JPS59108896A - Capacity control mechanism for scroll type compressor - Google Patents

Capacity control mechanism for scroll type compressor

Info

Publication number
JPS59108896A
JPS59108896A JP21756582A JP21756582A JPS59108896A JP S59108896 A JPS59108896 A JP S59108896A JP 21756582 A JP21756582 A JP 21756582A JP 21756582 A JP21756582 A JP 21756582A JP S59108896 A JPS59108896 A JP S59108896A
Authority
JP
Japan
Prior art keywords
chamber
pressure
spool
scroll member
compression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21756582A
Other languages
Japanese (ja)
Inventor
Kimio Kato
公雄 加藤
Kunifumi Gotou
後藤 邦文
Mitsukane Inagaki
稲垣 光金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK, Toyoda Automatic Loom Works Ltd filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP21756582A priority Critical patent/JPS59108896A/en
Publication of JPS59108896A publication Critical patent/JPS59108896A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/16Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To suppress the cost and make the arrangement in small size and lightweight, by composing with a by-pass hole, a spool, a spool energizing member and two pressure leading holes and by eliminating necessity for use of control apparatus such as solenoid valve, amplifier and cooling load sensor. CONSTITUTION:Part of compressed gas in a compression chamber C1 flows into a working chamber B through a by-pass hole 15d so as to relieve shocks at the starting time of compressor. Further No.1 pressure leading hole 22 is formed with a diameter as small as possible to provide a throttle action, in order to delay pressure rise at the starting time in a high pressure chamber 19 with respect to the pressure rise in the above-mentioned compression chamber C1. Thus violent pressure rise is prevented to make possible a slow blocking of the by- pass hole 15d by a spool 18, which provides more smooth transition to the 100% operation after starting together with the effect of making pressure in the low pressure chamber 20 down slowly through the use also of No.2 pressure leading hole 23 having a small diameter. According to this arrangement control apparatus such as solenoid-operated valve can be eliminated to assure a suppressed cost as well as a compacted and lightweight construction.

Description

【発明の詳細な説明】 本発明は固定スクロール部材のうず巻部と可動スクロー
ル部材のうず巻部とを偏心してかみ合わせ、可動スクロ
ール部材のうず巻部を公転させて両うず巻部間に形成さ
れる密閉状の圧縮室を中心方向へ移動させながら容積を
減縮して中心部から圧縮流体を吐出させるようにしたス
クロール型圧縮機において、室内の冷房負荷の変化にと
もなって圧縮容量を自動的に制御することのできる容量
制御機構に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that the spiral portion of the fixed scroll member and the spiral portion of the movable scroll member are eccentrically engaged, and the spiral portion of the movable scroll member is caused to revolve to form a spiral portion between the two spiral portions. In a scroll compressor, the compressed fluid is discharged from the center by moving the hermetic compression chamber toward the center while reducing the volume. This invention relates to a capacity control mechanism that can be controlled.

この容量制御機構として、従来特開昭57−16292
号公報に示すように吸入温度、吸入圧力等により冷房負
荷を検出し、該冷房負荷が低下したとき、容量切換信号
を出して電磁弁を作動させ、吸入室と圧縮室とを連通ず
るバイパス孔を開放して容量ダウンを行なうようにした
ものが提案されている。
Conventionally, as this capacity control mechanism,
As shown in the publication, there is a bypass hole that detects the cooling load based on suction temperature, suction pressure, etc., and when the cooling load decreases, outputs a capacity switching signal and operates a solenoid valve to communicate the suction chamber and compression chamber. A method has been proposed in which the capacity is reduced by freeing up the capacity.

ところが、上記容量制御機構は電磁弁、冷房負荷検出器
及びアンプ等を必要とするため、コスト高となるばかり
でなく、消費電力も多くなり、電磁弁の取付スペースが
大きいので、圧縮機が大型化し重量も大となる欠陥があ
った。
However, since the capacity control mechanism described above requires a solenoid valve, a cooling load detector, an amplifier, etc., it not only increases cost but also consumes more power.The installation space for the solenoid valve is large, so the compressor is large. There was a defect that increased the size and weight of the product.

本発明は上記欠陥を解消するために成されたものであっ
て、その目的は電磁弁、アンプ及び冷房負荷検出器等の
制御機器を不要にして大幅にコストダウンを図ることが
できるとともに、f最小型化することができ、性能を向
上することができるスクロール型圧縮機における容量制
御機構を提供することにある。
The present invention has been made to eliminate the above-mentioned defects, and its purpose is to eliminate the need for control equipment such as solenoid valves, amplifiers, and cooling load detectors, thereby significantly reducing costs. It is an object of the present invention to provide a capacity control mechanism for a scroll compressor that can be miniaturized and improve performance.

ところで、本発明は室内における冷房負荷の変化にとも
なって、吸入室内若しくは圧縮室内の吸入行程における
圧力(以下吸入側圧力という)と、圧縮室内の圧縮行程
における圧力(以下圧縮側圧力という)との間に生ずる
差圧が変化することに着目して提案されたものである。
By the way, the present invention deals with changes in the pressure in the suction stroke in the suction chamber or compression chamber (hereinafter referred to as suction side pressure) and the pressure in the compression stroke in the compression chamber (hereinafter referred to as compression side pressure) as the cooling load changes indoors. This was proposed by focusing on the fact that the differential pressure that occurs between them changes.

