JPS59111908A - Direct charge type active carbon reactivator - Google Patents

Direct charge type active carbon reactivator

Info

Publication number
JPS59111908A
JPS59111908A JP22210982A JP22210982A JPS59111908A JP S59111908 A JPS59111908 A JP S59111908A JP 22210982 A JP22210982 A JP 22210982A JP 22210982 A JP22210982 A JP 22210982A JP S59111908 A JPS59111908 A JP S59111908A
Authority
JP
Japan
Prior art keywords
furnace
activated carbon
electrode plates
phase
thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22210982A
Other languages
Japanese (ja)
Inventor
Kozaburo Nakao
中尾 康三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22210982A priority Critical patent/JPS59111908A/en
Publication of JPS59111908A publication Critical patent/JPS59111908A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The drier, the roaster, the reactivator and the supersteam heater, all of which have the same horizontal cross section and electrodes whose numbers decrease successively are piled up in order from the upper side and electricity is fed through a thyrister to obtain high-quality reactivated active carbon with less fluctuation in quality. CONSTITUTION:The active carbon to be reactivated are made to move down intermittently every time the reactivated carbon is excluded, and passed through ovens with a rectangular cross section by its gravity, while electricity is directly applied to the carbon to be reactivated to generate heat up to high temperature. In this process, the drier 1, the roaster 2, the reactivator 3 and the supersteam heater for reactivation 4 are piled up in order from the top down, further the drier 1 is equipped with four plate electrodes 4 arranged in parallel with an equal distance and a three-phase alternate current adjusted in its voltage is applied through the thyrister 6. The roaster 2 is equipped with three plate electrodes 5 arranged in parallel with an equal distance and two series of single phase alternate currents obtained by means of Scott connection 7 is applied through thyrister 6. The reactivator 3 and the steam heater 4 are equipped with a pair of heaters 5 and a single phase alternate current obtained by means of another Scott connection 7 and a pair of phase-shifting transformers 8 is applied through thyrister 6 to them.

Description

【発明の詳細な説明】 この発明は活性炭の直接通電加熱による直接通電式活性
炭再生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a direct current type activated carbon regeneration device that heats activated carbon by direct current flow.

従来、直接通電式活性炭再生装置は、第8図に示すよう
に、乾燥炉1、焙焼炉2、賦活炉3及び賦活用水蒸気過
熱炉4の各炉共、電極板5は2枚であり、その間隔も同
一であった。これでは、通電して活性炭の温度が上昇し
てゆくと、活性炭の比抵抗値が下るので、電極板5に同
じ印加電圧をかけていると電流が増加しすぎるので、電
圧を下げざるを得なくなる。印加電圧を下けると、勿論
電流も下り、炉への供給電力が下p、昇温速度が低下す
る欠点があった。そのため、第9図に示すように、電極
板5の間隔を、乾燥炉1より焙焼炉2を拡げ、更に焙焼
炉2よシ賦活′炉3及び賦活用水蒸気過熱炉4を拡げ、
印加電圧を、あまり下げず電流を抑制しつつ供給電力を
確保するようにしたが、この場合、第10図に示すよう
に、再生済活2.5′ 性炭を炉より取出す時、活性炭は取出孔の直上のハ 部分が優先的に移動する性質があるため、図に記載の線
状に移動し、乾燥炉1の電極板5に近い部分の活性炭が
、他の部分より速く移動する。同様に焙焼炉2の電極板
5に近い部分の活性炭も、速く移動する。このため、炉
内の温度分布の不均一が生じ、炉全体として、再生賦活
程度が、大きくばらつく欠点があった、 父、炉の加熱用電源の取り方は、第11図に示す方法が
一般的であるが、何れも、3相電源側に不平衡を生ぜし
め、特に、大型炉の場合は大きな問題になるという欠点
があった。
Conventionally, as shown in FIG. 8, a direct energization type activated carbon regeneration device has two electrode plates 5 in each of the drying furnace 1, roasting furnace 2, activation furnace 3, and activated steam superheating furnace 4. , the intervals were also the same. In this case, as the temperature of the activated carbon increases when electricity is applied, the specific resistance value of the activated carbon decreases, so if the same applied voltage is applied to the electrode plate 5, the current increases too much, so the voltage has to be lowered. It disappears. When the applied voltage is lowered, the current also decreases, which has the disadvantage of lowering the power supplied to the furnace and decreasing the rate of temperature rise. Therefore, as shown in FIG. 9, the spacing between the electrode plates 5 is made wider in the roasting furnace 2 than in the drying furnace 1, and further expanded in the activation furnace 3 and the reactivation steam superheating furnace 4 from the roasting furnace 2.
The applied voltage was not lowered too much and the current was suppressed to ensure the power supply, but in this case, as shown in Figure 10, when the recycled activated 2.5' carbon was taken out of the furnace, the activated carbon Since the part C directly above the extraction hole has the property of preferentially moving, it moves in a linear manner as shown in the figure, and the activated carbon in the part near the electrode plate 5 of the drying oven 1 moves faster than other parts. Similarly, activated carbon in a portion of the roasting furnace 2 near the electrode plate 5 also moves quickly. As a result, there was an uneven temperature distribution within the furnace, which had the disadvantage that the degree of regeneration activation as a whole varied greatly. However, all of them have the disadvantage that they cause unbalance on the three-phase power supply side, which is a big problem especially in the case of large reactors.

