JPS59109537A - Production of electromagnetic shielding material - Google Patents

Production of electromagnetic shielding material

Info

Publication number
JPS59109537A
JPS59109537A JP21826082A JP21826082A JPS59109537A JP S59109537 A JPS59109537 A JP S59109537A JP 21826082 A JP21826082 A JP 21826082A JP 21826082 A JP21826082 A JP 21826082A JP S59109537 A JPS59109537 A JP S59109537A
Authority
JP
Japan
Prior art keywords
electromagnetic shielding
fiber
resin
thermoplastic resin
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21826082A
Other languages
Japanese (ja)
Inventor
Katsumi Nishimura
克巳 西村
Susumu Miyashita
宮下 進
Naoki Oota
直樹 太田
Makoto Sugiura
真 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyo Ink Mfg Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP21826082A priority Critical patent/JPS59109537A/en
Publication of JPS59109537A publication Critical patent/JPS59109537A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a material having a good electromagnetic shielding effect, by mixing a thermoplastic resin having a specified particle size with an electrically conductive fibrous filler in a rotating container type mixer and extruding the mixture. CONSTITUTION:Thermoplastic resin particles having a particle size of 2mm. or below, such as polyolefin or polystyrene particles, and 5-80wt% (based on the total quantity of the compsn.) electrically conductive fibrous filler having a fiber length of 0.5-10mm. and a fiber diameter of 10-200mu, such as metallic fiber, carbon fiber or metal-coated glass fiber, are mixed together in a rotating container type mixer such as a tumbler. The resulting mixture is extruded through an extruder (pref. one having a full-flighted screw) to form pellets, thus obtaining the titled electromagnetic shielding material.

Description

【発明の詳細な説明】 本発明は、電磁遮へい用材料の製造方法に関する。[Detailed description of the invention] The present invention relates to a method of manufacturing an electromagnetic shielding material.

近年、電子部品や電子装置にはプラスチック樹脂の成型
品が多く使用されるようになったが、グラスチック樹脂
自体は電磁波を透過してしまう性質を有しているため、
外来防害波によるIC装置等の誤動6作の問題が、クロ
ーズアップされてきた。このような折、アメリカ連邦通
信委員会は、機器から発生する電磁波のレベルを規制し
た。
In recent years, many plastic resin molded products have been used for electronic parts and devices, but since glass resin itself has the property of transmitting electromagnetic waves,
The problem of six malfunctions of IC devices caused by external damage prevention waves has been brought into focus. At this time, the Federal Communications Commission of the United States regulated the level of electromagnetic waves emitted by devices.

プラスチック樹脂成型品を電磁遮へい化するには、プラ
スチック樹脂1(導電性フィラーを練る方法も知られて
いるが、これらの成型品の表面に新たな表面層を設ける
ことは、複雑な表面形状を有する成型品では困難であっ
たシ、グラスチック樹脂の種類によっては表面層が剥離
してしまうことがあるため、このような場合には導電性
フィラーをプラスチ、り樹脂に練り込んで成型すること
が好ましい。
In order to make plastic resin molded products electromagnetic shielding, a method of kneading plastic resin 1 (conductive filler) is also known, but providing a new surface layer on the surface of these molded products requires a complicated surface shape. However, depending on the type of plastic resin, the surface layer may peel off, so in such cases, it is necessary to knead conductive filler into the plastic resin and mold it. is preferred.

