JPS59109203A - Porous membrane - Google Patents

Porous membrane

Info

Publication number
JPS59109203A
JPS59109203A JP21956382A JP21956382A JPS59109203A JP S59109203 A JPS59109203 A JP S59109203A JP 21956382 A JP21956382 A JP 21956382A JP 21956382 A JP21956382 A JP 21956382A JP S59109203 A JPS59109203 A JP S59109203A
Authority
JP
Japan
Prior art keywords
porous
membrane
inorg
film
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21956382A
Other languages
Japanese (ja)
Inventor
Korehiko Nishimoto
西本 是彦
Shigeo Yokoyama
横山 成男
Kikuji Tsuneyoshi
紀久士 常吉
Kazutaka Mori
一剛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21956382A priority Critical patent/JPS59109203A/en
Publication of JPS59109203A publication Critical patent/JPS59109203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a porous membrane having the optional shape and size adapted to gas sepn. by forming an inorg. film having fine pores on one surface of an inorg. porous body. CONSTITUTION:A titled membrane is produced by forming an inorg. fine porous film on one surface of an inorg. porous body having relatively large pores of >=1,000Angstrom pore size and such film is obtd. by coating fine particles, such as alumina sol, on one surface of the inorg. porous body and calcining the same after drying. If the porous film having fine pores is formed on one surface of the inorg. porous body in the above-mentioned way, the porous membrane having the optional shape and size adapted to gas sepn. is obtd. The membrane is usable for sepn. of CO2, H2S, N2 and gaseous hydrogen.

Description

【発明の詳細な説明】 に関する。[Detailed description of the invention] Regarding.

金践粉末あるいはセラミック粉末を焼結したり,又はフ
ッ素樹脂等の有機合成樹脂粉末を圧縮成形した多孔質体
を基体とした微小孔径,特に数lO〜数+oo Xの超
微細々孔を有する多孔質隔膜を用いて,例えばカス拡散
法によυ気体を分離濃縮する場合,効率よく行うために
は多孔質隔膜を可能外隅り薄くすることが必要であるが
,強度の点から極端に薄くすることはできない。又,こ
のような場合には任意の形状に成形することは困難であ
った。そこで、カス拡散の妨害とならないように,孔径
が大きく且充分の強度を有するようにある程度の厚みを
有するガス透過性の高い多孔質体又は金網様の支持体で
微細孔を有する薄い多孔質隔膜を補強し,多層構造とす
る方策等がとられている。例えば、多層構造の多孔質膜
を管状とするためには各種の方法があるが,一般にはン
ート状の多層多孔質隔膜を円管状に成形加工し,端末を
つき合せ溶接,あるいは重ね合せ接着を行っている。し
かし、多孔質体が金属のように柔軟性の高いものでは円
管成形も可能であるが,セラミックのように柔軟性のな
いものでは極めて困難である。
A porous body made of a porous body made by sintering metal powder or ceramic powder, or compression-molding organic synthetic resin powder such as fluororesin, and having micropores with micropore diameters, especially ultrafine pores from several 10 to several +oo When separating and concentrating υ gas using a porous diaphragm, for example, by the dregs diffusion method, it is necessary to make the porous diaphragm as thin as possible at the outer corners in order to perform it efficiently, but from the point of view of strength, it is necessary to make the porous diaphragm extremely thin. I can't. Moreover, in such cases, it is difficult to mold into any desired shape. Therefore, in order to prevent scum from dispersing, a thin porous diaphragm with a large pore size and a certain thickness of gas permeability or a wire mesh-like support with fine pores is used. Measures are being taken to strengthen the structure and create a multilayer structure. For example, there are various methods for making a multilayered porous membrane into a tubular shape, but in general, a multilayered porous diaphragm in the form of a thread is formed into a circular tubular shape, and the ends are butt welded or bonded together. Is going. However, if the porous material is highly flexible such as metal, it is possible to form a circular tube, but if the porous material is inflexible such as ceramic, it is extremely difficult.