更に、従来の炉の運転は、第8図に示したように、乾燥
炉1、焙焼炉2、賦活炉3、賦活用水蒸気過熱炉4に、
各各、温度計9を有し、夫れ夫れの設定温度に設定し、
サイリスク乙により、その印加電圧を変えて、温度vM
整をしているが、再生賦活程度の取出しは、賦活炉5の
温度だけを基準とし、これが950℃に到達すると、再
生済活性炭排出機10を始動し、一定時間(5〜6秒)
作動させて停止し、又、一定時間を経過後、賦活炉6の
温度が、850℃以上に達していると、再度再生済活性
炭排出機10を始動させて、取出していた。このように
、賦活炉3だけの温度を見ての排出は、炉内活性炭の昇
温不充分な部分ができ、従って、再生賦活度合不足とか
、ばらつきの原因になる欠点があった。
Furthermore, in the operation of a conventional furnace, as shown in FIG.
Each has a thermometer 9 and sets the temperature to each set temperature,
By changing the applied voltage, the temperature vM
However, the extraction of regenerated activated carbon is based only on the temperature of the activation furnace 5, and when this reaches 950°C, the recycled activated carbon discharging machine 10 is started and the temperature is kept for a certain period of time (5 to 6 seconds).
If the activation furnace 6 reaches a temperature of 850° C. or higher after a certain period of time has elapsed, the recycled activated carbon discharging machine 10 is started again to take out the activated carbon. In this way, discharge based only on the temperature of the activation furnace 3 has the disadvantage that there are areas where the temperature of the activated carbon in the furnace is insufficiently raised, resulting in insufficient regeneration activation degree and variations.

本発明は、これらの欠点を除くためになされたもので、
これを図面について説明すれば、第1図において、被再
生活性炭は、比抵抗値をできる丈小さくして昇温速度が
早く、通電時の温度分布が一様になるよう、その含水率
を約10%(D、B、)に乾燥して、被再生活性炭投入
口15より、投入するが、この状態に乾燥しても、尚、
比抵抗値は高いので、電極板5の間隔を広くできず、而
も、印加電圧を、安全使用電圧200■以下にするため
、乾燥炉1は少し大きくなるが、その内部に、4枚の電
極板5を、等間隔に設置し、3室に分けこの各室の電極
板5に、適正印加電圧に変圧した6相交流の各相を、第
2図に示すように、サイリスタ6全通して、同時にかけ
て昇温させる。更に炉の容量が、もつと大きい場合は、
活性炭の比抵抗値及び印加電圧を200v以下にすると
いう制限があるので、電極板5の間隔は変えないが板数
を7枚にして、6室とし、電圧を調整した別の3相交流
を、第5図に示すように、もう一系列増加して2系列と
し、サイリスタ6全通して、同時に各室にかけ、昇温さ
せる。
The present invention was made to eliminate these drawbacks.
To explain this with reference to the drawings, in Fig. 1, the regenerated activated carbon has a moisture content of about 100%, so that the specific resistance value is as low as possible, the temperature rise rate is fast, and the temperature distribution when energized is uniform. The recycled activated carbon is dried to 10% (D, B,) and charged through the regenerated activated carbon inlet 15, but even if it is dried to this state,
Since the specific resistance value is high, it is not possible to widen the spacing between the electrode plates 5, and in order to keep the applied voltage below the safe working voltage of 200 mm, the drying oven 1 is slightly larger, but there are four plates inside. Electrode plates 5 are installed at equal intervals, divided into three chambers, and each phase of a six-phase alternating current, which has been transformed to an appropriate applied voltage, is applied to the electrode plates 5 in each chamber through the entire thyristor 6, as shown in Fig. 2. and raise the temperature at the same time. Furthermore, if the capacity of the furnace is large,
Since there is a restriction that the specific resistance value of activated carbon and the applied voltage be 200 V or less, the spacing between the electrode plates 5 is not changed, but the number of plates is changed to 7, making 6 chambers, and another 3-phase AC with adjusted voltage is used. As shown in FIG. 5, one more series is added to make 2 series, and the thyristor 6 is passed through all the chambers at the same time to raise the temperature.