さらに詳しくは第9図に示すように冷房負荷が減少して
吸入側圧力がPLlからPL2に低下すると、圧縮側圧
力が)H1からPH2に低下するため、前記差圧がΔP
1から八P2に低下し、反対に冷房負荷が増大して吸入
側圧力が」二昇すると前記差圧が大きくなることに鑑み
、この差圧の変化を利用して制御弁機構を自動開閉させ
ることにより、圧縮容量を調整するようにしたスクロー
ル型圧縮機の容量制御機構に関するものである。
More specifically, as shown in FIG. 9, when the cooling load decreases and the suction side pressure decreases from PLl to PL2, the compression side pressure decreases from )H1 to PH2, so the differential pressure increases to ΔP.
Considering that the differential pressure increases when the air conditioner decreases from 1 to 8 P2 and the cooling load increases and the suction side pressure rises by 2, the control valve mechanism is automatically opened and closed using this change in differential pressure. This invention relates to a capacity control mechanism for a scroll compressor that adjusts the compression capacity.

以下、本発明を具体化した一実施例を第1図〜第5図に
ついて説明すると、センタハウジング1の左端部にはフ
ロントハウジング2が図示しない複数本の締付ボルトに
よシ固定され、センタハウジング1の右端部にはリヤハ
ウジング3が−に的に設けられている。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS. 1 to 5. A front housing 2 is fixed to the left end of a center housing 1 by a plurality of tightening bolts (not shown). A rear housing 3 is provided at the right end of the housing 1.

フロントハウジング2の中央部には円筒状のボス部4が
一体に形成され、その中心孔4aには左右一対のラジア
ルボールベアリング5により回転萌lが支承され、外端
部において駆動源に接続される。又、回転11ql16
とボス部4の間にはシャフトシール機構7が介装されて
おり、このシール機構γを収納するシール室Sの上部と
連通ずるように前記ボス部4の基端上部には冷媒ガスの
導入孔4bが設けられている。
A cylindrical boss portion 4 is integrally formed in the center of the front housing 2, and a rotary shaft 4 is supported in the center hole 4a by a pair of left and right radial ball bearings 5, and is connected to a drive source at the outer end. Ru. Also, rotation 11ql16
A shaft seal mechanism 7 is interposed between the shaft seal mechanism 7 and the boss part 4, and a refrigerant gas is introduced into the upper base end of the boss part 4 so as to communicate with the upper part of the seal chamber S that houses the seal mechanism γ. A hole 4b is provided.

前記回転軸6の内端部には偏心11118が連結されて
おり、この偏心軸8上には可動スクロール部材9を構成
する円形状をなす基板9aの背面中心部に一体的に形成
したボス部9bがラジアルニードルベアリング10又は
ブレーンベアリングを介して回転可能に支承されている
。前記可動スクロール部材9の前面には第4図に示すよ
うにうず巻部9Cが一体的に形成されている。
An eccentric 11118 is connected to the inner end of the rotating shaft 6, and on the eccentric shaft 8 is a boss portion integrally formed at the center of the back surface of a circular base plate 9a constituting the movable scroll member 9. 9b is rotatably supported via a radial needle bearing 10 or a brane bearing. A spiral portion 9C is integrally formed on the front surface of the movable scroll member 9, as shown in FIG.

一方、センタハウジング1とフロントハウジング2の接
合部に形成された環状の係止段部には可動スクロール部
材9の自転防止を行なう固定゛リング11の外周縁がキ
ー12により回動不能に係合されている。この固定リン
グ11を境としてフロン1−ハウジング2側には吸入室
Aが形成され、センタハウシング1側には作動室Bが形
成されており、吸入室Aにはフロントハウジング2の外
8上部に貫設した吸入口2aにより外部回路から冷媒占
L ガスが導入される。さらに、固定リングの外側部には第
2図に示すように吸入通路11aが複数(本実施例では
4つあるが小孔を多数設けてもよい〕箇所に設けられ、
吸入室Aから作動室B(該室Bも吸入室であるが説明の
都合上吸入室Aと区別した)へ冷媒ガスが導入される。
On the other hand, the outer circumferential edge of a fixing ring 11 that prevents the rotation of the movable scroll member 9 is non-rotatably engaged with an annular locking step formed at the joint between the center housing 1 and the front housing 2 by a key 12. has been done. A suction chamber A is formed on the side of the front housing 1 and the housing 2 with this fixing ring 11 as a boundary, and an operating chamber B is formed on the side of the center housing 1. Refrigerant gas is introduced from the external circuit through the suction port 2a provided through the suction port 2a. Furthermore, as shown in FIG. 2, a plurality of suction passages 11a (four in this embodiment, but many small holes may be provided) are provided on the outer side of the fixing ring.
Refrigerant gas is introduced from suction chamber A to working chamber B (chamber B is also a suction chamber, but is distinguished from suction chamber A for convenience of explanation).

前記可動スクロール部材9の基板9a背向には第1,2
図、に示すように中心を通る上下方向に自転防止用のガ
イド溝9dが刻設され、前記固定リング11の前面には
第2図に示すように左右方向に自転防止用のガイド溝1
1bが刻設されている。
On the back side of the substrate 9a of the movable scroll member 9 are first and second
As shown in FIG. 2, a guide groove 9d for preventing rotation is cut in the vertical direction passing through the center, and a guide groove 1 for preventing rotation in the left and right direction is formed on the front surface of the fixing ring 11, as shown in FIG.
1b is engraved.