又,多孔質金属であっても空孔の存在により無孔質体に
比べて強度が低くなり,円管成形可能な曲率半径に限度
があり,細い管状に成形することは極めて困難であった
。そこでこのような難点を解決する方法として多孔質支
持管とその内側又は外側に配置したパイプ又は芯金とを
同心円状に保持して多孔質支持管とパイプ又は芯金とに
振動を与えながら多孔質支持管とパイプ又は芯金との間
の空隙部に気体を噴出させて空隙部内に粉末を均一に充
填し、空隙部内に充填した粉末を多孔質支持管に静圧成
形により圧着し、多孔質支持管に粉末の圧着層を形成す
る管状多孔質膜の成形法が知られている(特開昭50−
77410号公報参照)が粉末を均一に充填すること及
び非常に薄い膜を作製することなど実際には困難な点が
多い。このような問題の対策として2例えば大きな細孔
(5000X以上)の多孔質体の細孔内に、非常に小さ
な粒子を充填し。
Furthermore, even porous metals have lower strength than non-porous materials due to the presence of pores, and there is a limit to the radius of curvature that can be formed into circular tubes, making it extremely difficult to form them into thin tubes. . Therefore, as a method to solve these difficulties, the porous support tube and the pipe or core placed inside or outside of it are held concentrically, and the porous support tube and the pipe or core are vibrated while the porous support tube and the pipe or core placed inside or outside of the porous support tube are held concentrically. Gas is ejected into the gap between the porous support tube and the pipe or core metal to uniformly fill the gap with powder, and the powder filled in the gap is crimped onto the porous support tube by static pressure forming. A method of forming a tubular porous membrane in which a compressed layer of powder is formed on a support tube is known (Japanese Unexamined Patent Application Publication No. 1989-1999).
However, there are many difficulties in practice, such as uniformly filling the powder and producing a very thin film. As a countermeasure to this problem, 2. For example, the pores of a porous material with large pores (5000X or more) are filled with very small particles.

その後乾燥焼成することにより、100〜1000 X
の細孔径を有する多孔質体を得る方法等が考案されてい
るが、細孔分布の幅が大きく、厚みも犬なので、ガス分
離膜として使用する場合期待した性能よシも悪くなると
いう欠点かあった。
After that, by drying and firing, the
A method has been devised to obtain a porous material with a pore size of there were.

本発明は、このような現状に鑑みなされたもので、無機
多孔質体の片面に微細な細孔を有する無機質の膜を形成
させた多孔質隔膜で、大きさと形状を自由に選択できる
と同時に選択的透過性の秀れた多孔質隔膜を提案するも
のである。
The present invention was developed in view of the current situation, and is a porous diaphragm in which an inorganic membrane with fine pores is formed on one side of an inorganic porous body, and the size and shape can be freely selected. We propose a porous diaphragm with excellent selective permeability.