グラスチック樹脂に練り込む導電性フィラーの形状とし
ては、粉状、繊維状、フレーク状のものが知られている
が、電磁遮へいの効果からいえば、繊維状で、なるべく
繊維長が長いものが有効である。しかしながらこのよう
な長繊維の導電性フーイラーを市販の熱可塑性樹脂ベレ
ットとともに通常の押出様にて練り込もうとすると繊維
がからみありて不可能である。また一般に使用される混
合機であるヘンシェルミキサーでは、繊維が攪拌用(c
、からみついたり、攪拌によって切断されてしまう。つ
ぎに他の方法として2本ロール、バンバリーミキサ−で
混練9する方法が考えられる。しかしながら、2本ロー
ルでは、一般に加工温度が180℃程度であり、融点が
これ以上の熱可塑性樹脂や作業性の悪い樹脂、例えばロ
ール面との密着が強い樹脂は加工できず、あるいは作業
環境の悪化等の問題があり、また樹脂と繊維とが均一に
混合されるまで混練りをおこなうと繊維が切断され満足
のゆく電磁遮へい効果を示さなくなる。バンバリーミキ
サ−においても切シ出しロールを使用するため2本ロー
ルの場合と同様な問題がある事および混練り時のせん断
力が2本ロールより強く繊維がほとんど切断されてしま
い2本ロールの場合よシ遮へい効果が悪くなってしまう
The shapes of conductive fillers kneaded into glasstic resin are known to be powder, fiber, and flake, but from the standpoint of electromagnetic shielding, fibrous fillers with as long a fiber length as possible are preferred. It is valid. However, if it is attempted to knead such a long-fiber conductive foiler with a commercially available thermoplastic resin pellet by a conventional extrusion method, it is impossible because the fibers become entangled. In addition, in the Henschel mixer, which is a commonly used mixer, fibers are used for stirring (c
, get tangled or get cut off by stirring. Next, as another method, a method of kneading 9 using a two-roll Banbury mixer can be considered. However, with two rolls, the processing temperature is generally around 180°C, and thermoplastic resins with melting points higher than this or resins with poor workability, such as resins with strong adhesion to the roll surface, cannot be processed, or resins with strong adhesion to the roll surface cannot be processed. Further, if the resin and fibers are kneaded until they are uniformly mixed, the fibers will be cut and a satisfactory electromagnetic shielding effect will not be exhibited. Banbury mixers also use cutting rolls, so there are problems similar to those with two rolls, and the shearing force during kneading is stronger than with two rolls, causing most of the fibers to be cut. Otherwise, the shielding effect will deteriorate.

本発明者らは、繊維状の導電性フィラーを熱可塑性樹脂
に均一に混合する方法について鋭意検討を重ねた結果、
本発明に到達したものである。
As a result of extensive research into a method for uniformly mixing a fibrous conductive filler into a thermoplastic resin, the present inventors found that
This has led to the present invention.

すなわち第1の発明は、粒径2m以下熱可塑性樹脂と、
繊維長0.5閣〜10稿の繊維状導電フィラーとを、回
転容器型混合機にて混合する工程(A)によシ得られる
混合物欠押出成型することを特徴とする電磁遮へい用材
料の製造方法である。第2の発明は、粒径2閣以下の熱
可塑性樹脂と、繊維長0.5■〜10mの繊維状導電フ
ィラーとを、回転容器型混合機にて混合する1ないし2
の工程(A)と、上記工程(A)で得た混合物をふるい
目を通過せしめる工程(′B)とにより得られる混合物
を押出成型することを特徴とする電磁遮へい用材料の製
造方法である。
That is, the first invention includes a thermoplastic resin having a particle size of 2 m or less;
An electromagnetic shielding material characterized in that the mixture obtained by the step (A) of mixing a fibrous conductive filler with a fiber length of 0.5 to 10 in a rotating container type mixer is molded by incomplete extrusion. This is the manufacturing method. In the second invention, a thermoplastic resin having a particle size of 2 mm or less and a fibrous conductive filler having a fiber length of 0.5 to 10 m are mixed in a rotating container type mixer.
A method for producing an electromagnetic shielding material, which comprises extrusion molding the mixture obtained by step (A) and step ('B) of passing the mixture obtained in step (A) through a sieve. .