そして、ガイド溝9dには第3図に示すように四角環状
をなす自転防止リング13が上下方向の摺動可能に係合
されるとともに、ガイド溝11bにも前記自転防止リン
グ13が第2図に示すように左右方向のスライド可能に
係合されている。
A rotation prevention ring 13 having a rectangular ring shape is engaged with the guide groove 9d so as to be slidable in the vertical direction as shown in FIG. As shown in the figure, they are engaged so that they can slide in the left and right directions.

従って、前記回転軸6により偏心軸8が一定の円軌跡を
描きながら第2図において反時計回り方向へ例えば90
度回転されると、一体的に形成された自転防止リング1
3が固定リング11のガイド溝11bに規制されている
ので、自転防止リング13はガイド溝11bに沿って左
方へ真直ぐに平行移動され、このため基板9aのガイド
溝9dも上下同じ方向に保持され、可動スクロール部材
9の自転は防止される。
Therefore, the eccentric shaft 8 is moved counterclockwise in FIG.
When rotated, the integrally formed anti-rotation ring 1
3 is regulated by the guide groove 11b of the fixed ring 11, the anti-rotation ring 13 is moved straight in parallel to the left along the guide groove 11b, and therefore the guide groove 9d of the substrate 9a is also held in the same vertical direction. Thus, rotation of the movable scroll member 9 is prevented.

前記回転軸6の内端部には、可動スクロール部材9の公
転運動を円滑に行なうためのバランスウェイト14゛が
固着されている。
A balance weight 14' is fixed to the inner end of the rotating shaft 6 for smoothing the revolution of the movable scroll member 9.

前記センタハウジング1とリヤハウジング3により形成
された係止段部には、固定スクロール部材15を構成す
る円形状をなす厚肉の基板15aの外周縁が回動不能に
かつ半径方向へ移動不能に挟着されている。この基板1
5aの前面には第4図に示すようにうず巻部15bが前
記可動スクロール部材のうず巻部9Cと常時2箇所以七
で局部的に接触するように一体的に固着されている。又
、前記基板15aのほぼ中心部には該基板15aとリヤ
ハウシング3とにより形成された吐出室りへ圧縮された
冷媒ガスを吐出し得る吐出通路15cが透設されている
。この吐出通路150は吐出室1)内においてリテーナ
16によって位置規制される吐出弁17により閉鎖され
ている。前記吐出室りの底部には吐出口3aが透設され
ている。
At the locking step formed by the center housing 1 and the rear housing 3, the outer peripheral edge of a circular thick substrate 15a constituting the fixed scroll member 15 is fixed so that it cannot rotate and cannot move in the radial direction. It is pinched. This board 1
As shown in FIG. 4, a spiral portion 15b is integrally fixed to the front surface of the scroll member 5a so as to be in constant local contact with the spiral portion 9C of the movable scroll member at two or more places. Further, a discharge passage 15c is provided at substantially the center of the substrate 15a, through which compressed refrigerant gas can be discharged into a discharge chamber formed by the substrate 15a and the rear housing 3. This discharge passage 150 is closed within the discharge chamber 1) by a discharge valve 17 whose position is regulated by a retainer 16. A discharge port 3a is transparently provided at the bottom of the discharge chamber.

従って、前記偏心軸8により可動スクロール部材9のう
ず巻部9Cが固定スクロール部材15のうず巻部151
〕に局部的に接触しながら第4図時計回り方向へ公転さ
れると、両うず巻部9C1151)の接触部がうず巻部
151)の内周面上を中心へ向って移動し、このため2
つの接触部によって形成される密閉状の圧縮室C1,C
2(01は吸入室と密閉を繰り返し、C2は常時密閉状
態にある)が徐々に取り込んtご冷媒カスを圧縮しなが
ら中心部へ移動され、吐出通路150から吐出室りへ吐
出されて吐出口3aから外部回路へ圧送される。
Therefore, the eccentric shaft 8 causes the spiral portion 9C of the movable scroll member 9 to move into the spiral portion 151 of the fixed scroll member 15.
] When it revolves in the clockwise direction in FIG. 2
Closed compression chambers C1 and C formed by two contact parts
2 (01 is repeatedly sealed with the suction chamber, and C2 is always sealed) gradually takes in the refrigerant scum and moves it to the center while compressing it, and discharges it from the discharge passage 150 to the discharge chamber and into the discharge port. 3a to the external circuit.

次に、本発明の容量制御機構を第4図及び第5図につい
て説明すると、前記固定スクロール部材15のうず巻部
15bには吸入と密閉を繰り返す圧縮室C1のガスを、
常時吸入室Aとほぼ同じ圧力に保持される作動室Bへ導
くためのバイパス孔15dがうず巻部15!]の板厚方
向に貫設されている。同じく前記固定スクロール部材1
5の基板15aとうず巻部15hには前記バイパス孔1
5d開閉用のスプール18が該バイパス孔15dに対し
て直交する方向(回転軸6の中心軸線と平行)に向けて
摺動自在に設けられている。該スプール18の両端部に
は高圧室19と低圧室20が設けられていて、低圧室2
0内にはばね21が介装され、スプール18は該ばね2
1により常には高圧室19方向に付勢されてベイパス孔
15dを開放する状態にあるようにしている。
Next, the capacity control mechanism of the present invention will be explained with reference to FIGS. 4 and 5. The spiral portion 15b of the fixed scroll member 15 receives gas from the compression chamber C1 which is repeatedly sucked and sealed.
The spiral portion 15 has a bypass hole 15d that leads to the working chamber B which is always maintained at almost the same pressure as the suction chamber A! ] is installed through the board in the thickness direction. Similarly, the fixed scroll member 1
The bypass hole 1 is provided in the substrate 15a of No. 5 and the spiral portion 15h.
A spool 18 for opening and closing 5d is provided so as to be slidable in a direction perpendicular to the bypass hole 15d (parallel to the central axis of the rotating shaft 6). A high pressure chamber 19 and a low pressure chamber 20 are provided at both ends of the spool 18.
A spring 21 is interposed in the spring 2, and the spool 18 is connected to the spring 2.
1, it is always urged in the direction of the high pressure chamber 19 to open the bay pass hole 15d.