以下9本発明について詳細に説明する。発泡ブリ力、焼
結アルミナ及びムライトなどの比較的大きな細孔(通常
細孔径+oooX以上)を持つ任意の形状の無機多孔質
体の片面に、微粒子を塗布し乾燥、焼成することによっ
て無機質の膜を形成して成る多孔質隔膜である。無機多
孔質体の表面の片面に塗布された微粒子は乾燥、焼成工
程を経ることによって、該無機多孔質体の表面に微細孔
の薄膜を形成する。そのだめ、このようにして調製した
多孔質体をカス分離用隔膜として使用すれば2分離効率
のよいガス分離膜となる。一般に多孔質膜による混合ガ
スからの特定カスの分離は、混合ガスのそれぞれの分子
の平均自由行程が膜の細孔直径よりも相当大きな場合に
可能であり、細孔直径が平均自由行程に近くなるにつ扛
て分離が困難となる。従って、上記無機多孔質体のみで
はガス分離は不可能であるが1本発明によれば無機多孔
質体の片面に微細な細孔を有する多孔質膜を形成させた
ことによりガス分離に適した任意の形状及び大きさの多
孔質隔膜が得られる利点がある。
Below, nine aspects of the present invention will be explained in detail. An inorganic film can be created by coating fine particles on one side of an inorganic porous material of any shape with relatively large pores (usually pore diameter + ooo It is a porous diaphragm formed by forming. The fine particles applied to one side of the surface of the inorganic porous body are dried and fired to form a thin film of micropores on the surface of the inorganic porous body. However, if the porous body thus prepared is used as a diaphragm for separating scum, a gas separation membrane with high separation efficiency can be obtained. In general, separation of a specific waste from a mixed gas using a porous membrane is possible when the mean free path of each molecule of the mixed gas is considerably larger than the pore diameter of the membrane, and the pore diameter is close to the mean free path. Separation becomes increasingly difficult. Therefore, gas separation is not possible with the inorganic porous body alone; however, according to the present invention, a porous membrane having fine pores is formed on one side of the inorganic porous body, which is suitable for gas separation. There is an advantage that porous membranes of arbitrary shape and size can be obtained.

以下、実施例により本発明の多孔質隔膜について、さら
に詳細に説明する。
Hereinafter, the porous diaphragm of the present invention will be explained in more detail with reference to Examples.

実施例1 アルミニウムイソプロピレート2ロ0 ℃に保持した1,0 0 0 gの水に添加し,アルミ
ニウムインプロピレートを加水分解し,アルミナゾルと
した。その後,80シて攪拌を行いながら5時間保持し
て熟成を行った。このようにして得られたアルミナゾル
を比較のため細孔径2oooX。
Example 1 Two batches of aluminum isopropylate were added to 1,000 g of water kept at 0°C, and the aluminum impropylate was hydrolyzed to form an alumina sol. Thereafter, the mixture was aged for 5 hours while being stirred for 80 minutes. For comparison, the alumina sol thus obtained had a pore diameter of 2oooX.

細孔容積0.8cnl/gのアルミナ質平膜(50mm
X50mm 、厚さ2mm)にそれぞれ両面と片面に塗
布した後,乾燥及び1000℃での焼成を行って二つの
アルミナ膜を得た。塗布したアルミナ膜の厚さは切断面
の顕微鏡観察の結果的0.5 mmであった。
Alumina flat membrane (50 mm) with a pore volume of 0.8 cnl/g
The film was coated on both sides and one side of the film (×50 mm 2 mm thick, 2 mm thick), and then dried and fired at 1000° C. to obtain two alumina films. The thickness of the applied alumina film was 0.5 mm as a result of microscopic observation of the cut surface.

また、アルミナゾルを塗布したアルミナ膜の細孔径は水
銀圧入法により測定した結果150Xであった。次に,
アルミナ質平膜及び前記のようにして得たアルミナゾル
を塗布した多孔質隔膜を,それぞれ流通式ガス分離装置
に設置し,これに各種H2/C02 混合ガスを流通さ
せ,これらの分離膜を通して流出する炭酸ガス及び水素
の濃度変化を,供給側圧力2〜20 kQ / cnl
 、流出側圧力1kg/crdに定めて測定した。この
ようにして原料ガス組成H,,/ co2= + 0.
0/90.0のガスについて分離効果を調べたところ供
給側圧力が4 kg /calのとき分離膜透過後のガ
ス組成はアルミナ質平膜(細孔径2000X )の場合
にはH2/ 002 = +1t.。
The pore diameter of the alumina membrane coated with alumina sol was 150X as measured by mercury porosimetry. next,
The alumina flat membrane and the porous diaphragm coated with the alumina sol obtained as described above are each installed in a flow-type gas separation device, and various H2/C02 mixed gases are passed through this and flowed out through these separation membranes. Changes in the concentration of carbon dioxide and hydrogen are measured at supply side pressures of 2 to 20 kQ/cnl.
, and the outflow side pressure was set at 1 kg/crd. In this way, the raw material gas composition H,,/co2=+0.
When the separation effect was investigated for 0/90.0 gas, when the supply side pressure was 4 kg/cal, the gas composition after passing through the separation membrane was H2/002 = +1t in the case of an alumina flat membrane (pore diameter 2000X). .. .

