JPS59116423A - Manufacture of flame resistant fiber or carbon fiber - Google Patents

Manufacture of flame resistant fiber or carbon fiber

Info

Publication number
JPS59116423A
JPS59116423A JP22388882A JP22388882A JPS59116423A JP S59116423 A JPS59116423 A JP S59116423A JP 22388882 A JP22388882 A JP 22388882A JP 22388882 A JP22388882 A JP 22388882A JP S59116423 A JPS59116423 A JP S59116423A
Authority
JP
Japan
Prior art keywords
stage
oxidation
fiber
gas
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22388882A
Other languages
Japanese (ja)
Other versions
JPS623248B2 (en
Inventor
Atsushi Tsunoda
敦 角田
Nobuyuki Matsubara
伸行 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP22388882A priority Critical patent/JPS59116423A/en
Publication of JPS59116423A publication Critical patent/JPS59116423A/en
Publication of JPS623248B2 publication Critical patent/JPS623248B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To save the energy consumption in the manufacture of the titled fiber, by dividing the oxidation process of acrylic fibers into multiple stages, separating the system for feeding oxidizing gas to each stage from other systems, and supplying the gas discharged from the second stage or thereafter to the feeding system for the first stage. CONSTITUTION:A carbon fiber is manufactured by passing a precursor composed of an acrylic fiber successively through the oxidizing process comprising the heating of the fiber in an oxidizing atmosphere and the carbonizing process comprising the heating of the product at high temperature in an inert atmosphere. In the above procedure, the oxidation process is divided into multiple stages, and each stage is furnished with independent system for feeding oxidizing gas to the stage. The first stage is supplied with a gas discharged from the second stage or thereafter, or a mixture of the discharged gas and a fresh oxidizing gas. The energy for heating the oxidizing gas to be fed to the first stage can be saved by this process.

Description

【発明の詳細な説明】 本発明はアクリル系繊維からの耐炎化繊維又は炭素繊維
の製造プロセスにおいて、前駆体のアクリル系繊維の酸
化雰囲気中での加熱に伴う該繊維に含有される油剤等の
蒸発物及びこれら油剤並びに繊維の酸化反応に伴う熱分
解生成物に起因するトラブルを防止し、高品位、高品質
の耐炎化繊維もしくは炭素繊維を効率的に与える製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a process for producing flame-resistant fibers or carbon fibers from acrylic fibers, in which oils and other substances contained in the precursor acrylic fibers are heated in an oxidizing atmosphere. The present invention relates to a production method that prevents troubles caused by evaporates, these oils, and thermal decomposition products accompanying oxidation reactions of fibers, and efficiently provides high-grade, high-quality flame-resistant fibers or carbon fibers.

従来、耐炎化又は炭素繊維はアクリル系繊維やピンチ系
繊維を代表とする各種の前駆体(以下、プレカーサとい
う)を酸化雰囲気中で加熱して熱安定化して耐炎化繊維
とするか1.該耐炎化繊維をさらに高温の不活性雰囲気
中で加熱して炭化し、炭素繊維に転換することにより製
造される。
Conventionally, flame-resistant or carbon fibers have been made by heating various precursors (hereinafter referred to as precursors), typically acrylic fibers or pinch-type fibers, in an oxidizing atmosphere to thermally stabilize them.1. It is produced by further heating the flame-resistant fiber in an inert atmosphere at a high temperature to carbonize it and convert it into carbon fiber.

このような耐炎化あるいは炭素繊維の製造法において、
アクリル系繊維のように、その製糸工程で油剤等で処理
された繊維が、前記酸化雰囲気中での加熱工程、すなわ
ち酸化工程で加熱されると、該繊維の酸化反応による熱
分解物と共に前記油剤及びその熱分解物が酸化雰囲気中
に放出されるために、これらの油剤や熱分解物を処理し
て無害化する必要があり、該酸化工程における酸化雰囲
気温加熱に加えて、この排ガス処理のだめのエネルギー
消費は莫大なものがあり、その省エネルギー化は工業上
極めて重要である。さらに加えて、酸化雰囲気中に含1
れるプレカーサから蒸発・分解した油剤、特にシリコー
ン系油剤やプレカーサの熱分解物、特′にタール状物は
、該酸化工程から排出される排ガスの酸化触媒処理にお
いて触媒寿命を急激に低下させたり、耐炎化繊維の単糸
相互間を融着させ、不均一耐炎化の原因になったりする
という問題がある。
In such flame-retardant or carbon fiber manufacturing methods,
When fibers, such as acrylic fibers, that have been treated with an oil or the like during the spinning process are heated in the oxidizing atmosphere, i.e., in the oxidation step, they are heated together with the thermal decomposition products of the oxidation reaction of the fibers. and its thermal decomposition products are released into the oxidizing atmosphere, so it is necessary to treat these oils and thermal decomposition products to render them harmless.In addition to heating the oxidizing atmosphere in the oxidation process, The energy consumption of these devices is enormous, and energy conservation is extremely important from an industrial perspective. In addition, the oxidizing atmosphere contains 1
Oils evaporated and decomposed from precursors, especially silicone oils and thermal decomposition products of precursors, especially tar-like substances, can rapidly shorten the life of the catalyst in the oxidation catalyst treatment of the exhaust gas discharged from the oxidation process. There is a problem in that the single filaments of the flame-resistant fibers are fused together, causing uneven flame-proofing.