前記高圧室19は第1導圧孔22によって吸入と密閉を
繰り返す圧縮室C1と連通されている。
The high pressure chamber 19 is communicated with a compression chamber C1 which is repeatedly sucked and sealed through a first pressure guiding hole 22.

又、低圧室20は第2導圧孔23により作動室Bと連通
されている。前記第1導圧孔22及び第2導圧孔23は
絞り効果を持たせるため可及的に小径に形成されている
Further, the low pressure chamber 20 is communicated with the working chamber B through a second pressure guiding hole 23. The first pressure guiding hole 22 and the second pressure guiding hole 23 are formed to have as small a diameter as possible in order to have a throttling effect.

一方、第4図に示すように可動スクロール部材9のうず
巻部9Cにも、前述した@量制御機構にと同様の制御機
構に/が装着されており、両制御機溝に、に’はほぼ同
時に作動されるようにしているが、該制御機構に/につ
いては同図にバイパス孔9Cとスプール18のみを示し
て、詳しい説明は省略する。
On the other hand, as shown in FIG. 4, the spiral portion 9C of the movable scroll member 9 is also equipped with a control mechanism similar to the above-mentioned @ amount control mechanism, and both control grooves have a Although they are operated almost simultaneously, only the bypass hole 9C and the spool 18 are shown in the same figure, and detailed explanation of the control mechanism will be omitted.

次に、前記スクロール圧縮機の作用を説明する。Next, the operation of the scroll compressor will be explained.

圧縮機が停止した状態においては、機内各部すな1)ち
吸入室A、作動室B1圧縮室C!1.C2及び吐出室り
は夫々はぼ同圧状態にある。又、容量制御用4?I!構
に、に/(以下、K′側については同じ作用のため説明
を省略する)のスプール18はばね21により高圧室1
9方向に向けて付勢され、バイパス孔15dは開かれた
状態にある。
When the compressor is stopped, the various parts inside the machine are: 1) suction chamber A, working chamber B1, compression chamber C! 1. C2 and the discharge chamber are each at approximately the same pressure. Also, 4 for capacity control? I! In this structure, the spool 18 (hereinafter, explanation will be omitted for the K' side as it has the same effect) is connected to the high pressure chamber 1 by the spring 21.
It is urged in nine directions, and the bypass hole 15d is in an open state.

この状態において、電磁クラッチ(図示省略)の接続操
作を介してエンジンの駆動力が回転軸6に伝達されて圧
縮動作が開始されると、エバポレータ(図示路)によシ
吸入管1@を経て吸入室A内に送り込まれた冷媒ガスは
吸入通路11aを経て作動室B内に吸入される。作動室
B内に吸引された冷媒ガスは、可動スクロール部材9の
公転作用により吸入行程の圧縮室01内へ取り込まれて
圧縮されながら吐出通路150へと移動され、吐出室D
1吐出口3a及び吐出管路を経てコンテンサー(図示路
)に送られる。
In this state, when the driving force of the engine is transmitted to the rotating shaft 6 through the connection operation of the electromagnetic clutch (not shown) and compression operation is started, it is transferred to the evaporator (path shown) via the suction pipe 1@. The refrigerant gas sent into the suction chamber A is sucked into the working chamber B through the suction passage 11a. The refrigerant gas sucked into the working chamber B is taken into the compression chamber 01 in the suction stroke by the revolving action of the movable scroll member 9, and is moved to the discharge passage 150 while being compressed.
The liquid is sent to the condenser (path shown) through the discharge port 3a and the discharge pipe.

一方、前述したように圧縮室C1に取り込まれた後、該
圧縮室01内で圧縮された冷媒カスの一部は、バイパス
孔15dを経て作動室B内へ還元される。こうして、冷
媒カスの一部が圧縮途中において作動室B側に流出する
ことにより、圧縮機の始動時における衝撃を緩和するこ
とができるとともに、起動トルクをIPf減して電磁ク
ラッチの耐久性を向上することができ、又液圧縮時の衝
撃をも緩和することができる。
On the other hand, as described above, after being taken into the compression chamber C1, a part of the refrigerant dregs compressed within the compression chamber 01 is returned to the working chamber B through the bypass hole 15d. In this way, a part of the refrigerant scum flows out to the working chamber B side during compression, which reduces the impact when starting the compressor, and reduces the starting torque by IPf, improving the durability of the electromagnetic clutch. It is also possible to reduce the impact during liquid compression.

そして、可動スクロール部材9の公転が繰り返されるこ
とにより、圧縮室01内の冷媒ガスの一部が第1導圧孔
22を経て高圧室19内に送り込まれ、該高圧室19内
の圧力が上昇する。
By repeating the revolution of the movable scroll member 9, a part of the refrigerant gas in the compression chamber 01 is sent into the high pressure chamber 19 through the first pressure guiding hole 22, and the pressure in the high pressure chamber 19 increases. do.