/s 9.0,両面にアルミナゾルを塗布した多孔質隔
膜はI(2/ co2= I B.O/8 7.0, 
 片面にアルミナゾルを塗布した多孔質隔膜はH2/C
02=+5.0785.0となった。本試験の結果,無
機多孔質体の片側にだけ微細な細孔を有する無機質膜を
形成させた多孔質隔膜が気体の分離性能が秀れているこ
とがわかる。
/s 9.0, the porous diaphragm coated with alumina sol on both sides is I(2/co2=I B.O/8 7.0,
The porous diaphragm coated with alumina sol on one side is H2/C.
02=+5.0785.0. The results of this test show that the porous diaphragm, in which an inorganic membrane with fine pores is formed only on one side of an inorganic porous body, has excellent gas separation performance.

実施例2 塩化アルミニウムとアンモニアカスを用い水酸化アルミ
ニウムの超微粒子を含むコロイド水溶液を得た。コロイ
ド溶液中のA403の量を重量分析により分析したとこ
ろ、25%であった。
Example 2 A colloidal aqueous solution containing ultrafine particles of aluminum hydroxide was obtained using aluminum chloride and ammonia scum. The amount of A403 in the colloidal solution was analyzed by gravimetric analysis and was found to be 25%.

これをaoocc取り、ポリビニルアルコールヲ60g
加え充分に溶解させた。この溶液を細孔径goooXの
多孔質コーンライト管(内径15.0mm。
Take aoocc of this and add 60g of polyvinyl alcohol.
and sufficiently dissolved. This solution was poured into a porous cornlite tube with a pore size of goooX (inner diameter 15.0 mm).

外径16.5 mm 、長さ200mm)の片面及び両
面にそれぞれ塗布し50℃において2時間乾燥した後。
After coating on one side and both sides of a piece (outer diameter 16.5 mm, length 200 mm) and drying at 50°C for 2 hours.

800℃まで昇温速度50℃/時間で昇温後、800℃
において2時間保持し、放冷を行った。次に多孔質コー
ンライト管及び前記の処理を施し。
After heating up to 800℃ at a heating rate of 50℃/hour, 800℃
The mixture was held for 2 hours and allowed to cool. Next, a porous cornlite tube and the above treatment were applied.

