジウム合
金を使用し、スパッタガスをアルゴン: 703CCM
と酸素7j[: 168 CCIVH: L/T、ター
ゲット表面を未酸化層状態にし、チャンバー内圧力を4
x10 Torr 、 スパッタ電流1sp=1.5A
にして反応性スパッタリングにより、透明なガラス基4
ff(NA−40:保谷硝子製アルミノシリケートガラ
ス〉上に金属光沢を有するIt!(11*厚: 100
OA >を成膜した。成膜後の分光透過率(波長550
nlllの光に対する分光透過率。以下同様)は0.5
%であった。次に、成膜したガラス基板を大気中、40
0℃で1時間熱処理した後、冷却速度2℃/分で冷却し
たときの分光透過率は85%であり、比抵抗はlX10
−’Ωamであった。
(Example 1) An indium alloy containing 5wt% tin was used as a target, and the sputtering gas was argon: 703CCM
and oxygen 7j [: 168 CCIVH: L/T, the target surface is made into an unoxidized layer state, and the chamber pressure is set to 4
x10 Torr, sputtering current 1sp=1.5A
By reactive sputtering, a transparent glass base 4
It! (11*thickness: 100) with metallic luster on ff (NA-40: Hoya Glass aluminosilicate glass)
OA> was deposited. Spectral transmittance after film formation (wavelength 550
Spectral transmittance for nllll light. (same below) is 0.5
%Met. Next, the glass substrate on which the film was formed was placed in the atmosphere for 40 minutes.
After heat treatment at 0°C for 1 hour, the spectral transmittance was 85% when cooling at a cooling rate of 2°C/min, and the specific resistance was 1×10
-'Ωam.

また、成膜したガラス基板を同様に熱処理した後、冷却
速度50℃/分で100℃まで降温し、次に、室温にな
るまで放置したときの分光透過率は85%であり、比抵
抗は5x10Ωcmであった。本例の酸化インジウムを
主体とする膜における酸化スズの含有比率は、酸化スズ
を4wt%よりも少なくしたり。sowt%より多くし
た場合、いずれも透過率は変わらないものの、比抵抗が
大きくなり、実用に供しなくなる。したがって、酸化イ
ンジウムを主体とする膜にお番プる酸化スズ含有比率は
4〜50wt%の範囲以内が好ましい。
Furthermore, after the film-formed glass substrate was heat-treated in the same manner, the temperature was lowered to 100°C at a cooling rate of 50°C/min, and then the spectral transmittance was 85% when it was left to reach room temperature. It was 5x10Ωcm. The content ratio of tin oxide in the film mainly composed of indium oxide in this example is less than 4 wt%. If the amount is more than sowt%, the transmittance remains the same, but the resistivity increases and is no longer practical. Therefore, the content ratio of tin oxide in the film mainly composed of indium oxide is preferably within the range of 4 to 50 wt%.

(実施例2〉 ターゲットとして10wt%のアンチモンを含むスズ合
金を使用し、スパッタガスをアルゴン: 608CCM
と酸素ガス:35SCCMにして、ターゲット表面を未
酸化層状態にし、チャンバー内圧力を5 xio−3−
r orr 、スパッタ電流fsp=1.3Aにして反
応性スパッタリングにより、透明ガラス基板(LE〜3
0:保谷硝子製アルミノシリケートガラス)上に金属光
沢を有する膜(膜厚: 1ooo人)を成膜した。成膜
後の分光透過率は0.6%であった。次に、成膜したガ
ラス基板を大気中、420℃で1時間熱処理した後、冷
却速度2℃/分で冷却したときの分光透過率は83%で
あり、比抵抗は2xlO”Ωcmであった。本例の酸化
スズを主体とする膜にお【プる酸化アンチモンの含有比
率について、酸化アンチモンを4wt%より少なくした
り、60wt%より多くした場合、いずれも透過率はほ
とんど変わらないが、比抵抗が大きくなり、実用に供し
なくなる。したがって、酸化スズを主体とする膜におけ
る酸化アンチモンの含有比率は4〜60wt%の範囲以
内が好ましい。
(Example 2) A tin alloy containing 10 wt% antimony was used as a target, and the sputtering gas was argon: 608 CCM
and oxygen gas: 35 SCCM to make the target surface an unoxidized layer, and the chamber pressure was set to 5 xio-3-
A transparent glass substrate (LE~3
A film having metallic luster (thickness: 100 mm) was formed on aluminosilicate glass (manufactured by Hoya Glass Co., Ltd.). The spectral transmittance after film formation was 0.6%. Next, the film-formed glass substrate was heat-treated in the air at 420°C for 1 hour, and then cooled at a cooling rate of 2°C/min. The spectral transmittance was 83% and the specific resistance was 2xlO"Ωcm. Regarding the content ratio of antimony oxide in the film mainly composed of tin oxide in this example, when antimony oxide is made less than 4 wt% or more than 60 wt%, the transmittance remains almost the same. The specific resistance increases, making it unusable for practical use.Therefore, the content ratio of antimony oxide in a film mainly composed of tin oxide is preferably within the range of 4 to 60 wt%.