前者の酸化工程の省エネルギー化の手段として、特開昭
57−25.4.17号公報には、酸化工程からの排ガ
スを触媒処理した後酸化工程に循環再利用する方法が開
示されているが、この方法は後者のシリコーン系油剤処
理プレカーサ媒に対して強い被毒作用を有するものを含
む排ガス処理にも適用し得る方法について鋭意検討を行
って本発明を見出に到ったものである。すなわち、本発
明は、前記プレカーサを酸化雰囲気中で加熱し、酸化繊
維に転換するに当って、該酸化工程を少くとも2段階に
分割し、この分割された各酸化工程にそれぞれ独立して
酸化雰囲気を供給し、かつ分割された最初の酸化工程に
は、少くとも第2段以降の酸化工程から排出される排出
ガス又は該排ガスと新鮮酸化気体との混合ガスを供給す
ることを特徴とする。
As a means of energy saving in the former oxidation process, Japanese Patent Application Laid-Open No. 57-25.4.17 discloses a method in which the exhaust gas from the oxidation process is treated with a catalyst and then recycled for the oxidation process. The present invention was discovered through extensive research into a method that can be applied to the treatment of exhaust gases containing those that have a strong poisoning effect on the latter silicone-based oil treatment precursor media. . That is, the present invention divides the oxidation process into at least two stages when heating the precursor in an oxidizing atmosphere to convert it into oxidized fibers, and performs oxidation independently in each of the divided oxidation stages. The atmosphere is supplied, and the divided first oxidation process is supplied with at least the exhaust gas discharged from the oxidation process after the second stage or a mixed gas of the exhaust gas and fresh oxidation gas. .

本発明において、少くとも2段階に分9割された酸化工
程の最初の酸化工程、すなわち、プレカーサが最初に酸
化雰囲気で加熱される第1段工程には、第2段以降の酸
化工程から排出される排ガスもしくは該排ガスに新鮮な
酸化性気体、通常新鮮空気を混合した気体が供給される
。すなわち、このような多段酸化工程においては前段か
ら後段にゆくにつれて、酸化雰囲気温度を高くする必要
があるので、該最初の酸化工程に供給する排ガスの温度
は加熱する必要がないが、新鮮空気等を混合する場合も
加熱に要する熱エネルギーを著しく小さくすることがで
きる。そして、重要なことは後述するように、本発明に
おいて、最初の酸化工程の条件を該酸化工程を経た後の
繊維(不完全な酸化状態にある)の含有水分率が約2〜
4重量優になるように制御することによって、酸化工程
において該プレカーサから発生する油剤に由来するタ/
−ル状物を実質的に完全に除去できることである。した
がって、本発明の酸化工程において、第2段以降の酸化
工程においては、プレカーサ、正確には不完全もしくは
部分酸化繊維の酸化に伴って発生する熱分解物の量は極
めて少く、シかも排ガスの触媒処理の障害となるシリコ
ーン系油剤および該油剤の熱分解物並びにタール状物の
含有量も著しく低減する。したがってこれら第2段以降
の酸化工程から排出される排ガスの酸化触媒処理の寿命
が大きく延長され、かつ第2段酸化工程以降におけるタ
ール状物に起因する酸化処理工程での糸切れ発生等を防
止することができる。本発明において、分割されるべき
酸化工程の段数は特に限定されないが通常は2−4段が
よく、4段を越えると装置の設計上工業的に不利である
In the present invention, in the first oxidation step of the oxidation step divided into at least two stages, that is, the first stage step in which the precursor is first heated in an oxidizing atmosphere, there is no discharge from the second stage and subsequent oxidation steps. The exhaust gas mixed with fresh oxidizing gas, usually fresh air, is supplied. That is, in such a multi-stage oxidation process, it is necessary to increase the oxidizing atmosphere temperature from the first stage to the second stage, so there is no need to heat the exhaust gas supplied to the first oxidation process, but fresh air etc. Also when mixing, the thermal energy required for heating can be significantly reduced. What is important is that, as will be described later, in the present invention, the conditions of the first oxidation step are such that the moisture content of the fibers (in an incompletely oxidized state) after passing through the oxidation step is approximately 2 to 2.
By controlling the amount to be more than 4% by weight, the amount of water derived from the oil generated from the precursor in the oxidation process is reduced.
- It is possible to substantially completely remove the particles. Therefore, in the oxidation process of the present invention, in the second and subsequent oxidation processes, the amount of thermal decomposition products generated due to the oxidation of the precursor, or more precisely, the incompletely or partially oxidized fibers, is extremely small, and it may be possible to reduce the amount of exhaust gas. The content of silicone oils, thermal decomposition products of the oils, and tar-like substances that impede catalytic treatment is also significantly reduced. Therefore, the life of the oxidation catalyst treatment for the exhaust gas discharged from the second and subsequent oxidation processes is greatly extended, and the occurrence of thread breakage in the oxidation process due to tar-like substances in the second and subsequent oxidation processes is prevented. can do. In the present invention, the number of stages in the oxidation step to be divided is not particularly limited, but usually 2 to 4 stages is preferred, and exceeding 4 stages is industrially disadvantageous in terms of equipment design.