無機質膜を形成させた多孔質隔膜の分離膜を流通式高圧
反応装置に設置し、これに各種I■2/■(2S混合カ
スを流通させ、これらの分離膜を通して流出する硫化水
素及び水素の濃度変化を供給側圧力2〜20 kq /
 CII+ 、流出側圧力1にり/Cml、供給流量を
分離膜透過後の流量の2倍の条件に定めて測定した。こ
のようにして原料カス組成H2/I■28二4.0/9
 e、oのガスについて分離効果を調ヘタところ、多孔
質コージライト管(細孔径aoooX)の場合には分離
効果は認められなかった。両面塗布した多孔質隔膜及び
片面塗布した多孔質隔膜では供給側圧力が41g / 
cnlのとき分離膜透過後のガス組成はそれぞれ5.0
 / 95.0.6.0/94.0となった。このとき
塗布した膜の部分の細孔径を水銀圧入法により6L1]
定すると150Xであった。本試験の結果、大きな細孔
を有する多孔質体の表面に微細孔の薄膜を生成させるこ
とでカスの分離が用油となることが判明した。また1両
面と片面の場合では片面だけの塗布のほうが分離効率が
いいことが明らかとなった。
A porous diaphragm separation membrane on which an inorganic membrane has been formed is installed in a flow-type high-pressure reactor, and various I■2/■ (2S mixed scum) are passed through it to remove hydrogen sulfide and hydrogen flowing out through these separation membranes. Concentration change at supply side pressure 2 to 20 kq/
Measurements were made under the following conditions: CII+, outlet pressure 1/Cml, and supply flow rate twice the flow rate after passing through the separation membrane. In this way, the raw material waste composition H2/I■2824.0/9
When examining the separation effect for gases e and o, no separation effect was observed in the case of the porous cordierite tube (pore diameter aoooX). For porous diaphragms coated on both sides and porous diaphragms coated on one side, the supply side pressure was 41g/
When cnl, the gas composition after passing through the separation membrane is 5.0.
/95.0.6.0/94.0. At this time, the pore diameter of the coated part of the membrane was determined by mercury intrusion method to 6L1]
It was 150X. As a result of this test, it was found that by forming a thin film of fine pores on the surface of a porous body with large pores, the scum can be separated into a working oil. Furthermore, it was found that in the case of one-sided coating and one-sided coating, the separation efficiency was better when coating only one side.

実施例3 箱販ノコロイダルンリ力100 gをメチルセルローズ
5gに溶解し、細孔径850θχの窒化けい素管(内径
10 mm 、外径12mm、長さ200mm)の外表
面に塗布した。その後50℃において2時間乾燥した後
、50℃/時間の昇温速度で700’Cまで昇温しだ後
、2時間保持しその後放冷を行った。
Example 3 100 g of boxed colloidal powder was dissolved in 5 g of methylcellulose and applied to the outer surface of a silicon nitride tube (inner diameter 10 mm, outer diameter 12 mm, length 200 mm) with a pore diameter of 850θχ. After drying at 50° C. for 2 hours, the temperature was increased to 700° C. at a rate of 50° C./hour, held for 2 hours, and then allowed to cool.

このようにして得た窒化けい素管の表面のシリカ膜の厚
さは100〜200μmであった。また、水銀圧入法に
よりその部分の細孔径を測定すると100Xであった。
The thickness of the silica film on the surface of the silicon nitride tube thus obtained was 100 to 200 μm. Further, the pore diameter of that portion was measured by mercury porosimetry and was found to be 100X.

次の窒化けい素及び窒化けい素管の表面にシリカ膜を形
成させた多孔質隔膜の分離膜を流通式ガス分離試験装置
に設置し。
Next, a separation membrane made of silicon nitride and a porous diaphragm with a silica membrane formed on the surface of a silicon nitride tube was installed in a flow-through gas separation test device.

これに各種1127N2混合カスを流通させ、これらの
分離膜を通して流出する窒素及び水素の濃度変化を供給
側圧力2〜20kQ/ad、流出側圧力1kq / c
xl、に条件を設定して測定を行った。このようにして
原料ガス組成HJN2= 50150のガスについて分
離効果を調べたところ窒化けい素管(細孔径a5ooX
 )を用いた場合、気体の分離効果は認められなかった
。一方9本発明の窒化けい素管表面にシリカ膜を形成さ
せた多孔質隔膜では供給側圧力4−Okg / cnt
の条件で膜透過後のガス組成は室温においてH2/N2
 = 55/45となり、水素の分離濃縮が確認された
Various types of 1127N2 mixed waste are passed through this, and changes in the concentration of nitrogen and hydrogen flowing out through these separation membranes are measured at a pressure of 2 to 20 kQ/ad on the supply side and a pressure of 1 kq/c on the outlet side.
The measurement was performed under conditions set to xl. In this way, we investigated the separation effect for a gas with a raw material gas composition of HJN2 = 50150.
), no gas separation effect was observed. On the other hand, in the case of the porous diaphragm in which a silica film is formed on the surface of the silicon nitride tube of the present invention, the supply side pressure is 4-Okg/cnt.
Under these conditions, the gas composition after passing through the membrane is H2/N2 at room temperature.
= 55/45, and separation and concentration of hydrogen was confirmed.