同様に、更には、電極板5の枚数を増加して、(1+3
n>枚とし、n系列の3相交流を印加することができ、
而も、3相交流電源側に不平衡を生じることは、殆ど、
なかった。
Similarly, by increasing the number of electrode plates 5, (1+3
n > sheets, and n-series three-phase alternating current can be applied,
However, in most cases, unbalance occurs on the three-phase AC power supply side.
There wasn't.

次に、焙焼炉2では、炉幅及び炉内両端の電極板5の炉
内側距離が、乾燥炉1のそれらと同じにし、この炉では
、温度が更に上り、比抵抗値が下るので、印加電圧を下
ける必要があるが、これをあまり下げないですむように
、電極板5の間隔を拡ける必要があシ、乾燥炉1が電極
板5を、4枚使用の場合は、焙焼炉2では1枚減じて、
3枚にし、これを等間隔に入れて、電極板50間隔を拡
けたのと同じ効果を与え、スコツト結線7とトランス1
6によシ得られた2組の単相交流電源を、第5図に示す
ように、各電極板に、サイリスタ6全通して、同時に印
加して昇温させる。更に、炉の容量が、もつと大きくな
夛、乾燥炉1で、電極板5が7枚設置し2系列の6相電
源を使用する場合は、焙焼炉2では、電極板5の枚数を
5枚とし2組のスコツト結線7とトランス13の組合わ
せよシ得た4組の単相電源を、第6図に示すように各を
極板5に、サイリスタ6を通じて、同時に印加して、昇
温させる。同様に、更に大型になると電極板5の(1+
2n)枚を等間隔に設け、n組のスコツト結線6と2n
個のトランス13とより2n個の単相電源を得、これを
、サイリスタ6を通して、2n個の室に同時に印加し、
昇温させるが、これら何れの場合も、三相交流電源側に
は、殆ど不平衡を起さなかった。
Next, in the roasting furnace 2, the furnace width and the distance inside the furnace between the electrode plates 5 at both ends of the furnace are the same as those in the drying furnace 1. In this furnace, the temperature further increases and the specific resistance value decreases, so It is necessary to lower the applied voltage, but in order to avoid lowering it too much, it is necessary to widen the spacing between the electrode plates 5.If the drying furnace 1 uses four electrode plates 5, the roasting furnace In 2, subtract one card,
By making three sheets and placing them at equal intervals, it gives the same effect as widening the spacing between the electrode plates 50, and connects the Scotto connection 7 and the transformer 1.
As shown in FIG. 5, two sets of single-phase AC power supplies obtained in step 6 are simultaneously applied to each electrode plate through the entire thyristor 6 to raise the temperature. Furthermore, if the capacity of the furnace is large, if the drying furnace 1 is equipped with seven electrode plates 5 and two series of 6-phase power supply is used, the number of electrode plates 5 in the roasting furnace 2 is As shown in FIG. 6, four sets of single-phase power supplies obtained by combining two sets of Scotto connection 7 and a transformer 13 are simultaneously applied to the electrode plate 5 through the thyristor 6, as shown in FIG. Raise the temperature. Similarly, when the size becomes even larger, the electrode plate 5 (1+
2n) sheets are provided at equal intervals, and n sets of Scotto connection 6 and 2n
2n single-phase power supplies are obtained from the 2n transformers 13 and applied to 2n chambers simultaneously through the thyristor 6,
Although the temperature was raised, almost no unbalance occurred on the three-phase AC power supply side in any of these cases.

