JPS5911622A - Heating method - Google Patents

Heating method

Info

Publication number
JPS5911622A
JPS5911622A JP12052782A JP12052782A JPS5911622A JP S5911622 A JPS5911622 A JP S5911622A JP 12052782 A JP12052782 A JP 12052782A JP 12052782 A JP12052782 A JP 12052782A JP S5911622 A JPS5911622 A JP S5911622A
Authority
JP
Japan
Prior art keywords
wafer
light
psg
molecular state
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12052782A
Other languages
Japanese (ja)
Inventor
Tatsumi Hiramoto
立躬 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP12052782A priority Critical patent/JPS5911622A/en
Publication of JPS5911622A publication Critical patent/JPS5911622A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To extremely simplify positioning, thereby to improve working properties and productivity, by selectively and locally heating a predetermined area on a semiconductor wafer by the transfer of heat through the area of contact between the wafer and PSG. CONSTITUTION:A wafer 3 is disposed on pins 4a upstanding on a wafer table 4. A phosphate glass (PSG) is deposited only on a predetermined area of the surface of the wafer 3 by evaporation using mask, the deposited film having a thickness of about 1.2mum. A carbon dioxide gas laser 1 can emit light with a center wavelength of 10.6mum and the vicinity which is generated through the transition from a molecular state SIGMAu<+>(00 deg.1) to a molecular state SIGMAg<+>(10 deg.), or light with a center wavelength of 9.6mum and the vicinity which is generated through the transition from a molecular state SIGMAu<+>(00 deg.1) to a molecular state SIGMAg<+>(02 deg.0). If the carbon dioxide gas laser 1 is oscillated with 10<4>W for about one second and the irradiation intensity of the light with a center wavelength 10.6mum and the vicinity on the silicon wafer is set at about 80W/cm<2>, then only the predetermined part of the wafer covered with the PSG film can be raised in temperature to about 900 deg.C for several seconds.

Description

【発明の詳細な説明】 本発明は半導体ウェハーの加熱方法に関する。[Detailed description of the invention] The present invention relates to a method of heating a semiconductor wafer.

半導体ウェハー、例えばシリコンウェハーの基板を使っ
てI、SIなどを生産する場合、その基板は、生産工程
の途中で種々の目的をもって加熱される。
When producing I, SI, etc. using a substrate of a semiconductor wafer, for example a silicon wafer, the substrate is heated for various purposes during the production process.

例えば、不純物の深部拡散、電気活性化、アニール、保
膿膜や絶縁膜の形成等々であり、種々の加熱方法、加熱
条件の研究が盛んにおこなわれている。この加熱の多く
は半導体ウエノ・−の全域を昇温させるものであるが、
できれば、半導体ウエノ・−の一部分、指定された所定
区域のみ昇温させて加熱処理したい場合も多い。
For example, deep diffusion of impurities, electrical activation, annealing, formation of a purulent retention film or an insulating film, etc., and various heating methods and heating conditions are being actively researched. Most of this heating is to raise the temperature of the entire area of the semiconductor wafer.
If possible, it is often desired to perform heat treatment by raising the temperature of only a portion of the semiconductor wafer, a designated predetermined area.

上記のように指定された所定区域のみ加熱したい場合、
従来は、所定区域に指向するよう制御された細い電子線
ビーム、レーザービームを照射することによって行なわ
れるが、「位置合せ」が非常に難かしい欠点がある。
If you want to heat only the specified area as above,
Conventionally, this has been done by irradiating a narrow electron beam or laser beam that is controlled to be directed to a predetermined area, but this has the disadvantage that "alignment" is extremely difficult.