また、成膜したガラス基板を同様に熱処理した後、冷却
速度50℃/分で100℃まで降温し、次に室温まで放
置したときの分光透過率は83%であり、比抵抗は8x
10Ωcmであった。
Furthermore, after the film-formed glass substrate was heat-treated in the same manner, the temperature was lowered to 100°C at a cooling rate of 50°C/min, and then the spectral transmittance was 83% when it was left to stand at room temperature, and the specific resistance was 8x.
It was 10Ωcm.

以上のとおり、本発明によれば、ターゲット表面を未酸
化層状態にしてスパッタリング条件の酸素ガス1lit
1度を設定していることから、そのスパッタリング条件
の制御を容易にして、量産化することができるし、また
、熱処理後に所定の冷却速痘で冷却していることにより
、所望な透過率と比抵抗が得られるから、透明導電膜の
製造方法として非常に有効である。
As described above, according to the present invention, 1 liter of oxygen gas under sputtering conditions is used to make the target surface into an unoxidized layer state.
Since the temperature is set at 1 degree, sputtering conditions can be easily controlled and mass production can be carried out.Also, by cooling at a predetermined cooling rate after heat treatment, it is possible to achieve the desired transmittance. Since specific resistance can be obtained, this method is very effective as a method for manufacturing transparent conductive films.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸素流量と成膜速度の関係を示す特性図である
。 第 1 図 7 醸 九 たi (scch) 手  続  補  正  書  く自発)      
 (2)く3) 1、事件の表示  昭和57年特許願第226405号
2、発明の名称  透明導電膜の製造方法3、補正をす
る者 事件との関係 特許出願人 住所 東京都新宿区西新宿1丁目13番12号・160
  置  03(348)1221ホ ヤ ガラス 名称 株式会社 保 谷 硝 子 明細書の発明の詳細な説明の欄 5、補正の内容 」1 不 看 了 明細書第5頁第8行に1第1図は」とあるを「第1図は
10wt%のスズを含むインジウムの合金をターゲット
とづる揚台の」と補正する。 明細書第7頁第8行に[本発明は透明手段として、」と
あるを「本発明は透明にする手段として、」と補正する
。 以上
FIG. 1 is a characteristic diagram showing the relationship between oxygen flow rate and film formation rate. Figure 1 7 (scch) Procedural amendment written spontaneously)
(2) 3) 1. Indication of the case Patent Application No. 226405 filed in 1982 2. Title of the invention Method for producing a transparent conductive film 3. Relationship with the person making the amendment Patent applicant address Nishi-Shinjuku, Shinjuku-ku, Tokyo 1-13-12/160
03 (348) 1221 Hoya Glass Name Hoya Glass Co., Ltd. Column 5 of the detailed description of the invention in the specification, Contents of amendments 1 In the 8th line of page 5 of the specification 1 Figure 1 is '' should be corrected to read, ``Figure 1 shows a platform for targeting an indium alloy containing 10 wt% tin.'' On page 7, line 8 of the specification, the phrase "the present invention is used as a transparent means" is amended to read "the present invention is used as a transparent means."that's all

Claims (1)