更に、賦活炉3、賦活用水蒸気過熱炉4でも、焙焼炉2
と同様、炉幅及び炉内両端の電極板5の炉内側間隔を、
乾燥炉1と同じにするが、これらの炉では、炉内温度が
更に上昇し、比抵抗値が下り、印加電圧を焙焼炉2より
更に下げる必要が生じ、動力がかからないので、ここで
は、焙焼炉2の電極板5の枚数より減じ、極端には、第
4図に示すように、両端のt&板5のみにして、電極板
5の距離を拡けたのと同じ効果を与え、印加電圧の低下
を、できるだけ防ぐようにした。供給電力の取り方も、
第4図に示すように、スコツト結線7と位相変換トラン
ス8から、単相交流をとり、これをサイリスタ6全通し
て印加するようにした。このようにして、これらの炉で
も、印加電圧の低下を最小限に止め、三相電源側に不平
衡を与えず、充分な電力の供給ができるようになった。
Furthermore, in the activation furnace 3, the activation steam superheating furnace 4, the roasting furnace 2
Similarly, the width of the furnace and the spacing inside the furnace of the electrode plates 5 at both ends of the furnace are,
Although it is the same as drying furnace 1, in these furnaces, the temperature inside the furnace further increases, the specific resistance value decreases, and it becomes necessary to lower the applied voltage even more than in roasting furnace 2, and no power is applied, so here, The number of electrode plates 5 in the roasting furnace 2 can be reduced, and in extreme cases, as shown in FIG. I tried to prevent voltage drops as much as possible. How to get the power supply
As shown in FIG. 4, single-phase alternating current is taken from the Scott connection 7 and the phase conversion transformer 8, and is applied throughout the thyristor 6. In this way, even in these furnaces, the drop in applied voltage was kept to a minimum, and sufficient power could be supplied without causing unbalance on the three-phase power supply side.

次に、温度計9の設置位置であるが、従来の炉では、第
8図に示したように、乾燥炉1、焙焼炉2、賦活炉3、
賦活用水蒸気過熱炉4の各戸に、夫れ去れ、温度計9を
有し、夫れ夫れの設定温度に設定し、印加電圧をサイリ
スタ6で、上下させ各戸の温度調整をしているが、再生
賦活度合の取出しは、賦活炉3の温度だけを規準とし、
これが850℃に到達すると、再生済活性炭排出機10
を始動し、一定時間(5〜6秒)作動させて停止し、又
、一定時間(2〜3分)経過後検知し、これが850℃
になっていると、再生済活性炭排出機10を再始動させ
て、取出していた。このように、賦活炉6だけの温度を
見ての排出は、炉内活性炭の昇温不充分、従って、再生
賦活度合いの不足とか、ばらつきの原因となっていた。
Next, regarding the installation position of the thermometer 9, in the conventional furnace, as shown in FIG.
Each unit of the recycle steam superheating furnace 4 is equipped with a thermometer 9, which is set at its own set temperature, and the applied voltage is raised and lowered by a thyristor 6 to adjust the temperature of each unit. , the regeneration activation degree is taken out based only on the temperature of the activation furnace 3,
When this reaches 850℃, the recycled activated carbon discharger 10
Start, operate for a certain period of time (5 to 6 seconds), then stop, and detect after a certain period of time (2 to 3 minutes) that the temperature is 850℃.
, the recycled activated carbon discharger 10 was restarted and removed. In this way, discharge based only on the temperature of the activation furnace 6 causes insufficient temperature rise of the activated carbon in the furnace, resulting in insufficient degree of regeneration and activation, and causes variations.

そこで、当発明の装置では、第1図に示すように温度計
9は、各炉共電極板50間の各室に設けるが、乾燥炉1
では、焙焼炉2に近い炉の下部とし、同様に、賦活炉6
では、賦活用水蒸気過熱炉4に近い下部とするが、賦活
用水蒸気過熱炉4だけは、逆に、賦活炉3に近い上部に
設置する。これは賦活用水蒸気の温度が低いと、賦活炉
3における賦活反応の完結に、悪影響を与えるからであ
る。
Therefore, in the apparatus of the present invention, the thermometer 9 is provided in each chamber between the common electrode plates 50 of each furnace, as shown in FIG.
In this case, the lower part of the furnace near the roasting furnace 2 is set, and similarly, the lower part of the furnace is close to the roasting furnace 2.
In this case, the lower part is close to the reactivation steam superheating furnace 4, but only the reactivation steam overheating furnace 4 is installed in the upper part near the reactivation furnace 3. This is because if the temperature of the activation steam is low, it will adversely affect the completion of the activation reaction in the activation furnace 3.