ところで、運転開始時等冷房負荷が大きい状態において
は、吸入室A内の圧力は比較的高く、冷房負荷が減少し
た状態においては逆に吸入室Aの圧力は低くなる。そし
て、この吸入側圧力と圧縮側圧力との間に生ずる差圧へ
Pは第9図に示すように吸入側圧力が高くなるのに比例
して大きくなることは前述の通シである。従って、運転
開始時等冷房負荷が大きくて吸入側圧力が高い状態にあ
る場合においては、前記差圧へPは大きくなる。
By the way, when the cooling load is large, such as at the start of operation, the pressure in the suction chamber A is relatively high, and when the cooling load is reduced, the pressure in the suction chamber A is conversely low. As previously mentioned, the differential pressure P generated between the suction side pressure and the compression side pressure increases in proportion to the increase in the suction side pressure, as shown in FIG. Therefore, when the cooling load is large and the suction side pressure is high, such as at the start of operation, the differential pressure P increases.

このため、差圧ΔPがばね21の弾性力を上回った状態
において、スプール18がリホ性力に抗して低圧室20
側に押圧され、該スプール18によりバイパス孔15d
が塞がれる。(第5図(b)参照)この結果、圧縮室0
1内の冷媒ガスはバイパス孔15dk経て作動室B側に
流出することなく、圧縮室01内に取り込まれた冷媒ガ
スはその全てが圧縮されて吐出室りへ送シ出され、10
0%運転状態となる。
For this reason, in a state where the differential pressure ΔP exceeds the elastic force of the spring 21, the spool 18 resists the resetting force and moves into the low pressure chamber 20.
The spool 18 opens the bypass hole 15d.
is blocked. (See Figure 5(b)) As a result, the compression chamber 0
The refrigerant gas in 1 does not flow out to the working chamber B side through the bypass hole 15dk, and all of the refrigerant gas taken into the compression chamber 01 is compressed and sent to the discharge chamber.
It becomes 0% operating state.

一方、室内の冷房負荷が減少し、吸入室A内に送り込ま
れる冷媒ガスの吸入圧力が低下するのに伴ない吸入側圧
力と圧縮側圧力の間の差圧ΔPも小さくなる。そして、
この差圧が容量制御機構にのばね21の弾性力を下回っ
た状態においてこれまで前記差圧によって低圧室20側
に押圧されてバイパス孔15dを塞ぐ状態にあったスプ
ール18は、ばね21により高圧室19側へ移動され、
バイパス孔15dが開放される。この結果、圧縮室C1
において圧縮途中にある冷媒ガスの一部はバイパス孔1
5(li経て作動室B側に流出し、圧縮室01内におけ
る圧力は低下する。こうして、室内における冷房負荷の
減少にともない、冷媒ガスの圧縮容量が減少する。
On the other hand, as the indoor cooling load decreases and the suction pressure of the refrigerant gas sent into the suction chamber A decreases, the differential pressure ΔP between the suction side pressure and the compression side pressure also decreases. and,
When this differential pressure is lower than the elastic force of the spring 21 in the capacity control mechanism, the spool 18, which had been pressed toward the low pressure chamber 20 side by the differential pressure and blocked the bypass hole 15d, is moved to the high pressure by the spring 21. Moved to room 19 side,
Bypass hole 15d is opened. As a result, the compression chamber C1
A part of the refrigerant gas in the middle of compression is passed through the bypass hole 1.
5(li) and flows out to the working chamber B side, and the pressure in the compression chamber 01 decreases. Thus, as the cooling load in the room decreases, the compression capacity of the refrigerant gas decreases.

なお、第1導圧孔22を可及的小径に形成し、該第1導
圧孔22に絞り作用を付与したことにより、起動時にお
いて圧縮室内の圧力を昇に対する高圧室19の圧力上昇
を時間的に遅らせることができ、高圧室19における急
激な圧力上昇を防止できる。このため、スプール18に
よるバイパス孔15dの閉鎖をゆっくり行なうことがで
き、起動時における100%運転・\の移行を円滑に行
なうことができる。
Note that by forming the first pressure guiding hole 22 as small as possible and applying a throttling action to the first pressure guiding hole 22, the pressure increase in the high pressure chamber 19 due to the pressure increase in the compression chamber at the time of startup is suppressed. This can be delayed in time, and a sudden pressure rise in the high pressure chamber 19 can be prevented. Therefore, the bypass hole 15d can be slowly closed by the spool 18, and the transition between 100% operation and \ at startup can be smoothly performed.

又、定常運転時においては、圧縮室01内の圧力変化に
対するスプール18の過敏な移wJを防止することがで
き、スプール18の動きを安定させることができる。
Furthermore, during steady operation, it is possible to prevent the spool 18 from moving too sensitively to changes in pressure within the compression chamber 01, and the movement of the spool 18 can be stabilized.

さら1(、第2導圧孔23を前記第1導圧孔22と同様
可及的1c小径に形成して絞り作用を付与したことによ
り、スプール18がバイパス孔15dを閉じる方向に移
動するときの低圧室20内の圧力紙Fをゆっくりと行な
イつせることかでき、第1導圧孔22による絞り作用と
あオ)せて100%稼動への移行をより円滑に行なうこ
とができる。
Furthermore, 1 (by forming the second pressure-pulling hole 23 to have as small a diameter as possible as the first pressure-pulling hole 22 and imparting a throttling effect, when the spool 18 moves in the direction of closing the bypass hole 15d The pressure paper F in the low-pressure chamber 20 can be slowly released, and the transition to 100% operation can be made more smoothly due to the throttling action of the first pressure guiding hole 22. .