本発明は、所定区域のみ加熱するための加熱方法であっ
て、位置合せが極めて簡単であり、作業性、生産性の点
でも非常にすぐれた新規な加熱方法を提供することを目
的としており、その特徴は、ガリウム、ガリウム砒素、
ゲルマニウム、シリコン等の、971m〜11μmの波
長の光を透す材料を基板とした半導体ウエノ・−の表面
の所定区域に、リン系ガラスPSGのように、9μm〜
11μmの波長の光をよく吸入する膜を設け、 炭酸ガスレーザーにおける炭酸ガスの分子状態の遷移Σ
言(00°1)→Σ;(10°0)もしくはΣ′、(o
ool)→Σ;(02°0)から放出される光を照射す
ることによって前記膜を昇温せしめ、前記半導体ウェハ
ーの6所定区域を選択的に加熱することにある。
The present invention aims to provide a novel heating method for heating only a predetermined area, which is extremely easy to align, and has excellent workability and productivity. Its characteristics are gallium, gallium arsenide,
A semiconductor substrate made of a material such as germanium or silicon that transmits light with a wavelength of 971 m to 11 μm is applied to a predetermined area on the surface of a semiconductor wafer having a wavelength of 9 μm to 11 μm, such as phosphorous glass PSG.
A film that absorbs light with a wavelength of 11 μm is installed to detect the transition Σ of the molecular state of carbon dioxide gas in a carbon dioxide laser.
(00°1) → Σ; (10°0) or Σ′, (o
The method involves raising the temperature of the film by irradiating it with light emitted from oool)→Σ;(02°0), thereby selectively heating six predetermined areas of the semiconductor wafer.

以下図面を参照しながら本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

図において、1は、直径10crnの大ビームで光全放
射する炭酸ガスレーザー、2はその電源であシ、ビーム
の正面には最大直径4インチ級のシリコンウェハー3を
配置する。ウェハー3は、ウェハ一台4に植立されたピ
ン4α上に配置され、ウェハ一台4やピン4αの昇温に
よるウェハー3への悪影響はできるだけさけるよう配慮
しである。ウェハー3の表面には、マスキングを利用し
て所定の区域のみリン系ガラスPSGを蒸着してあり、
この蒸着膜の厚みは大体1.2μmである。
In the figure, 1 is a carbon dioxide laser that emits all light with a large beam with a diameter of 10 crn, 2 is its power source, and a silicon wafer 3 with a maximum diameter of 4 inches is placed in front of the beam. The wafers 3 are placed on pins 4α planted on each wafer 4, and care is taken to avoid adverse effects on the wafers 3 due to temperature rise of the wafers 4 and the pins 4α as much as possible. On the surface of the wafer 3, phosphorus glass PSG is deposited only in predetermined areas using masking.
The thickness of this deposited film is approximately 1.2 μm.

上記炭酸ガスレーザーからは、発振条件を変えてやれば
、分子状態Σ言(00°1)から分子状態Σ;(1o0
o)への遷移によって生ずる、中心波長10,6μm及
びその近傍の光を放出させたり、分子状態Σ言(00°
1)から分子状態Σ;(02°0)への遷移によって生
ずる、中心波長9.6μm及びその近傍の光を放出させ
たりすることができ、上記状態で、炭酸ガスレーザーを
104W で約1秒間発振させ、シリコンウェハー上で
の10.6μm及びその近傍の光の照射強度を約80W
/−にすると、上記PSGは約1000 tZ’程にな
り、PSGとシリコンウェハーの面接触を通しての伝熱
でPSG膜でお\われている所定の部分のみ数秒間約9
00Cに昇温できる。当然ガから、1回の発振照射で前
記温度に昇温させても良いし、2回以上の連発の発振照
射でも良い。ところで、ウェハー   ゛は、所定の区
域以外も前記強度の光を受けるが、幸なことにシリコン
ウェハーは、9μm〜11μmの光を透過してしまうの
で殆んど昇温しない。したがって、ウェハ一台の方が上
記強度の光を受けることになるから、適度に遠ざけるか
もしくは冷却機構つきの方が良い場合がある。簡単には
、表面4bを球状もしくは粗面の反射面としておき、受
けた光が散乱されるようにしておく。
From the above carbon dioxide laser, by changing the oscillation conditions, the molecular state Σ (00°1) can be changed from the molecular state Σ; (1o0
o), emitting light with a center wavelength of 10.6 μm and its vicinity, or changing the molecular state Σ(00°
It is possible to emit light with a center wavelength of 9.6 μm and its vicinity, which is generated by the transition from 1) to the molecular state Σ; (02°0). oscillate, and the irradiation intensity of light at 10.6 μm and its vicinity on the silicon wafer is approximately 80 W.
/-, the above-mentioned PSG becomes about 1000 tZ', and heat transfer through surface contact between the PSG and the silicon wafer causes only the predetermined portion covered with the PSG film to heat for several seconds at about 9 tZ'.
The temperature can be raised to 00C. Naturally, the temperature may be raised to the above temperature by one oscillation irradiation, or two or more consecutive oscillation irradiations may be performed. Incidentally, the wafer receives the above-mentioned intensity of light in areas other than the predetermined areas, but fortunately, silicon wafers transmit light of 9 μm to 11 μm, so the temperature hardly rises. Therefore, since a single wafer receives the above-mentioned intensity of light, it may be better to keep the wafer away from the wafer or to provide a cooling mechanism. Simply, the surface 4b is made into a spherical or rough reflecting surface so that the received light is scattered.