このように、温度計9を配置して、これらが総て設定温
度に達した時に、炉内活性炭を移動させることにより、
各戸での受は入れ温度も充分となシ従って、次の炉への
移動温度も充分となり、焙焼反応、賦活反応、賦活用水
蒸気過熱効果、何れも円滑充分に行われ、再生品の品質
も、ばらつきが少く、高品位のものが得られるようにな
った。
In this way, by arranging the thermometers 9 and moving the activated carbon in the furnace when they all reach the set temperature,
The receiving temperature at each furnace is sufficient, so the transfer temperature to the next furnace is also sufficient, and the roasting reaction, activation reaction, and activation steam superheating effect are all carried out smoothly and sufficiently, and the quality of the recycled product is high. It has also become possible to obtain high-quality products with less variation.

次に冥施fj1をあげる。生活廃水の三次処理に使用し
たヤシ殻破砕活性炭の吸着量16 % (D、B、)の
廃炭を、含水率12%(D、B、)に乾燥したものを被
再生活性炭とした。炉の大きさは、炉内中が450咽、
最外側の電極板5の炉内側距離650聰、電極板5は厚
さ100胴、高さ600mのものを用い、乾燥炉1は3
室、焙焼炉2は2室、賦活炉3では1室とし、温度計9
は各室の所定位置に設置し、温度計9の設定は、乾燥炉
1は320C1焙焼炉2では650℃、賦活炉3は85
0℃賦活用水蒸気過熱炉4も850℃とし、再生した結
果、次頁に示す表のような成績を得た。
Next, give alms fj1. Waste carbon with an adsorption amount of 16% (D, B,) on crushed coconut shell activated carbon used for the tertiary treatment of domestic wastewater was dried to a water content of 12% (D, B,) and used as recycled activated carbon. The size of the furnace is 450 mm inside.
The distance inside the furnace of the outermost electrode plate 5 is 650 m, the electrode plate 5 has a thickness of 100 m, and a height of 600 m.
The roasting furnace 2 has two chambers, the activation furnace 3 has one chamber, and the thermometer 9
is installed at a predetermined position in each room, and the settings of the thermometer 9 are 320C for the drying furnace 1, 650C for the roasting furnace 2, and 85C for the activation furnace 3.
The 0°C regeneration steam superheating furnace 4 was also set at 850°C, and as a result of regeneration, results were obtained as shown in the table on the next page.