なお、スプール18の動作が敏感な場合には、例えばス
プール18自体の摺動抵抗を高めたり、あるい(佳0リ
ングを介在させる等スプール18に対して適宜のヒステ
リシスを与える方法がある。
If the movement of the spool 18 is sensitive, there are methods to increase the sliding resistance of the spool 18 itself, or to provide appropriate hysteresis to the spool 18, such as by interposing a ring.

さらに、本発明は次のような実施例で具体化することも
可能である。
Furthermore, the present invention can also be embodied in the following embodiments.

(1)第6図及び第7図に示すようにうず巻部15bの
端面に対し円弧状の溝を形成して該溝と基板9aとによ
り第1導圧孔22を形成し、該導圧孔22の開口部を圧
縮行程が進んだ圧縮室C2に位置させて高圧室19に大
きな差圧が作用するようにすること。
(1) As shown in FIGS. 6 and 7, an arcuate groove is formed on the end surface of the spiral portion 15b, and the groove and the substrate 9a form the first pressure guiding hole 22. The opening of the hole 22 is located in the compression chamber C2 where the compression stroke has progressed so that a large differential pressure acts on the high pressure chamber 19.

(2)前記実施例では一対の容量制御機構K 、 K/
を作動時期が同じになるようにほぼ同様に構成したが、
これに代えて第8図に示すように第6図及び第7図で述
へた別例において一方の容量制御機構にの第1導圧孔2
2を他方の容量制御機構Klの第1導圧孔22よりも長
くし、一方の容量制御機構Kには大きな差圧が作用し、
他方の容量制御機構に/には小さい差圧が作用するよう
にすること。そして、100%運転状態で冷房負荷が減
少すると、まずバイパス孔15dがlJ[いて中容量運
転になり、さらに冷房負荷が減少すると、バイパス孔9
eが開いて小容量運転になるように、6段階の容量切換
を行なうようにすること。
(2) In the above embodiment, a pair of capacity control mechanisms K, K/
were configured in almost the same way so that the operating timing is the same, but
Instead, as shown in FIG. 8, in the other example described in FIG. 6 and FIG.
2 is made longer than the first pressure guiding hole 22 of the other capacity control mechanism Kl, and a large differential pressure acts on one capacity control mechanism K.
A small differential pressure should act on/to the other capacity control mechanism. When the cooling load decreases in the 100% operating state, the bypass hole 15d first becomes 1J[ and becomes medium capacity operation, and when the cooling load further decreases, the bypass hole 9
Capacity switching should be performed in 6 stages so that e is open and low capacity operation is performed.

(3)第1図〜第5図に示す実施例において、容量制御
機構にのばね21を容量制御機構に/のばね21よりも
弱く設定し、冷房負荷減少時吸入圧が下がり差圧へPが
八P1になったところでバイパス孔15dが開放され、
さらに冷房負荷が減少し差圧が八P2になると、バイパ
ス孔9eも開放されるようにして100%、中容量、小
容量の3段階の容量変化を行なわせるようにすること。
(3) In the embodiment shown in Figs. 1 to 5, the spring 21 of the capacity control mechanism is set to be weaker than the spring 21 of / of the capacity control mechanism, so that when the cooling load decreases, the suction pressure decreases to a differential pressure P When becomes 8P1, the bypass hole 15d is opened,
Furthermore, when the cooling load decreases and the differential pressure reaches 8P2, the bypass hole 9e is also opened so that the capacity can be changed in three stages: 100%, medium capacity, and small capacity.

(4)前記実施例では固定及び可動のスクロール部材1
5.9にそれぞれ容量制御機構に、に/を装着したが、
これをいずれか一方のみにすること。
(4) In the above embodiment, the fixed and movable scroll member 1
5. I installed / on each capacity control mechanism in 9, but
Do only one of these.

又5つ以上の容量制御機構を設けてそれらが段階的に作
動するようにすること。
Also, five or more capacity control mechanisms should be provided so that they operate in stages.

以上詳述したように、本発明は可動又は固定のスクロー
ル部材のうず巻部に対し吸入室と圧縮室を連通ずるため
のバイパス孔を貫設し、該バイパス孔には該バイパス孔
開閉用のスプールを摺動自在に嵌入し、該スプールの両
側には圧縮室の圧縮行程と連通ずる高圧室と、吸入室若
しくは圧縮室の吸入行程と連通ずる低圧室を設け、さら
に前記スプールには前記バイパス孔を開放する方向、す
なわち高圧室側へ付勢するための付勢部材を設けたこと
により、室内の冷房負荷が大きい状態においては圧縮機
をフル稼動させることができ、別記冷房負荷が減少した
場合においては圧縮機の稼動率を低下させることができ
る如く室内の冷房負荷に対応してその圧縮容量を自動的
に調整することができるとともに、起動時の立上がりト
ルクを軽減し、液圧縮による衝撃を緩和することができ
る。
As detailed above, the present invention provides a bypass hole for communicating a suction chamber and a compression chamber through the spiral portion of a movable or fixed scroll member, and a bypass hole for opening and closing the bypass hole. A spool is slidably inserted into the spool, and a high pressure chamber communicating with the compression stroke of the compression chamber and a low pressure chamber communicating with the suction chamber or the suction stroke of the compression chamber are provided on both sides of the spool, and the spool is further provided with the bypass chamber. By providing a biasing member to bias the hole in the direction of opening, that is, toward the high-pressure room side, the compressor can be operated at full capacity when the indoor cooling load is large, reducing the cooling load as described separately. In some cases, the compression capacity can be automatically adjusted in response to the indoor cooling load so that the operating rate of the compressor can be lowered, and the start-up torque at startup can be reduced to reduce the shock caused by liquid compression. can be alleviated.