上記の局所的加熱方法は、炭酸ガスレーザーから放射さ
れる10.6μm及びその近傍の波長の光を、処理すべ
き半導体ウェハーの直径なみにした太き照 なビームで全面随射をするものであるから、局所的に指
定された区域の昇温とは言え、事実上、位置合せ作業は
不要であり、加熱時間も上記の通シ、数秒間程度ででき
るので、生産性、作業性共に著しく高い。また、多少時
間はか\るが連続発振させたn口いビームを、ウェハー
全域を走査させても指定された所定の部分のみ加熱でき
、この場合も、ウェハー全面照射と同様なので正確な位
置合せなどは事実上不要である。
The above-mentioned local heating method involves irradiating light with a wavelength of 10.6 μm or around 10.6 μm emitted from a carbon dioxide laser over the entire surface using a thick, bright beam with a diameter equal to the diameter of the semiconductor wafer to be processed. Therefore, even if the temperature is to be raised locally in a designated area, there is virtually no need for positioning work, and the heating time can be completed in just a few seconds, so productivity and work efficiency are significantly improved. expensive. Also, although it takes some time, even if the continuously oscillated n-shaped beam scans the entire wafer, it is possible to heat only a designated area, and in this case, it is the same as irradiating the entire wafer, so accurate alignment is possible. etc. are virtually unnecessary.

ところで上記実施例では、半導体ウエノ・−としてシリ
コンウェハーを示したが、ガリウム、ガリウム砒素、ゲ
ルマニウムなども9μm〜11μmの波長の光をよく透
過させるので、これらが基板であってもシリコンウェハ
ーの場合と同様な効果が得られる。また加熱光は、当然
ながら9.6μm及びその近傍の光でも同様な効果が得
られる。加熱処理が済んだ後のPSGは、そのま\絶縁
膜や保膿膜として利用しても良いし、不要であれば通常
のエツチング処理により除去しても良い。
By the way, in the above embodiment, a silicon wafer is shown as a semiconductor wafer, but gallium, gallium arsenide, germanium, etc. also transmit light with a wavelength of 9 μm to 11 μm well, so even if these are used as a substrate, a silicon wafer can also be used. A similar effect can be obtained. Furthermore, as a matter of course, the same effect can be obtained with heating light having a wavelength of 9.6 μm or around 9.6 μm. After the heat treatment, the PSG may be used as is as an insulating film or a purulent film, or if unnecessary, it may be removed by normal etching.

本発明は以上の実施例の説明からも理解されるように、
ガリウム、ガリウム砒素、ゲルマニウム、シリコンなど
のような半導体ウェハーが、9μm〜11.0mの波長
の光をよく透過すること、及びPSGのようなガラスが
逆に9μFM〜11μmの波長の光を吸収するところに
着目し、上記半導体ウエノ・−の所定の区域K PSG
の膜を設けておき、炭噛ガスレーザーからの10.6μ
m及びその近傍の波長の光もしくは9.6μm及びその
近傍の光でPSGの膜を加熱し、半導体ウェハーとPS
Gの接触面を経由した伝達でウェハーの所定区域を選択
的に、局所的に加熱するものであるから、従来の局所的
加熱方法に比べ著しく生産性が高い。
As understood from the description of the above embodiments, the present invention includes:
Semiconductor wafers such as gallium, gallium arsenide, germanium, silicon, etc. transmit light with a wavelength of 9 μm to 11.0 m well, and glasses such as PSG, on the contrary, absorb light with a wavelength of 9 μFM to 11 μm. Focusing on this, a predetermined area K PSG of the semiconductor substrate
A film of 10.6μ from a charcoal gas laser is provided.
The PSG film is heated with light at a wavelength of m and its vicinity, or light at a wavelength of 9.6 μm and its vicinity, and the semiconductor wafer and the PSG film are heated.
Since predetermined areas of the wafer are selectively and locally heated by transmission of G through the contact surface, productivity is significantly higher than conventional local heating methods.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明加熱方法の一実施例の要部の説明図であって
、1は炭酸ガスレーザー、2は電源、3ハシ’)コンウ
ェハー、4はウェハ一台を示す。
The figure is an explanatory view of the main parts of an embodiment of the heating method of the present invention, in which 1 shows a carbon dioxide laser, 2 shows a power source, 3 shows a condensed wafer, and 4 shows one wafer.