本発明の熱可塑性樹脂としては、ポリオレフィン、ポリ
スチレン、スチレン−アクリロニトリルポリマー、アク
リロニトリル−ポリブタジェン−スチレン、ナイロン、
ホリフエニレンスルフイド、ポリアセタール、ポリスル
ホン、ポリカーボネート、ポリウレタン、セルロースエ
ステル、ポリエステル、アクリル酸ポリマー、ポリビニ
ルクロリド、ポリビニリデンクロリド、ビニルクロリド
およびビニリデンクロリドのコポリマー、ポリフェニレ
ンオキシド、ポリフェニレンオキシド−ポリスチレンな
どであシ、上記樹脂から選ばれる混合物でやってもよい
The thermoplastic resin of the present invention includes polyolefin, polystyrene, styrene-acrylonitrile polymer, acrylonitrile-polybutadiene-styrene, nylon,
Polyphenylene sulfide, polyacetal, polysulfone, polycarbonate, polyurethane, cellulose ester, polyester, acrylic acid polymer, polyvinyl chloride, polyvinylidene chloride, copolymer of vinyl chloride and vinylidene chloride, polyphenylene oxide, polyphenylene oxide-polystyrene, etc. , or a mixture selected from the above resins.

混合される熱可塑性樹脂の粒径は、2rn以下、好まし
くは0.5m+n以下であり、粒径が2m以上となると
線維状導電性フィラーの再凝集が防げられない。
The particle size of the thermoplastic resin to be mixed is 2rn or less, preferably 0.5m+n or less, and if the particle size is 2m or more, reagglomeration of the fibrous conductive filler cannot be prevented.

本発明の繊維状導電フィラーとしては、アルミニウム、
黄銅、ジュラルミン、銅、ステンレスなどの金属繊維、
炭素繊維もしくは金属コートガラス繊維である。繊維の
太さには特に制限はなく、10〜200μの一般に使用
されるものが好ましいが、繊維長は0.5mm〜10+
nmである。
The fibrous conductive filler of the present invention includes aluminum,
Metal fibers such as brass, duralumin, copper, stainless steel, etc.
Carbon fiber or metal coated glass fiber. There is no particular restriction on the thickness of the fibers, and generally used ones of 10 to 200μ are preferred, but the fiber length is 0.5mm to 10+
It is nm.

本発明の電磁遮へい用材料は、繊維状導電フィラーが全
重量に対し5〜80重量%あるが、配合割合は要求され
る電磁遮へい効果から決められる。上述した必須成分に
加えて、本発明では、種々の目的のために他の成分を配
合することができ、これら成分として例えば、充填剤、
難燃剤、滑剤、安定剤、着色剤などがある。
The electromagnetic shielding material of the present invention contains 5 to 80% by weight of the fibrous conductive filler based on the total weight, and the blending ratio is determined based on the required electromagnetic shielding effect. In addition to the above-mentioned essential components, the present invention can contain other components for various purposes, such as fillers,
These include flame retardants, lubricants, stabilizers, and colorants.

本発明において使用される回転容器型混合機としては、
円筒型、二重円錐型、V型、立方体型、正門体型などが
あシ、容器内に、粉砕され熱可塑性樹脂と、繊維状導電
フィラーを入れ両者が均一に混合されるまで、通常は1
0〜20分程度容器を回転することによシ混合する。
The rotating container type mixer used in the present invention includes:
The pulverized thermoplastic resin and the fibrous conductive filler are placed in a container, usually for 1 hour, until the two are uniformly mixed.
Mix by rotating the container for about 0 to 20 minutes.

上記回転容器型混合機を用いて混合しても、導電フィラ
ーの繊維が強くからみ合りてしまう場合には、さらにふ
るい目を通過せしめることによシ、からみ合った繊維全
はぐすことができる。
If the fibers of the conductive filler are strongly entangled even when mixed using the above-mentioned rotating container mixer, all the entangled fibers can be separated by passing the filler through a sieve. .

具体的にはふるい目の穴の径2〜20 wn 、好まし
くは10mm前後のふるい上に、混合物を乗せ好ましく
は振動ふるいを用いてふるい混合物をふるい目を通過さ
せる。
Specifically, the mixture is placed on a sieve with a hole diameter of 2 to 20 mm, preferably around 10 mm, and the sieve mixture is passed through the sieve, preferably using a vibrating sieve.

ることかできる。I can do that.