ここで、分割された最初の酸化工程条件として該工程を
経たプレカーサの含有水分率が約2〜4%に達する条件
とした根拠は次の事実にもとづいている。
Here, the reason why the conditions for the first divided oxidation step are such that the moisture content of the precursor that has undergone this step reaches approximately 2 to 4% is based on the following facts.

すなわち、第1図は、プレカーサのシリコーン系油剤を
付与したアクリル系繊維を酸化雰囲気中で加熱した場合
の該アクリル系繊維、の含有 −水分率(該繊維の酸化
の程度を示す1尺度である)′と該繊維から発生するシ
リコーン系油剤および該油剤並びに繊維の熱分解生成物
の量との関係を示す図で、Sは酸化工程で蒸発および熱
分解するシリコーン系油剤の発生量、Tは酸化工程での
タール状物発生量を示す。
That is, FIG. 1 shows the content - moisture content (a scale indicating the degree of oxidation of the fiber) of the acrylic fiber to which the precursor silicone oil has been applied, when the fiber is heated in an oxidizing atmosphere. )' and the amount of silicone oil generated from the fiber and the thermal decomposition products of the oil and fiber, where S is the amount of silicone oil generated that evaporates and thermally decomposes in the oxidation process, and T is the amount of silicone oil generated from the fiber. This shows the amount of tar-like substances generated during the oxidation process.

図から、該酸化工程におけるこれら発生物の量は、酸化
工程の初期に発生し、経時的にその量は減少傾向を示す
ことが判る。
From the figure, it can be seen that the amount of these products generated in the oxidation step is generated at the beginning of the oxidation step, and the amount tends to decrease over time.

特に、シリコーン系油剤およびその熱分解物である低分
子量シリコーンも繊維自体の熱分解物と同様に酸化初期
、特にアクリル系繊維の含有水分率が約2−4係に達し
た時点で実質的に大半を除去することが可能になるので
ある。すなわち、本発明において、分割された最初の酸
化段階の条件として、プレカーサの含有水分率が約2〜
4%になるように設定するときは、この段階で該プレカ
ーサから発生する熱分解物の大半を除去することができ
、しかもかかる範囲の水分率を有する繊維とした場合に
は、該熱分解物によるプレカーサの単糸間融着や不均一
酸化の問題も最初の酸化段階では特に問題とならず、こ
のような融着や不均一酸化が生じても第2段以降の酸化
により実質的に解消することができ、得られる耐炎化お
よび炭素繊維の品位、品質上の欠点を生じることがない
のである。
In particular, silicone oils and their thermal decomposition products, low molecular weight silicones, as well as the thermal decomposition products of the fibers themselves, become essentially oxidized at the initial stage of oxidation, especially when the moisture content of acrylic fibers reaches approximately 2-4 parts. This makes it possible to remove most of it. That is, in the present invention, the conditions for the first divided oxidation stage are such that the moisture content of the precursor is approximately 2 to 2.
When setting the moisture content to 4%, most of the thermal decomposition products generated from the precursor can be removed at this stage, and if the fiber has a moisture content within this range, the thermal decomposition products can be removed. The problems of inter-fiber fusion and non-uniform oxidation of the precursor are not particularly problematic in the first oxidation stage, and even if such fusion and non-uniform oxidation occur, they are virtually eliminated by oxidation in the second and subsequent stages. Therefore, there are no disadvantages in terms of flame resistance and the quality and quality of the resulting carbon fibers.