Claims (1)

【特許請求の範囲】[Claims] 無機多孔質体の片面に微細な細孔を有する無機質膜を形
成させたことを特徴とする多孔質隔膜。
A porous diaphragm characterized by forming an inorganic membrane having fine pores on one side of an inorganic porous body.
JP21956382A 1982-12-15 1982-12-15 Porous membrane Pending JPS59109203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21956382A JPS59109203A (en) 1982-12-15 1982-12-15 Porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21956382A JPS59109203A (en) 1982-12-15 1982-12-15 Porous membrane

Publications (1)

Publication Number Publication Date
JPS59109203A true JPS59109203A (en) 1984-06-23

Family

ID=16737465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21956382A Pending JPS59109203A (en) 1982-12-15 1982-12-15 Porous membrane

Country Status (1)

Country Link
JP (1) JPS59109203A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231822A (en) * 1988-07-19 1990-02-01 Ngk Insulators Ltd Production of inorganic porous film
US5110470A (en) * 1989-10-26 1992-05-05 Toto Ltd. Ceramic filter and process for making it
JPH0667460B2 (en) * 1988-05-24 1994-08-31 セラメム・コーポレーション Method for producing porous and inorganic membranes with thermoreactive inorganic binder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667460B2 (en) * 1988-05-24 1994-08-31 セラメム・コーポレーション Method for producing porous and inorganic membranes with thermoreactive inorganic binder
JPH0231822A (en) * 1988-07-19 1990-02-01 Ngk Insulators Ltd Production of inorganic porous film
US5110470A (en) * 1989-10-26 1992-05-05 Toto Ltd. Ceramic filter and process for making it

Similar Documents

Publication Publication Date Title
CN107206330B (en) Separation membrane structure and method for reducing nitrogen concentration
JP6670764B2 (en) Separation membrane structure
JP2020028881A (en) Separation membrane structure and gas separating method
JP5108525B2 (en) Method for producing zeolite membrane
Wang et al. Formation of continuous and highly permeable ZIF-8 membranes on porous alumina and zinc oxide hollow fibers
JPS62160121A (en) Porous diaphragm
CN110446545B (en) Zeolite membrane composite and process for producing zeolite membrane composite
CA2855501A1 (en) A method of preparing or reconditioning a leak stable gas separation membrane system
JPS61238303A (en) Preparation of microporous membrane
JP2002187706A (en) High temperature type film type reformer
JP2009214075A (en) Body provided with separating membrane
BR112019011707B1 (en) HYDROGEN PERMEABLE MEMBRANE DEVICE
CN110430935B (en) Method for inspecting separation membrane structure, method for manufacturing separation membrane module, and method for manufacturing separation membrane structure
JPS59109203A (en) Porous membrane
JP2004002160A (en) Method for coating zeolite crystal, substrate coated therewith, production method for zeolite membrane, zeolite membrane, and separation method using the membrane
WO2015146488A1 (en) Monolithic separation membrane structure, method for producing monolithic separation membrane structure, and method for dehydrating same
JPS5959224A (en) Preparation of porous diaphragm
JP2018179581A (en) Gas sensor and method for gas detection
Yu et al. Confined and in-situ zeolite synthesis: A novel strategy for defect reparation over dense Pd membranes for hydrogen separation
JP6358839B2 (en) Hydrogen production apparatus and production method thereof
JPS5959223A (en) Preparation of porous diaphragm
JPS58205504A (en) Heat resistant porous film
JPS5910306A (en) Porous diaphragm
JP2016190200A (en) Manufacturing method for zeolite film
US20080142432A1 (en) Bag tube shaped body with porous multilayer structure