【特許請求の範囲】 (1) 透明導電膜用金属材料をターゲットとし、スパ
ッタガスを不活性ガスと酸素ガスを含む混合ガスにし、
前記酸素ガスの濃度によって前記ターゲットの表面を未
酸化層状態に設定して反応性スパッタリングにより、前
記金属材料を透明基板上に成膜した後、大気中又は酸化
性雰囲気中で300〜500℃にて熱処理し、次に冷却
することを特徴とする透明導電膜の製造方法。 (2) 熱処理後、冷却速度を40〜bして冷却するこ
とを特徴とする特許請求の範囲第1項記載の透明導電膜
の製造方法。 く3) 透明基板上の膜が4〜50wt%の酸化スズを
含む酸化インジウムであることを特徴とする特許請求の
範囲第1項又は第2項記載の透明導電膜の製造方法。 (4) 透明基板上の膜が4〜60wt%の酸化アンチ
モンを含む酸化スズであることを特徴とする特許請求の
範囲第1項又は第2項記載の透明導電膜の製造方法。
[Claims] (1) Using a metal material for a transparent conductive film as a target, using a sputtering gas as a mixed gas containing an inert gas and an oxygen gas,
The surface of the target is set to an unoxidized layer state depending on the concentration of the oxygen gas, and the metal material is deposited on the transparent substrate by reactive sputtering, and then heated to 300 to 500°C in air or an oxidizing atmosphere. 1. A method for producing a transparent conductive film, which comprises heat-treating and then cooling. (2) The method for manufacturing a transparent conductive film according to claim 1, wherein after the heat treatment, cooling is performed at a cooling rate of 40 to b. 3) The method for producing a transparent conductive film according to claim 1 or 2, wherein the film on the transparent substrate is made of indium oxide containing 4 to 50 wt% of tin oxide. (4) The method for manufacturing a transparent conductive film according to claim 1 or 2, wherein the film on the transparent substrate is tin oxide containing 4 to 60 wt% antimony oxide.
JP57226405A 1982-12-24 1982-12-24 Manufacture of transparent conductive film Pending JPS59117273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57226405A JPS59117273A (en) 1982-12-24 1982-12-24 Manufacture of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57226405A JPS59117273A (en) 1982-12-24 1982-12-24 Manufacture of transparent conductive film

Publications (1)

Publication Number Publication Date
JPS59117273A true JPS59117273A (en) 1984-07-06

Family

ID=16844598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57226405A Pending JPS59117273A (en) 1982-12-24 1982-12-24 Manufacture of transparent conductive film

Country Status (1)

Country Link
JP (1) JPS59117273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010602A (en) * 1994-12-27 2000-01-04 Ppg Industries Ohio, Inc. Annealed low emissivity coating
KR101095004B1 (en) 2008-10-01 2011-12-19 한국세라믹기술원 The manufacturing method and Indium Tin OxideITO transparent conductive films deposited on the diffusion barrier layer coated Soda lime glass substrate.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639003A (en) * 1979-09-07 1981-04-14 Nippon Kayaku Co Ltd Method for reducing damage of paddy-rice plant with agricultural chemical
JPS56130009A (en) * 1980-03-17 1981-10-12 Sharp Kk Method of producing transparent conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639003A (en) * 1979-09-07 1981-04-14 Nippon Kayaku Co Ltd Method for reducing damage of paddy-rice plant with agricultural chemical
JPS56130009A (en) * 1980-03-17 1981-10-12 Sharp Kk Method of producing transparent conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010602A (en) * 1994-12-27 2000-01-04 Ppg Industries Ohio, Inc. Annealed low emissivity coating
KR101095004B1 (en) 2008-10-01 2011-12-19 한국세라믹기술원 The manufacturing method and Indium Tin OxideITO transparent conductive films deposited on the diffusion barrier layer coated Soda lime glass substrate.

Similar Documents

Publication Publication Date Title
JP4087447B2 (en) Sputtering target and manufacturing method thereof
JP3358893B2 (en) Transparent conductor containing gallium-indium oxide
JP3970719B2 (en) Sputtering target based on titanium dioxide
JPS606521B2 (en) Resistor composition and method for manufacturing the same
JPS63274757A (en) Bismuth/tin oxide film
JPS62154411A (en) Transparent conductive film
JPS59117273A (en) Manufacture of transparent conductive film
JPH02168507A (en) Fluorine doped tin oxide film and method of reducing resistance thereof
US5473456A (en) Method for growing transparent conductive gallium-indium-oxide films by sputtering
JPS5998407A (en) Method of producing transparent conductive film
JPH01145325A (en) Production of transparent conductive film
JPS6215961B2 (en)
JPS62227082A (en) Formation of electrically conductive transparent film
JPS647445B2 (en)
JP2941086B2 (en) Transparent electrode
JP3123260B2 (en) Method for producing transparent conductive film
EP3312313A1 (en) Lithium niobate single crystal substrate and method for producing same
EP3312315A1 (en) Lithium niobate single crystal substrate and method for producing same
EP3312312A1 (en) Lithium niobate single crystal substrate and method for producing same
JP3134405B2 (en) Method for producing indium oxide / tin oxide sintered body
JP2003081633A (en) Method for producing resistance-reduced fluorine-doped tin oxide film
JPH0813140A (en) Indium oxide sputtering target, its production, indium oxide film, and production of indium oxide film
JPS63203757A (en) Method for annealing tin-added indium oxide film
KR101735999B1 (en) Double structured tin oxide thin film and fabrication method of the double structured tin oxide thin film
JPS6288216A (en) Manufacture of transparent conductive film