次に、本発明においては、分割された各酸化工程に供給
される酸化雰囲気がそれぞれ独立して供給される。この
酸化雰囲気の供給を分割した各酸化工程毎に独立させる
ことによって、各工程から排出される排ガスを独立して
処理するとして利用でき、省エネルギーの点で極めて有
効になるのである。特に、本発明の分割された最初の酸
化工程には第2段以降の酸化工程から排出される排ガス
をそのま\酸化雰囲気として利用することができ、この
最初の酸化工程に供給する酸化雰囲気の加温の必要がほ
とんどなく、温度コントロールが極めて容易になり、工
程的メリットも大きい。かかる点では第2段の酸化工程
に第3段の酸化工程から排出される排ガスを供給しても
よく、このような場合には最終段の酸化工程に供給する
酸化雰囲気だけを加熱するだけで済ませることも可能に
なるのである。
Next, in the present invention, the oxidizing atmosphere is supplied to each of the divided oxidation steps independently. By independently supplying this oxidizing atmosphere to each divided oxidation process, the exhaust gas discharged from each process can be used to treat independently, which is extremely effective in terms of energy saving. In particular, in the divided first oxidation step of the present invention, the exhaust gas discharged from the second and subsequent oxidation steps can be used as it is as an oxidation atmosphere, and the oxidation atmosphere supplied to this first oxidation step can be There is almost no need for heating, temperature control is extremely easy, and there are great process advantages. In this respect, the exhaust gas discharged from the third oxidation step may be supplied to the second oxidation step, and in such a case, only the oxidizing atmosphere supplied to the final oxidation step is heated. It will also be possible to get it done.

そして、この分割された最初の酸化工程から排出される
排ガスはそのま\直接、燃焼させることができ、かつ第
2段以降の酸化工程から排出される排ガス中に含まれる
シリコーン系油剤やタール状物の含有量が少ないので、
触媒処理しても該触媒の寿命を短かくすることが少ない
ので排ガス処理としても工程的、エネルギー的に有利と
なる。
The exhaust gas discharged from this divided first oxidation process can be directly combusted as is, and the silicone oil and tar-like substances contained in the exhaust gas discharged from the second and subsequent oxidation processes can be combusted as is. Because the content of substances is small,
Catalytic treatment rarely shortens the life of the catalyst, so it is advantageous in terms of process and energy for exhaust gas treatment.

以下、本発明の具体的態様を図面により説明する。Hereinafter, specific embodiments of the present invention will be explained with reference to the drawings.

第2図は本発明の酸化工程の1例を示すフローチャート
図である。
FIG. 2 is a flowchart showing one example of the oxidation step of the present invention.

図において、0はプレカーサ、(1)、(2)はそれぞ
れ第1段(最初)および第2段酸化炉、(3)は新鮮外
気供気ライン、(4) 、 (4)’は給気調節バルブ
、(5) 、 (5)’はヒータ、(6) 、 (6’
)および(9)はブロワ−1(7) 、 (7’)は循
環ガス供給ライン、(8)。
In the figure, 0 is the precursor, (1) and (2) are the first stage (first) and second stage oxidation furnaces, respectively, (3) is the fresh outside air supply line, and (4) and (4)' are the air supply lines. Control valve, (5), (5)' is heater, (6), (6'
) and (9) are the blower 1 (7), (7') is the circulating gas supply line, and (8).

(8′)は循環ガス抜出ライン、(10)は排気ガス調
節バルブ、(11)は排気ライン、(12)は排ガス処
理設備、(13)は大気放出ラインである。
(8') is a circulating gas extraction line, (10) is an exhaust gas control valve, (11) is an exhaust line, (12) is an exhaust gas treatment facility, and (13) is an atmosphere discharge line.

図に示すようにプレカーサ(0)は2段に分割された酸
化炉(1) 、 (2)で酸化される。
As shown in the figure, the precursor (0) is oxidized in an oxidation furnace (1) and (2) divided into two stages.

炉(2)の循環ガス抜出ライン(8′)と給気調節バル
ブ(4勺で給気量を調節された外気供気ライン(3)か
らの新鮮空気との混合ガスは、ヒータ(5′)で所定温
度に加熱され、ブロワ−(6勺により循環ガス供給ライ
ン(7/)を経て、二つに分割され、その一方の排気ガ
スは酸化炉(2)に供給される。
The mixed gas of fresh air from the outside air supply line (3) whose supply air volume is regulated by the circulating gas extraction line (8') of the furnace (2) and the air supply control valve (4') is supplied to the heater (5'). The exhaust gas is heated to a predetermined temperature by a blower (6) and divided into two parts via a circulating gas supply line (7/), and the exhaust gas from one of them is supplied to an oxidation furnace (2).

残りの該排気ガスは炉(1)の循環ガスと混合し、炉(
1)に供給される。
The remaining exhaust gas is mixed with the circulating gas of the furnace (1) and
1).