Claims (1)

【特許請求の範囲】 ガリウム、ガリウム砒素、ゲルマニウム、シリコン等の
、9μff1〜11μmの波長の光を透す材料を基板と
した半導体ウェハーの表面の所定区域に、リン系ガラス
PSGのように、9μm〜11μmの波長の光をよく吸
入する材料の膜を設け、 炭酸ガスレーザーにおける炭酸ガスの分子状態の遷移Σ
:(00°1)→Σ;(10°0)もしくはΣ:(00
°1)→Σ、(02°0)から放出される光を照射する
ととによって前記膜を昇温せしめ、前記半導体ウエノ・
−の所定区域を選択的に加熱することを特徴とする半導
体ウェハーの加熱方法。
[Claims] In a predetermined area of the surface of a semiconductor wafer whose substrate is a material such as gallium, gallium arsenide, germanium, silicon, etc. that transmits light with a wavelength of 9 μff1 to 11 μm, a 9 μm thick film such as phosphorus glass PSG is applied. A film made of a material that absorbs light with a wavelength of ~11 μm is provided to detect the transition Σ of the molecular state of carbon dioxide gas in a carbon dioxide laser.
:(00°1)→Σ;(10°0) or Σ:(00
By irradiating the light emitted from °1)→Σ, (02°0), the temperature of the film is increased by
- A method for heating a semiconductor wafer, comprising selectively heating a predetermined area of the semiconductor wafer.
JP12052782A 1982-07-13 1982-07-13 Heating method Pending JPS5911622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12052782A JPS5911622A (en) 1982-07-13 1982-07-13 Heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12052782A JPS5911622A (en) 1982-07-13 1982-07-13 Heating method

Publications (1)

Publication Number Publication Date
JPS5911622A true JPS5911622A (en) 1984-01-21

Family

ID=14788466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12052782A Pending JPS5911622A (en) 1982-07-13 1982-07-13 Heating method

Country Status (1)

Country Link
JP (1) JPS5911622A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710939A (en) * 1980-06-24 1982-01-20 Sony Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710939A (en) * 1980-06-24 1982-01-20 Sony Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
WO2007015388A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
US6570134B2 (en) Heat treatment device of the light irradiation type and heat treatment process of the irradiation type
JPS5939031A (en) Method of reflowing phosphosilicate glass
EP0124261B1 (en) Process for producing monocrystalline layer on insulator
JPS58223320A (en) Diffusing method for impurity
US4443493A (en) Laser induced flow glass materials
JP3777285B2 (en) Saw wire
US4549064A (en) Laser treatment of silicon nitride
JPH04167985A (en) Method for cutting off wafer
JPS5911622A (en) Heating method
JPH03253025A (en) Substrate to be worked and anisotropic etching of silicon
US4431900A (en) Laser induced flow Ge-O based materials
JPH04118190A (en) Method for dividing wafer
JPS59103346A (en) Method of selectively heating insulator layer on semiconductor device
JPS61116820A (en) Annealing method for semiconductor
GB2166379A (en) Method of cutting metal by laser
JP3528734B2 (en) Lamp unit of light irradiation type heat treatment equipment
JP6757953B2 (en) Surface processing method, structure manufacturing method
US4745258A (en) Apparatus for laser-cutting metal interconnections in a semiconductor device
JP2851280B2 (en) Micro lens and manufacturing method thereof
JP2003059855A (en) Light irradiation-type heating treatment device
JP4468643B2 (en) Cutting method
JPH0153577B2 (en)
JPS59121832A (en) Method for heating semiconductor wafer by photo irradiation
JPS61199638A (en) Method for formation of insulating film