尚、この場合、被再生活性炭の炉内滞留時間は約6.5
時間、再生量は53.5Kg/h、賦活用水蒸気注入量
は46に9/h、消費電力は1時間につき60KWHで
あp、200■の三相交流側の線電流値の差巾は、約5
5〜3.8Aの間に入り、再生品の品質も高く、ばらつ
きの少い再生が、できる
In this case, the residence time of the activated carbon to be recycled in the furnace is approximately 6.5
The time, regeneration amount is 53.5Kg/h, utilization steam injection amount is 46 to 9/h, power consumption is 60KWH per hour, p, the difference in line current value on the three-phase AC side of 200■ is: Approximately 5
It falls between 5 and 3.8A, and the quality of the recycled product is high, allowing playback with little variation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の直接通電式活性炭再生装置の一例を示
す略示縦断側面図、第2図は乾燥炉の平面断面図と給電
配線図、第3図は焙焼炉の平面−断面図と給電配線図、
第4図は賦活炉及び賦活用水蒸気過熱炉の平面断面図と
それらへの給電配線図、第5図は電極板を7枚設けた乾
燥炉の平面断面図と給電配線図、第6図は電極板を5枚
設けた焙焼炉の平面断面図と結電配線図、第7図は電極
板を3枚設けた賦活炉、賦活用水蒸気過熱炉の平面断面
図と、それらへの給電配線図、第8図は従来の直接通電
式活性炭再生装置の縦断側面図、第9図は電極板の間隔
を順次拡げた従来の直接通電式活性炭再生装置の縦断側
面図、第10図は電極板の間隔を順次拡げた炉における
活性炭の流れを示す炉の縦断側面図、第11図は炉の加
熱用電源の取り方を示す配線図、(a)はV結線、(b
)は単相取出しの配線図である。図中の番号1は乾燥炉
2は焙焼炉、6は賦活炉、4は賦活用水蒸気過熱炉、5
はt&板、6はサイリスク、7はスコツト結線、8は位
相変換トランス、9は温度計、10は再生済活性炭排出
機、11はV結線、12は単相結線、16はトランス、
14は負荷、15は被再生活性炭投入口、16は蓋、1
7は再生済活性炭冷却器、18 、18’は冷却用空気
入口及び出口19は下部ホッパ、20は再生済活性炭取
出し弁21は賦活用水蒸気吹込管、22は非ガス取出し
管、25は排気ガス吸引用排風機、24は炉体、25は
活性炭取出し孔、U、V、W、は三相交流。 特許出願人 中尾康三部 第2図 第3図 第4図 第5図 第6図
Fig. 1 is a schematic longitudinal sectional side view showing an example of the direct current type activated carbon regeneration device of the present invention, Fig. 2 is a plan sectional view and power supply wiring diagram of the drying furnace, and Fig. 3 is a plan-sectional view of the roasting furnace. and power supply wiring diagram,
Figure 4 is a cross-sectional plan view of the activation furnace and steam superheating furnace for activation, and a power supply wiring diagram for them; Figure 5 is a cross-sectional plan view and power supply wiring diagram of a drying furnace equipped with seven electrode plates; Figure 6 is a diagram of the power supply wiring diagram. Figure 7 is a cross-sectional plan view of a roasting furnace with five electrode plates and a power connection wiring diagram. Figure 7 is a cross-sectional plan view of an activation furnace with three electrode plates and a steam superheating furnace for activation, and the power supply wiring to them. Figure 8 is a vertical side view of a conventional direct current type activated carbon regeneration device, Figure 9 is a vertical side view of a conventional direct current type activated carbon regeneration device in which the spacing between electrode plates is gradually increased, and Figure 10 is a vertical side view of a conventional direct current type activated carbon regeneration device, and Figure 10 is an electrode plate. Fig. 11 is a wiring diagram showing how to obtain a heating power source for the furnace; (a) is a V-connection; (b)
) is a wiring diagram for single-phase extraction. Number 1 in the diagram is the drying furnace 2, the roasting furnace, 6 the activation furnace, 4 the activation steam superheating furnace, and 5
is a T& plate, 6 is a silisk, 7 is a Scott connection, 8 is a phase conversion transformer, 9 is a thermometer, 10 is a recycled activated carbon discharger, 11 is a V connection, 12 is a single phase connection, 16 is a transformer,
14 is a load, 15 is a regenerated activated carbon inlet, 16 is a lid, 1
7 is a recycled activated carbon cooler, 18 and 18' are a cooling air inlet and an outlet 19 is a lower hopper, 20 is a recycled activated carbon take-out valve 21 is a recycling steam blowing pipe, 22 is a non-gas take-out pipe, and 25 is an exhaust gas 24 is a furnace body, 25 is an activated carbon outlet, and U, V, and W are three-phase alternating current. Patent applicant Yasuzo Nakao Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 (1)水平断面が矩形の炉内を、被再生活性炭を、重力
によシ、上から下へ鉛直に、再生済活性炭の排出毎に、
間歇的に移動させ、被再生活性炭に、直接通電して発熱
昇温させ、これに、賦活用水蒸気を作用させ、再生賦活
させようとする直接通電、式活性炭再生装置において、
第1図に示すように上から乾燥炉1、焙焼炉2、賦活炉
5、賦活用水蒸気過熱炉4の各炉共、炉内水平断面の同
じ炉を順次、積み重ねるが、これらの炉は、乾燥炉1は
第2図に示すように、炉内に等間隔、且、平行に4枚の
電極板5を有し、これらに、電圧調整した三相交流を、
サイリスタ6を通して印加し、焙焼炉2には、第5図に
示すように、炉内に、等間隔平行に、3枚の電極板5を
設置して、これらに、スコツト結線7によシ得た2系列
の単相交流を、サイリスタ6を通じて印加する。又、賦
活炉3、賦活用水蒸気過熱炉4は、第4図に示すように
、ス8から得た単相交流を、サイリスタ6を通じて夫れ
夫れに印加するように、電極板5を配置したことを特徴
とする直接通電式活性炭再生装置。 (2)第1図に示すように、乾燥炉1、焙焼炉2、賦活
炉6、賦活用水蒸気過熱炉4の各炉共、夫れ夫れの電極
板50間に、温度計9を配置し、これらの温度計9の設
定温度が、夫れ夫れの設定温度即ち、乾燥炉1の温度計
9は320℃に、焙焼炉2での温度計9は650℃に、
賦活炉3、及び、賦活用水蒸気過熱炉4での温度計9は
850℃に設定しこれらがすべて、同時に、設定温度に
到達すると再生済活性炭排出機10を始動させ、再生済
活性炭を排出し、各炉の温度計9のうち、一つでも設定
温度以下になると、再生済活性炭排出機10が停止する
ことを特徴とする直接通電式活性炭再生装置。 (8)第5図に示すように、乾燥炉1において、電極板
5を7枚配置し、三相電源の2系列の各相をサイリスタ
6を通じて、同時に印加させ、同様にして、を極板5を