他方、炉(1)の循環ガス抜出ライン(8)を経たガま
たは外気供気ライン(3)からの新鮮空気と混合してヒ
ータ(5)で所定温度に加熱され、ブロワ−(6)によ
って循環ガス供給ライン(7)を通して炉(1)内に供
給されるが前記したように該供給ライン(7)において
は炉(2)からの分割された排ガスが混合されている。
On the other hand, the gas that has passed through the circulating gas extraction line (8) of the furnace (1) or fresh air from the outside air supply line (3) is mixed with air and heated to a predetermined temperature by the heater (5), and then the blower (6) The circulating gas is supplied into the furnace (1) through the circulating gas supply line (7), and as described above, the divided exhaust gas from the furnace (2) is mixed in the supply line (7).

また、炉(1)の排ガスの1部は、排ガス調節バルブ(
10)により排気量を調節して排気ライン(n)を経て
排ガス処理設備で通常は直燃処理され、大気放出ライン
(13)を経て排気される。
In addition, a part of the exhaust gas from the furnace (1) is supplied to the exhaust gas control valve (
10), the gas is passed through an exhaust line (n), usually subjected to direct combustion treatment in an exhaust gas treatment facility, and then exhausted through an atmosphere discharge line (13).

次に第3図、第4図は本発明の他の酸化工程の例を示す
フローチャート図である。
Next, FIGS. 3 and 4 are flowcharts showing another example of the oxidation process of the present invention.

第6図は炉(1)の容積を炉(2)の容積より小さくし
た場合で、炉(1)/炉(2)の容積比は、たとえば1
/2〜115が挙げられるが特に限定されるものではな
い。
Figure 6 shows the case where the volume of the furnace (1) is smaller than the volume of the furnace (2), and the volume ratio of the furnace (1)/furnace (2) is, for example, 1.
/2 to 115, but is not particularly limited.

このような炉形状を酸化工程に適用した場合は、炉(1
)の炉内温度斑減少の効果が高まるとともに、連続運転
により、炉(1)の糸条出入口部に付着したタール状物
の除去清掃が容易となるメリットを有する。
When such a furnace shape is applied to the oxidation process, the furnace (1
) has the advantage of increasing the effect of reducing temperature variations in the furnace (1), and facilitates removal and cleaning of tar-like substances adhering to the yarn inlet/outlet portion of the furnace (1) due to continuous operation.

第4図は酸化工程を6段に設けるとともに、炉内容積を
順次大きくし、炉に)および炉(3)の酸化工程からの
排気ガスのそれぞれ分害しされた一方のガスが、炉(1
)の循環ガスと混合して使用される例である。
Figure 4 shows that the oxidation process is carried out in six stages, and the volume of the furnace is gradually increased, so that one of the exhaust gases from the oxidation process of the furnace (1) and the furnace (3) is divided into two stages.
) is used in combination with circulating gas.

この場合、これら各炉の容積比は 炉(1)/炉(2)/炉(14) = [L 2 / 
[L 8 / 1〜[L5/[16/1 が一般的であるが、特に限定されるものではない。
In this case, the volume ratio of each of these furnaces is Furnace (1)/Furnace (2)/Furnace (14) = [L 2 /
[L8/1 to [L5/[16/1] is common, but is not particularly limited.

第5図は従来の酸化工程を示すフローチャート図でおる
FIG. 5 is a flowchart showing a conventional oxidation process.

以下に本発明の効果を実施例により具体的に説明するっ
なお、酸化性雰囲気中のタール、耐炎化糸の毛羽および
耐炎化糸の水分率は次の方法によって測定した。
The effects of the present invention will be specifically explained below with reference to Examples. In addition, tar in an oxidizing atmosphere, fluff of the flame-resistant yarn, and moisture content of the flame-resistant yarn were measured by the following methods.

(1)  タール状物 酸化芥囲気ガスを200℃に保温した導管で尋ひき、活
性炭にタール状物を職層させ、鉄層61S銑の活性、炭
の重−増により求める。
(1) Tar-like substance oxidation gas is evaporated through a pipe kept at 200°C, tar-like substance is applied to activated carbon, and the activity of iron layer 61S pig iron is determined by the increase in the weight of charcoal.

(2)耐炎化糸の毛羽 6000 デニール6000フイシメントより成る耐炎
化糸を白色紙の上におき、1mの間の毛羽の数を計11
する。
(2) Flame-resistant yarn made of 6000 denier fisciment was placed on white paper, and the total number of fluffs in 1 meter was 11.
do.

(3)水分率 耐炎化糸を硫酸アンモニウム水溶液のデシケータ−(2
5℃で81%恒湿)中に入れ、16時間吸湿させた後の
吸着水分率を求める。
(3) Moisture content The flame-retardant yarn is placed in a desiccator (2
The sample was placed in a 5°C (81% constant humidity) chamber and allowed to absorb moisture for 16 hours, and then the adsorbed moisture content was determined.