又、本発明は目■記構成のようにバイパス孔、スプール
、該スプールの付勢部材及び第1導圧孔、第2導圧孔等
により構成したので、電磁弁を使用する従来のスクロー
ル型圧縮機と比校して構造を簡素化してコストダウンを
図ることができるとともに、圧縮機を小型化することが
でき、又、吸入ガスのカl熱をなくして性能を向上させ
ることができる。
In addition, since the present invention is constructed with a bypass hole, a spool, a biasing member for the spool, a first pressure guiding hole, a second pressure guiding hole, etc. as in the above structure, it is not necessary to use a conventional scroll type using a solenoid valve. Compared to a compressor, the structure can be simplified to reduce costs, the compressor can be made smaller, and the performance can be improved by eliminating caloric heat from the suction gas.

さらに、本発明はスクロール部材のうず巻部にバイパス
孔を設けたので、圧縮室から吸入室への冷媒ガスの流れ
を抵抗が少なく円滑に行なうことができる。
Further, in the present invention, since the bypass hole is provided in the spiral portion of the scroll member, refrigerant gas can flow smoothly from the compression chamber to the suction chamber with less resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るスクロール型圧縮機の中央部縦断
面図、第2図は第1図のX−X線断面図、第6図は自転
防止リングの斜視図、第4図は第1図のY−Y線断面図
、第5図(1m)は容量制御機構の容量ダウン状態の断
面図、第5図(b)は容量制御機構の容量アップ状態の
断面図、第6図は本発明の変化を表わすグラフである。 センタハウノング1、フロン!・ハウジング2、リヤハ
ウジング3、回転軸6、偏心!l!1rI8、可動スク
ロール部材9、固定リング11、自転防出リング13、
固定スクロール部材15、基板15a、バイパス孔15
d1スプール18、高圧室19、低圧室20、ばね21
、第1導圧孔22、第2導正孔23、吸入孔A1作動室
B1圧縮室C1、C2、吐出室り、容量制御機構に、に
10特許出願人   株式会社豊田自動織機製作所代 
理 人   弁理士  恩 1)博 宣第2図 第3閃 第4図
FIG. 1 is a vertical cross-sectional view of the central part of a scroll compressor according to the present invention, FIG. 2 is a cross-sectional view taken along the line X--X in FIG. 1, FIG. 6 is a perspective view of an anti-rotation ring, and FIG. 1, FIG. 5 (1m) is a sectional view of the capacity control mechanism in the capacity down state, FIG. 5(b) is a sectional view of the capacity control mechanism in the capacity up state, and FIG. 6 is a sectional view of the capacity control mechanism in the capacity up state. It is a graph showing the changes of the present invention. Sentahunong 1, Freon!・Housing 2, rear housing 3, rotating shaft 6, eccentric! l! 1rI8, movable scroll member 9, fixed ring 11, rotation prevention ring 13,
Fixed scroll member 15, substrate 15a, bypass hole 15
d1 spool 18, high pressure chamber 19, low pressure chamber 20, spring 21
, first pressure guiding hole 22, second guiding hole 23, suction hole A1 working chamber B1 compression chamber C1, C2, discharge chamber, capacity control mechanism, 10 Patent Applicant Toyota Industries Corporation.
Patent Attorney On 1) Hironobu Figure 2 Figure 3 Flash Figure 4

Claims (1)