(1+3n)枚を設置して、三相交流の各相を、サイリ
スタ6全通して、同時にn系列印加する。 父、卯、6図に示すように、焙焼炉2では、電極板5を
5枚配置し、2つのスコツト結線7にょる4系列の単相
電源を、サイリスタ6を通して、同時に印加させ、同様
にして、(1+2n)枚の電(iし板5を設置して、n
個のスコツト結線7にょる2n個の単相電源を、2n個
のサイリスタ6を通して、同時に印加する。 次に、賦活炉3及び賦活用水蒸気過熱炉4では第7図に
示すように、各戸に電極板5を3枚づつ配置して2室を
設け、各室毎に、スコツト結線7と位相変換トランス8
との組合わせより得た単相交流を、サイリスタ6を通し
て印加する。但し、室数が偶数(2n)の場合は、n個
のスコツト結線7から、2n個の単相電源がとれる。 このように、各4毎に、炉内活性炭の比抵抗値順要負荷
動力、所要印加電圧、処理能力の大小に、より、電極板
5の枚数を増加し、複数系列の電源を同時にかけられる
ように、電極板50間隔及び枚数を増減することを特徴
とする直接通電式活性炭再生装置。
[Claims] (1) Regenerated activated carbon is moved vertically from top to bottom in a furnace with a rectangular horizontal cross section, each time the recycled activated carbon is discharged.
In a direct energization type activated carbon regeneration device that moves intermittently and directly energizes the activated carbon to be regenerated to generate heat and raise the temperature, and then acts on the activated carbon to regenerate and activate it,
As shown in Fig. 1, the drying furnace 1, the roasting furnace 2, the activation furnace 5, and the activated steam superheating furnace 4 are stacked one after another with the same horizontal cross-section inside the furnace. As shown in FIG. 2, the drying oven 1 has four electrode plates 5 spaced equally apart and in parallel within the oven, and a voltage-adjusted three-phase alternating current is applied to these.
As shown in FIG. The two series of single-phase alternating current obtained are applied through the thyristor 6. Furthermore, as shown in FIG. 4, the activation furnace 3 and the reactivation steam superheating furnace 4 have electrode plates 5 arranged so that the single-phase alternating current obtained from the switch 8 is applied to each through the thyristor 6. A direct current activated carbon regeneration device characterized by the following. (2) As shown in FIG. 1, a thermometer 9 is installed between each electrode plate 50 in each of the drying furnace 1, roasting furnace 2, activation furnace 6, and steam steam superheating furnace 4. The set temperatures of these thermometers 9 are set at 320°C for the drying furnace 1, 650°C for the roasting furnace 2, and 650°C for the roasting furnace 2.
The thermometers 9 in the activation furnace 3 and the reactivation steam superheating furnace 4 are set at 850°C, and when they all reach the set temperature at the same time, the recycled activated carbon discharger 10 is started to discharge the recycled activated carbon. , a direct energization type activated carbon regeneration apparatus characterized in that when even one of the thermometers 9 of each furnace becomes below a set temperature, the regenerated activated carbon discharger 10 is stopped. (8) As shown in FIG. 5, seven electrode plates 5 are arranged in the drying oven 1, each phase of two series of three-phase power supply is applied simultaneously through the thyristor 6, and the electrode plates are (1+3n) pieces of thyristor 6 are installed, and each phase of the three-phase alternating current is applied through all the thyristors 6 in n series at the same time. As shown in Figure 6, in the roasting furnace 2, five electrode plates 5 are arranged, and four series of single-phase power from two Scott connections 7 are simultaneously applied through the thyristor 6, and the same , set up (1+2n) electric boards 5, and
2n single-phase power supplies from 2n Scott connections 7 are simultaneously applied through 2n thyristors 6. Next, in the activation furnace 3 and the reactivation steam superheating furnace 4, as shown in FIG. transformer 8
The single-phase alternating current obtained from the combination is applied through the thyristor 6. However, if the number of rooms is an even number (2n), 2n single-phase power supplies can be obtained from n Scott connections 7. In this way, the number of electrode plates 5 is increased depending on the specific resistance value of the activated carbon in the furnace, the required load power, the required applied voltage, and the size of processing capacity, and multiple series of power supplies can be applied at the same time. A direct current type activated carbon regeneration device characterized in that the spacing and number of electrode plates 50 are increased or decreased.
JP22210982A 1982-12-20 1982-12-20 Direct charge type active carbon reactivator Pending JPS59111908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22210982A JPS59111908A (en) 1982-12-20 1982-12-20 Direct charge type active carbon reactivator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22210982A JPS59111908A (en) 1982-12-20 1982-12-20 Direct charge type active carbon reactivator