実施例1.比較例1 炭化水素系油剤を6.0重量%付与したアクリル系繊維
を毎時100Kgの割合で連続的に供給し第2.ろ、4
および5図に示すフローに従ってそれぞれ酸化処理した
。この時の酸化条件、得られた耐炎化糸の毛羽、操業性
およびエネルギー消費量などについて調べた結果を第1
表に示す。なお排ガス処理は、灯油を助燃剤として排ガ
スに混合し、直燃処理とした。
Example 1. Comparative Example 1 Acrylic fibers to which 6.0% by weight of hydrocarbon oil was applied were continuously fed at a rate of 100 kg/hour. Ro, 4
and oxidation treatment according to the flow shown in Figure 5, respectively. The results of investigating the oxidation conditions at this time, the fluff of the obtained flame-resistant yarn, operability, energy consumption, etc.
Shown in the table. In the exhaust gas treatment, kerosene was mixed with the exhaust gas as a combustion improver, and direct combustion treatment was performed.

第1表に示すように本発明を適用−したテストNα1.
2.3は、いずれもエネルギー消費が少ない。jた第1
段酸化工程の処理時間が短かいテストN112およびテ
ス) N[L 3は、該第1段酸化工程出入ロ部分にタ
ール状物がたまりにくく、したがって焼成中の糸条への
再付着も少なく耐炎化糸の品位が良好であった。
As shown in Table 1, test Nα1 to which the present invention was applied.
2.3 both consume less energy. 1st
Test N112 and Test N[L 3, in which the processing time of the stage oxidation process is short, are less likely to accumulate tar-like substances in the entry and exit portions of the first stage oxidation process, and are therefore flame resistant with less re-adhesion to the yarn during firing. The quality of the converted yarn was good.

さらに本発明を適用した排ガス処理における灯油消費量
も少ないという効果が認められた。
Furthermore, the effect of reducing kerosene consumption in exhaust gas treatment to which the present invention is applied was recognized.

以下余白 実施例2.比較例2 実施例1および比較例1と同じアクリル系繊維にシリコ
ーン油剤としてジメチルアミノンロキサン20重量部、
炭化水素系油剤80重量部とからなる配合油剤を用い、
該油剤を2.5重量%付与した以外は実施例1.比較例
1の対応フロー図の酸化条件と同様にして焼成した。な
お排ガス処理は、灯油を助燃剤として排ガスに混合し、
直燃処理した。
Margin Example 2 below. Comparative Example 2 20 parts by weight of dimethylaminoloxane as a silicone oil agent was added to the same acrylic fiber as in Example 1 and Comparative Example 1.
Using a blended oil consisting of 80 parts by weight of a hydrocarbon oil,
Example 1 except that 2.5% by weight of the oil agent was applied. Firing was performed under the same oxidation conditions as in the corresponding flowchart of Comparative Example 1. For exhaust gas treatment, kerosene is mixed into the exhaust gas as a combustion improver.
Treated with direct combustion.

得られた耐炎化糸の毛羽、操業性およびエネルギー消費
量などについて結果を第2表に示す。
Table 2 shows the results regarding the fluff, workability, energy consumption, etc. of the flame-resistant yarn obtained.