本発明において押出成型に使用される押出機は、−軸も
しくは二軸の一般に使用されるものでよいが、好ましく
は繊維をなるべく切断しないようなフルフライトタイプ
のスクリューのついた押出機を用い、スクリーーの回転
をなるべく遅くして加工するものが良い。
The extruder used for extrusion molding in the present invention may be a commonly used one with a screw or twin screws, but preferably a full-flight type screw extruder that does not cut the fibers as much as possible is used. It is best to process the screen with the rotation of the screen as slow as possible.

押出成型後、得られた成型品は通常はペレット状に切断
され、射出成型用の材料として使用できる。
After extrusion, the resulting molded product is usually cut into pellets and can be used as material for injection molding.

本発明によシ得られた電磁遮へい用材料は、熱可塑性樹
脂と繊維状導電フィラーが均一に混合されており、しか
も繊維の切断がほとんどないので、最終的な成型品の電
磁遮へい効果が優れている。
The electromagnetic shielding material obtained by the present invention has a uniform mixture of thermoplastic resin and fibrous conductive filler, and there is almost no cutting of the fibers, so the electromagnetic shielding effect of the final molded product is excellent. ing.

以下、本発明を実施例に基づき説明する。例中、チは重
量%を示す。
Hereinafter, the present invention will be explained based on examples. In the examples, CH indicates weight %.

実施例1 ペレット状のABS樹脂(電気化学工業■製産品名電化
AgS GR−2000)を粉砕機にて平均粒径50μ
に粉砕し、この粉砕樹脂(C黄銅繊維(繊維太さ60μ
、繊維長3咽)を全重量に対し60%になるよ、う配合
し、タンブラ−で10分間混合したのち、この混合物を
フルフライトスクリュータイプの一軸押出機を用いて温
度230℃にて押出し樹脂ペレットを得た。この樹脂ベ
レットをインライン型射出成型機を用250℃の温度で
厚さ1mに成型し、この成型板の電磁遮へい効果を測足
した。
Example 1 A pellet-shaped ABS resin (Denka Kagaku Kogyo product name: Denka AgS GR-2000) was milled with an average particle size of 50 μm.
This crushed resin (C brass fiber (fiber thickness 60 μm)
, fiber length 3 times) to 60% of the total weight, mixed in a tumbler for 10 minutes, and then extruded this mixture at a temperature of 230°C using a full-flight screw type single screw extruder. Resin pellets were obtained. This resin pellet was molded to a thickness of 1 m using an in-line injection molding machine at a temperature of 250° C., and the electromagnetic shielding effect of this molded plate was measured.

結果を表1に示す。The results are shown in Table 1.

比較例1 実施例1で使用したペレソ+状のAB[樹脂を粉砕せず
に、実施例1と同様の操作にて押出加−工を行なおうと
したが、タンブラ−での混合の際、黄銅繊維が凝集し、
樹脂ペレットと分離してしまった。
Comparative Example 1 Pereso+-shaped AB used in Example 1 [Extrusion processing was attempted in the same manner as in Example 1 without pulverizing the resin, but during mixing in a tumbler, Brass fibers aggregate,
It has separated from the resin pellet.

比較例2 実施例1で使用したABg樹脂を2本ロール混練機を用
いて180℃で溶鹸噺脂に実施例1で使用した黄銅繊維
を全重量に対し60%になるように配合し、樹脂中に黄
銅繊維が均一分散するまで混練したのち、シート状に切
シ出しベレット化した。この樹脂ペレットを実施例1と
同様にして成型した成型板の電磁遮へい効果を測足した
Comparative Example 2 The ABg resin used in Example 1 was melted at 180°C using a two-roll kneader and the brass fibers used in Example 1 were blended in a proportion of 60% of the total weight. After kneading the resin until the brass fibers were uniformly dispersed, the resin was cut into sheets and made into pellets. The electromagnetic shielding effect of a molded plate obtained by molding this resin pellet in the same manner as in Example 1 was measured.

結果を表1に示す。The results are shown in Table 1.