Publications (1)

Publication Number Publication Date
JPS59111908A true JPS59111908A (en) 1984-06-28

Family

ID=16777280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22210982A Pending JPS59111908A (en) 1982-12-20 1982-12-20 Direct charge type active carbon reactivator

Country Status (1)

Country Link
JP (1) JPS59111908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142697A (en) * 2008-12-16 2010-07-01 Kureha Engineering Co Ltd Activation regeneration oven for activated charcoal, and method and apparatus for gas purification using the same
JP2015221441A (en) * 2015-08-26 2015-12-10 株式会社クレハ環境 Activation regeneration furnace for active charcoal, and method and apparatus for gas purification utilizing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142697A (en) * 2008-12-16 2010-07-01 Kureha Engineering Co Ltd Activation regeneration oven for activated charcoal, and method and apparatus for gas purification using the same
JP2015221441A (en) * 2015-08-26 2015-12-10 株式会社クレハ環境 Activation regeneration furnace for active charcoal, and method and apparatus for gas purification utilizing the same

Similar Documents

Publication Publication Date Title
US3142748A (en) Electric cooking ranges
US2859116A (en) Treatment of coffee and other materials
JPS59111908A (en) Direct charge type active carbon reactivator
US3685165A (en) Thermal sand reclamation unit
US4374092A (en) System for electrically heating and regenerating spent activated carbon
US4455282A (en) Electric furnace for continously heating and regenerating spent activated carbon
US2293813A (en) Furnace construction
US1695224A (en) Heat-treating furnace
US4049900A (en) Continuous graphitizing furnace with a vertical displacement of the charge
EP0537263A1 (en) Apparatus for drying a moist particulate material with superheated steam.
JPH05271751A (en) Method for controlling temperature in vacuum furnace
JP3082211B2 (en) Vacuum furnace and temperature uniforming method in vacuum furnace
CA1075218A (en) Method and apparatus for regenerating used active carbon
RU2291105C1 (en) Method of production of silicon dioxide and the heat energy from the silicon-containing vegetable wastes and the installation for burning of the fine-dispersed materials
CN111854403A (en) Intelligent food processing and drying system
RU2052744C1 (en) Device for drying grain in fluidized bed
EP0076855A1 (en) Apparatus for regenerating activated carbon
CN209763775U (en) Aluminum hydroxide gaseous suspension roasting furnace equipment and waste heat utilization device thereof
US1486265A (en) Annealing leer or furnace
US2269580A (en) Furnace apparatus and method of calcining lime with recovery of carbon dioxide
JP2000119012A (en) Apparatus for treating activated carbon
US1032246A (en) Method of treating carbon.
CN211041588U (en) Two-stage multi-chamber boiling drying tower
JPS5484865A (en) Multi-stage fluidized bed type contact oxidation apparatus
CN113578399B (en) Catalyst regeneration and burn method and device