第2表に示すように本発明を適用したテストNa4,5
.6はエネルギー消費が少ない。また第1段の酸化工程
の処理時間が短かいテストN[L5.6は耐炎化糸の毛
羽および操業性が良好であった。
As shown in Table 2, tests to which the present invention was applied Na4,5
.. 6 has low energy consumption. In addition, test N [L5.6, in which the treatment time of the first stage oxidation step was short, had good fluff of the flame-resistant yarn and good operability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化雰囲気中でアクリル系繊維を加熱した場合
の繊維の含有水分率と該繊維から発生するプリコーン系
油剤および該油剤並びに繊維の熱分解生成物の量との関
係を示す図である第2図は本発明の酸化工程の例を示す
フローチャート図、蜂だ第6図、第4図はそれぞれ本発
明にかかる酸化工程の他の例を示すフローチャート図で
ある。第5図は従来の酸化工程を示すフローチャート図
である。 0     ・・・・・・ プレカーサ、1    ・
  第1段酸化炉、 2     ・・・・・・第2段酸化炉、6    ・
・・・・・・・新鮮外気供気ライン、4、4’、 4“
・ ・・・給気調節バルブ、S、 S/、 S//  
 ・・・・・・・・ ヒータ、6、6/、 6//  
・・・・・・・ ブロワ−17、7/ 、 7//  
 ・−・・・循環ガス供給ライン、S、 S/ 、 S
//・−・・・・・ 循環ガス抜出ライン、919′ 
  ・ ・ ・ ブロワ−110、10’   ・・・
・・ 排ガス調節バルブ、11     ・・・  排
気ライン、12     ・・・・ ・・・・排ガス処
理設備、13    ・・・・・・・・・ 大気放出ラ
イン、14    ・・・・・・・・  第6段酸化炉
、S    ・・・・・・酸化工程で蒸発および熱分解
するシリコーン系油 剤の発生量、 T    ・・・・・・・ 酸化工程でのタール状物発
生量、 特許出願人 東し株式会社 dロ工ヒイヒコ#32σ会巳の水損)ノシf%)第1図 第3図
FIG. 1 is a diagram showing the relationship between the moisture content of acrylic fibers when heated in an oxidizing atmosphere and the amounts of precone oils generated from the fibers and thermal decomposition products of the oils and fibers. FIG. 2 is a flowchart showing an example of the oxidation step of the present invention, and FIGS. 6 and 4 are flowcharts showing other examples of the oxidation step of the invention. FIG. 5 is a flowchart showing a conventional oxidation process. 0 ・・・・・・Precursor, 1 ・
1st stage oxidation furnace, 2...2nd stage oxidation furnace, 6 ・
・・・・・・Fresh outside air supply line, 4, 4', 4“
・ ...Air supply control valve, S, S/, S//
・・・・・・・・・ Heater, 6, 6/, 6//
...Blower-17, 7/, 7//
・・・・・・Circulating gas supply line, S, S/, S
//・−・・・・ Circulating gas extraction line, 919′
・ ・ ・ Blower 110, 10' ・ ・ ・
... Exhaust gas control valve, 11 ... Exhaust line, 12 ... ... Exhaust gas treatment equipment, 13 ...... Atmospheric release line, 14 ...... No. 6-stage oxidation furnace, S: Amount of silicone oil that evaporates and thermally decomposes during the oxidation process, T: Amount of tar-like material generated during the oxidation process, Patent applicant Azuma d Roko Hiihiko Co., Ltd. #32σAimi's water damage) Noshi f%) Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 (1)  アクリル系繊維を前駆体として、200〜6
00℃の酸化雰囲気中で加熱し、得られた酸化繊維をよ
り高温の不活性雰囲気中で加熱して炭素繊維を製造する
に際して、該前駆体を酸化雰囲気中で加熱する酸化工程
を少くとも2段階に分割し、この分割された各酸化工程
に供給する酸化性気体をそれぞれ独立に供給すると共に
、第1段の酸化工程には、少くとも第2段以降の酸化工
程から、排出される排気ガスまたは該排気ガスと新鮮な
酸化性気体との混合ガスを供給することを特徴とする耐
炎化繊維もしくは炭素繊維の製造法。 (2、特許請求の範囲第1項において、アクリル系繊維
がシリコーン系油剤で処理された繊維である耐炎化繊維
もしくは炭素繊維の製造法。 (3)特許請求の範囲第1,2項において、最初の酸化
工程を経由した後の繊維の含有水分率が約2〜4重量%
である耐炎化繊維もしくは炭素繊維の製造法。
[Claims] (1) Acrylic fiber as a precursor, 200 to 6
When manufacturing carbon fiber by heating the precursor in an oxidizing atmosphere at 00°C and heating the obtained oxidized fiber in an inert atmosphere at a higher temperature, the oxidation step of heating the precursor in the oxidizing atmosphere is performed at least twice. The oxidizing gas is divided into stages, and the oxidizing gas to be supplied to each divided oxidation process is supplied independently, and the exhaust gas discharged from at least the second stage oxidation process is used for the first stage oxidation process. A method for producing flame-resistant fibers or carbon fibers, which comprises supplying gas or a mixed gas of the exhaust gas and fresh oxidizing gas. (2. In claim 1, a method for producing flame-resistant fibers or carbon fibers in which acrylic fibers are fibers treated with a silicone oil agent. (3) In claims 1 and 2, After going through the first oxidation process, the moisture content of the fiber is approximately 2 to 4% by weight.
A method for producing flame-resistant fiber or carbon fiber.
JP22388882A 1982-12-22 1982-12-22 Manufacture of flame resistant fiber or carbon fiber Granted JPS59116423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22388882A JPS59116423A (en) 1982-12-22 1982-12-22 Manufacture of flame resistant fiber or carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22388882A JPS59116423A (en) 1982-12-22 1982-12-22 Manufacture of flame resistant fiber or carbon fiber

Publications (2)

Publication Number Publication Date
JPS59116423A true JPS59116423A (en) 1984-07-05
JPS623248B2 JPS623248B2 (en) 1987-01-23

Family

ID=16805276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22388882A Granted JPS59116423A (en) 1982-12-22 1982-12-22 Manufacture of flame resistant fiber or carbon fiber

Country Status (1)