表  1 表1から明らかなように、本発明の科料から成型され′
!?:、電磁遮へい板は、組成的には比較例2と同じで
あるにもかかわらず、混合時の嘩維状導電フィラーの切
断がないため、電磁遮へい効果がよい。
Table 1 As is clear from Table 1, the material of the present invention was molded.
! ? Although the electromagnetic shielding plate has the same composition as Comparative Example 2, the fibrous conductive filler is not cut during mixing, so the electromagnetic shielding effect is good.

実施例2 ペレット状のポリプロピレン樹脂(三井石油化学■製、
商品名三井ポリプロs、r −310) k粉砕機にて
平均粒径20μに粉砕し、この粉砕樹脂に炭素繊維×(
繊維太さ30μ、繊維長3I+II+1)を全重量に対
し60%になるように配合し、タンブラ−で20分間混
合したのち、ふるい目がIOL+lII+の振動ふるい
を通した。
Example 2 Pellet-shaped polypropylene resin (manufactured by Mitsui Petrochemical Co., Ltd.,
(Product name: Mitsui Polypro S, R-310) K is crushed to an average particle size of 20 μm using a crusher, and carbon fiber x (
Fiber thickness: 30 μm, fiber length: 3I+II+1) were blended at 60% of the total weight, mixed in a tumbler for 20 minutes, and then passed through a vibrating sieve with mesh size IOL+II+.

この混合物を実施例1と同操作にて樹脂ベレット化し、
厚さ1mの成型板を得、この電磁遮へい効果を測定した
This mixture was made into resin pellets in the same manner as in Example 1,
A molded plate with a thickness of 1 m was obtained, and its electromagnetic shielding effect was measured.

結果を表2に示す。The results are shown in Table 2.

比較例3 実施例2で使用したベレット状ポリプロピレン樹脂を粉
砕せずに、実施例2と同様の操作にて押出加工を行なお
うとしたが、タンブラ−での混合の際炭素繊維が凝集し
、樹脂ペレットと分離してしまりた。
Comparative Example 3 An attempt was made to extrude the pellet-shaped polypropylene resin used in Example 2 in the same manner as in Example 2 without pulverizing it, but the carbon fibers agglomerated during mixing in a tumbler. It has separated from the resin pellet.

比較例4 実施例2で使用した粉砕ボリグロピレン樹脂および炭素
繊維を用いて、実施例2と同じ配合量のものをパンバリ
ルミキサーで5分間混練し、2本ロールでシーテイング
した後切り出しペレット化した。この樹脂ペレットを実
施例2と同様にして成型した成型板の電磁遮へい効果を
測定した。
Comparative Example 4 Using the crushed polyglopyrene resin and carbon fiber used in Example 2, the same amount as in Example 2 was kneaded in a panvaryl mixer for 5 minutes, sheeted with two rolls, and then cut out and pelletized. The electromagnetic shielding effect of a molded plate obtained by molding this resin pellet in the same manner as in Example 2 was measured.

結果を表2に示す。The results are shown in Table 2.

表2から明らかなように、本発明の材料から成型された
電磁遮へい板は、組成的には比較例4と同じであるにも
かかわらず、混合時の繊維状導電フィラーの切断がない
ため、電磁遮へい効果がよい。
As is clear from Table 2, although the electromagnetic shielding plate molded from the material of the present invention has the same composition as Comparative Example 4, there is no cutting of the fibrous conductive filler during mixing. Good electromagnetic shielding effect.