【特許請求の範囲】 1 ハウジングのフロント側端面はぼ中心部に回転軸を
積極回転可能に貫通支承し、この回転軸の内端に固着さ
れた偏心軸に対し可動スクロール部材を相対回転可能に
支承し、前記ハウジングの内側面には前記可動スクロー
ル部材の自転防止機構を設け、さらにハウジングのリヤ
側には固定スクロール部材を配設してそのうず巻部と可
動スクロール部材のうず巻部を少なくとも2個所以上で
部分接触した状態で重ね合せ、前記可動スクロール部材
を一定の円軌跡上を公転させて両うず巻部間に形成され
た密閉状の圧縮室を中心に向って移動させながら容積の
減縮を生じさせて一方向性連続圧縮作用を行なわせ、固
定スクロール部材の基板に貫設した吐出通路から外部へ
吐出するようにしたスクロール型圧縮機において、前記
可動又は固定のスクロール部材のうず巻部に対し吸入室
と圧縮室を連通するためのバイパス孔を貫設し、該バイ
ハス孔には該バイパス孔開閉用のスプールt[動自在に
嵌入し、該スプールの両側には圧縮室の圧縮行程と連通
ずる高圧室と、吸入室若しくは圧縮室の吸入行程と連通
ずる低圧室を設け、さらに前記スプールには前記バイパ
ス孔を開放する方向、すなわち高圧室側へ付勢するため
の付勢部材を設けたことを特徴とするスクロール型圧縮
機における容量制御機構。 、2 付勢部材は低圧室内に介装したコイルスプリンク
である特許請求の範囲第1項記載のスクロール型圧縮機
における容量制御機構。
[Claims] 1. A rotary shaft is positively rotatably supported through the front end surface of the housing at the center thereof, and a movable scroll member is rotatable relative to an eccentric shaft fixed to the inner end of the rotary shaft. A mechanism for preventing rotation of the movable scroll member is provided on the inner surface of the housing, and a fixed scroll member is disposed on the rear side of the housing so that the spiral portion thereof and the spiral portion of the movable scroll member are at least The movable scroll member is overlapped in a state of partial contact at two or more points, and the movable scroll member is caused to revolve on a constant circular trajectory to move the closed compression chamber formed between both spiral portions toward the center, while increasing the volume. In a scroll type compressor that causes reduction and contraction to perform a unidirectional continuous compression action and discharges to the outside from a discharge passage provided through a base plate of a fixed scroll member, the spiral of the movable or fixed scroll member A bypass hole for communicating the suction chamber and the compression chamber is provided through the bypass hole, and a spool t for opening and closing the bypass hole is movably fitted into the bypass hole, and a compression chamber for the compression chamber is fitted on both sides of the spool. A high pressure chamber communicating with the stroke and a low pressure chamber communicating with the suction stroke of the suction chamber or compression chamber are provided, and the spool further includes a biasing member for biasing the bypass hole in the direction of opening, that is, toward the high pressure chamber side. A capacity control mechanism in a scroll compressor, characterized by being provided with. , 2. The capacity control mechanism in a scroll compressor according to claim 1, wherein the biasing member is a coil spring interposed in the low pressure chamber.
JP21756582A 1982-12-11 1982-12-11 Capacity control mechanism for scroll type compressor Pending JPS59108896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21756582A JPS59108896A (en) 1982-12-11 1982-12-11 Capacity control mechanism for scroll type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21756582A JPS59108896A (en) 1982-12-11 1982-12-11 Capacity control mechanism for scroll type compressor

Publications (1)

Publication Number Publication Date
JPS59108896A true JPS59108896A (en) 1984-06-23

Family

ID=16706250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21756582A Pending JPS59108896A (en) 1982-12-11 1982-12-11 Capacity control mechanism for scroll type compressor

Country Status (1)

Country Link
JP (1) JPS59108896A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049044A (en) * 1989-03-02 1991-09-17 Mitsubishi Jukogyo Kabushiki Kaisha Compressor for heat pump and method of operating said compressor
JPH0821383A (en) * 1994-07-08 1996-01-23 Daikin Ind Ltd Scroll compressor
EP0933531A1 (en) * 1998-01-28 1999-08-04 Sanden Corporation Scroll compressor
US6164940A (en) * 1998-09-11 2000-12-26 Sanden Corporation Scroll type compressor in which a soft starting mechanism is improved with a simple structure
WO2021038614A1 (en) * 2019-08-23 2021-03-04 三菱電機株式会社 Scroll compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049044A (en) * 1989-03-02 1991-09-17 Mitsubishi Jukogyo Kabushiki Kaisha Compressor for heat pump and method of operating said compressor
JPH0821383A (en) * 1994-07-08 1996-01-23 Daikin Ind Ltd Scroll compressor
EP0933531A1 (en) * 1998-01-28 1999-08-04 Sanden Corporation Scroll compressor
US6176685B1 (en) 1998-01-28 2001-01-23 Sanden Corporation Scroll compressor in which communication is controlled between adjacent compression spaces
US6164940A (en) * 1998-09-11 2000-12-26 Sanden Corporation Scroll type compressor in which a soft starting mechanism is improved with a simple structure
DE19942685B4 (en) * 1998-09-11 2004-02-12 Sanden Corp., Isesaki scroll compressor
WO2021038614A1 (en) * 2019-08-23 2021-03-04 三菱電機株式会社 Scroll compressor
JPWO2021038614A1 (en) * 2019-08-23 2021-12-02 三菱電機株式会社 Scroll compressor

Similar Documents

Publication Publication Date Title
US5993177A (en) Scroll type compressor with improved variable displacement mechanism
JP4516121B2 (en) Capacity changing device for rotary compressor and operation method of air conditioner provided with the same
JP3723283B2 (en) Scroll type variable capacity compressor
JPH0744775Y2 (en) Compressor capacity control device
JPH029194B2 (en)
JPH0756274B2 (en) Scroll compressor
JPS6220688A (en) Vane type compressor
JP2003254263A (en) Scroll compressor
JPS6255487A (en) Variable displacement vane type compressor
JP2008509325A (en) Variable displacement rotary compressor and method of operating the same
JPS59105994A (en) Capacity control mechanism in scroll type compressor
JPS59108896A (en) Capacity control mechanism for scroll type compressor
JP2956555B2 (en) Scroll gas compressor
JPS63186982A (en) Vane type compressor
JPH03202691A (en) Variable volume scroll type compressor
KR100386205B1 (en) Scroll Fluid Machine
JPH0119077B2 (en)
JPS6176782A (en) Capacity control mechanism for scroll type compressor
JPS58222994A (en) Variable capacity compressor
JP2553033Y2 (en) Variable capacity scroll compressor
JPS5982597A (en) Capacity varying type compressor
JPH0442553Y2 (en)
JP2558630B2 (en) Scroll type compressor
JP2000009065A (en) Scroll type compressor
JP2001355583A (en) Scroll compressor