Country Link
JP (1) JPS59116423A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233822A (en) * 1985-08-08 1987-02-13 Toray Ind Inc Production of carbon fiber
JP2008231644A (en) * 2007-03-23 2008-10-02 Mitsubishi Rayon Co Ltd Carbon fiber production apparatus and carbon fiber production method
JP2008231611A (en) * 2007-03-20 2008-10-02 Mitsubishi Rayon Co Ltd Flame-resistance treatment oven and method for producing carbon fiber
JP2009041165A (en) * 2007-08-13 2009-02-26 Mitsubishi Rayon Co Ltd Flameproofing apparatus
JP2009174077A (en) * 2008-01-23 2009-08-06 Mitsubishi Rayon Co Ltd Carbon fiber production apparatus and method for producing carbon fiber
JP2009174078A (en) * 2008-01-23 2009-08-06 Mitsubishi Rayon Co Ltd Carbon fiber production apparatus and method for producing carbon fiber
JPWO2010035800A1 (en) * 2008-09-26 2012-02-23 独立行政法人国立高等専門学校機構 Water purification system and method for increasing dissolved oxygen concentration in water to be purified
JP2013524028A (en) * 2010-03-31 2013-06-17 コーロン インダストリーズ インク Carbon fiber manufacturing method and carbon fiber precursor fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9585456B2 (en) * 2012-04-13 2017-03-07 Amorepacific Corporation Cosmetic composition container comprising foam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4987826A (en) * 1972-12-28 1974-08-22
JPS5048228A (en) * 1973-09-08 1975-04-30
JPS5725417A (en) * 1980-07-17 1982-02-10 Mitsubishi Rayon Co Ltd Heat-treating apparatus for preparing carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4987826A (en) * 1972-12-28 1974-08-22
JPS5048228A (en) * 1973-09-08 1975-04-30
JPS5725417A (en) * 1980-07-17 1982-02-10 Mitsubishi Rayon Co Ltd Heat-treating apparatus for preparing carbon fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233822A (en) * 1985-08-08 1987-02-13 Toray Ind Inc Production of carbon fiber
JP2008231611A (en) * 2007-03-20 2008-10-02 Mitsubishi Rayon Co Ltd Flame-resistance treatment oven and method for producing carbon fiber
JP2008231644A (en) * 2007-03-23 2008-10-02 Mitsubishi Rayon Co Ltd Carbon fiber production apparatus and carbon fiber production method
JP2009041165A (en) * 2007-08-13 2009-02-26 Mitsubishi Rayon Co Ltd Flameproofing apparatus
JP2009174077A (en) * 2008-01-23 2009-08-06 Mitsubishi Rayon Co Ltd Carbon fiber production apparatus and method for producing carbon fiber
JP2009174078A (en) * 2008-01-23 2009-08-06 Mitsubishi Rayon Co Ltd Carbon fiber production apparatus and method for producing carbon fiber
JPWO2010035800A1 (en) * 2008-09-26 2012-02-23 独立行政法人国立高等専門学校機構 Water purification system and method for increasing dissolved oxygen concentration in water to be purified
JP2013524028A (en) * 2010-03-31 2013-06-17 コーロン インダストリーズ インク Carbon fiber manufacturing method and carbon fiber precursor fiber

Also Published As

Publication number Publication date
JPS623248B2 (en) 1987-01-23

Similar Documents

Publication Publication Date Title
JP3889051B2 (en) Method for recovering sulfur compounds H {lower 2} S, SO {lower 2}, COS and / or CS {lower 2} present in the residual gas from the sulfur plant in the form of sulfur and removing substantially all of them
US4610860A (en) Method and system for producing carbon fibers
US4314981A (en) Method for preparing carbon fibers
JPS59116423A (en) Manufacture of flame resistant fiber or carbon fiber
EP0671202B1 (en) Process for the production of hollow carbon fiber membranes
US4115317A (en) Method and apparatus for regenerating and manufacturing activated carbon
US4552743A (en) Process for producing carbon fiber
GB2184819A (en) System for producing carbon fibers
JP5075654B2 (en) Carbon fiber manufacturing apparatus and carbon fiber manufacturing method
JPS58214528A (en) Production of carbon fiber
US2682560A (en) Conversion of organic hydroxy compounds to carbonyl derivatives
JP2012067419A (en) Exhaust gas treatment apparatus for carbonization furnace
JP4019702B2 (en) Deoiling method for glass fiber products
JPS5982414A (en) Heat-treatment apparatus for manufacture of carbon fiber
JP2999042B2 (en) Method for producing vapor grown carbon fiber and apparatus for producing vapor grown carbon fiber used in the method
JPS59116419A (en) Manufacture of flame resistant yarn
JPS5825043B2 (en) Continuous production method of fibrous activated carbon
JPS5853086B2 (en) Method for producing flame-resistant fibers
JP2674086B2 (en) Exhaust gas treatment equipment
JPH04308225A (en) Heat treatment apparatus for carbon fiber
JP2001234434A (en) Method for producing carbon fiber
JPS59142826A (en) Waste gas treatment in carbon fiber manufacturing
JPH01282348A (en) Provision of fiber with flame resistance
JPH01118623A (en) Provision of precursor fiber with flame resistance
JPS6233822A (en) Production of carbon fiber