特於出願人 東洋インキ製造株式会社Special applicant: Toyo Ink Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】 1 粒径2揃以下の熱可塑性樹脂と、繊維長0.5mm
〜10朔の繊維状導電フィシ〜とを、回転容器型混合機
にて混合する工程@)によシ得られる混合物を押出成型
することを特徴とする電磁遮へい用材料の製造方法。 2 粒径2陥以下の熱可塑性樹脂と、繊維長0.5筋〜
10咽の繊維状導電フィラーとを、回転容器型混合機に
て混合する工ないし2の工程<A)と、上記工程(A)
で得た混合物をふるい目を通過せしめる工程の)とによ
シ得られる混合物を押出成型することを特徴ξする電磁
遮へい用材料の製造方法。
[Claims] 1. Thermoplastic resin with particle diameters of 2 or less and fiber length of 0.5 mm
A method for producing an electromagnetic shielding material, characterized by extrusion molding the mixture obtained by the step of mixing ~10 cm of fibrous conductive fibre~ in a rotating container mixer. 2 Thermoplastic resin with a particle size of 2 holes or less and a fiber length of 0.5 or less
Step 2 of mixing 10 times the fibrous conductive filler in a rotating container type mixer <A), and the above step (A)
A method for producing an electromagnetic shielding material, characterized by extrusion molding the mixture obtained by the step of passing the mixture obtained in () through a sieve.
JP21826082A 1982-12-15 1982-12-15 Production of electromagnetic shielding material Pending JPS59109537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21826082A JPS59109537A (en) 1982-12-15 1982-12-15 Production of electromagnetic shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21826082A JPS59109537A (en) 1982-12-15 1982-12-15 Production of electromagnetic shielding material

Publications (1)

Publication Number Publication Date
JPS59109537A true JPS59109537A (en) 1984-06-25

Family

ID=16717083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21826082A Pending JPS59109537A (en) 1982-12-15 1982-12-15 Production of electromagnetic shielding material

Country Status (1)

Country Link
JP (1) JPS59109537A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028297A (en) * 1983-07-27 1985-02-13 三菱電線工業株式会社 Composition for electromagnetic wave shield
JPS6153348A (en) * 1984-08-21 1986-03-17 Shin Etsu Chem Co Ltd Electrically conductive resin composition
JPS61120854A (en) * 1984-11-19 1986-06-07 Dainichi Seika Kogyo Kk Electrically conductive resin composition
JPS61118082U (en) * 1985-01-08 1986-07-25

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028297A (en) * 1983-07-27 1985-02-13 三菱電線工業株式会社 Composition for electromagnetic wave shield
JPS6153348A (en) * 1984-08-21 1986-03-17 Shin Etsu Chem Co Ltd Electrically conductive resin composition
JPH0458501B2 (en) * 1984-08-21 1992-09-17 Shinetsu Chem Ind Co
JPS61120854A (en) * 1984-11-19 1986-06-07 Dainichi Seika Kogyo Kk Electrically conductive resin composition
JPS61118082U (en) * 1985-01-08 1986-07-25

Similar Documents

Publication Publication Date Title
EP0099573A1 (en) Improved conductive resinous composites
WO2002042382A1 (en) Granular inorganic filler, process for producing the filler and resin compositions containing the same
JPS58150203A (en) Prastic product with conductive fiber
US4675143A (en) Process for producing a shaped electroconductive thermoplastic resin composition article
JPH0416500B2 (en)
JPS59109537A (en) Production of electromagnetic shielding material
JP2871048B2 (en) Method for producing polyarylene sulfide resin pellets
JPH02231111A (en) Plastic granulated substance with non-dispersive electroconductive fiber bundle
CN113831716A (en) Flame-retardant polycarbonate material with high metal texture and preparation method thereof
AU7800287A (en) Electrically conductive material for molding
JPH0159884B2 (en)
JPS6286055A (en) Electromagnetic wave shielding material
JPS6151311A (en) Preparation of composite electrically-conductive resin pellet
JP2572711B2 (en) Method for producing conductive carbon black-containing thermoplastic composition
JPH0354711B2 (en)
JPS58112712A (en) Electrically conductive film or sheet
JPH0730211B2 (en) Method for producing thermoplastic resin composition
JPH0348219B2 (en)
JPS61188424A (en) Production of thermoplastic resin containing liquid additive
JP4187806B2 (en) Method for producing granular thermosetting resin molding material
JP2631642B2 (en) Molded base material using fiber multilayer plastic material and method for producing the same
JPS5930837A (en) Electroconductive resin composition
JP2001026031A (en) Method for injection molding and its molded article
JPH0354710B2 (en)
JPH0655533A (en) Mixing method for of thermoplastic resin composition containing carbon fiber