JPS59108460A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS59108460A
JPS59108460A JP57217753A JP21775382A JPS59108460A JP S59108460 A JPS59108460 A JP S59108460A JP 57217753 A JP57217753 A JP 57217753A JP 21775382 A JP21775382 A JP 21775382A JP S59108460 A JPS59108460 A JP S59108460A
Authority
JP
Japan
Prior art keywords
solid
sit
readout
state image
photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57217753A
Other languages
Japanese (ja)
Inventor
Masaharu Imai
今井 正晴
Junichi Nishizawa
潤一 西澤
Soubee Suzuki
鈴木 壮兵衛
Naoshige Tamamushi
玉蟲 尚茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP57217753A priority Critical patent/JPS59108460A/en
Priority to DE3345147A priority patent/DE3345147C2/en
Publication of JPS59108460A publication Critical patent/JPS59108460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14679Junction field effect transistor [JFET] imagers; static induction transistor [SIT] imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/1124Devices with PN homojunction gate
    • H01L31/1126Devices with PN homojunction gate the device being a field-effect phototransistor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a solid-state image pickup device with less signal interference between picture elements by connecting a photo sensing transistor (TR) receiving incident light in series with a readout TR reading out selectively a photoelectric converting output and arranging these TR to each cross point of a matrix. CONSTITUTION:Sources of photo sensing SIT of solid-state image pickup elements 40-1, 40-2... are connected to a common reset line 41, to which a bias voltage Vs is applied. Further, a gate of SIT for readout of one element group arranged in X direction is connected to a vertical selection shift register 43 via row lines 42-1, 42-2.... A drain of SIT for readout of the element group in one string arranged in Y direction is connected similarly to a horizontal selection shift register 45 via column lines 44-1, 44-2.... Further, a voltage V0 is applied to a video line 47 via a load resistor 48 and time series picture information is obtained at a terminal 49 based on a control signal from each register.

Description

【発明の詳細な説明】 本発明は固体撮像装置に関するものである。 ・従来固
体撮像装置としてはOOD等の電荷転送素子を用いるも
のや、MOS)ランジスタを用いるものなどが広く用い
られている。しかし、これらの固体撮像装置は電荷転送
時に[4の洩れがあること、光検出感度が低いこと、集
積度が上から・・ないことなどの問題がある。このよう
な間類を一′挙に解決するものとして、静電誘導トラン
ジスタ(5tatiOIn6uation Trans
lstorの頭文字をとってSITと呼ばれている)を
用いたものが新たに提案されている。例えば特開昭55
−15229号 −゛公報には、マトリックス状に配列
したSITのソースを行導線に接続し、ドレインを列導
線に接続し、ゲートをクリア導線に接続した固体撮像装
置が示されている。また、このような固体撮像装置をさ
らに発展させたものとして、ゲートにコンテ“□ンサを
接続したものが考えられている。第1図AおよびBはこ
のよりなSITの構造を示す断面図および平面図である
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device. - Conventional solid-state imaging devices that use charge transfer devices such as OOD, and devices that use MOS (MOS) transistors are widely used. However, these solid-state imaging devices have problems such as leakage during charge transfer, low photodetection sensitivity, and low degree of integration. Static induction transistors (5tatiOIn6uation Transistors) can be used to solve these problems all at once.
A new method using the SIT (SIT, an acronym for Lstor) has been proposed. For example, Japanese Patent Application Publication No. 55
No. 15229-1 discloses a solid-state imaging device in which the sources of SITs arranged in a matrix are connected to row conductors, the drains are connected to column conductors, and the gates are connected to clear conductors. Furthermore, as a further development of such a solid-state imaging device, one in which a container is connected to the gate is considered. FIG.

第1図AおよびBに示すように、P型基板1上にSIT
のソースを構成するn型埋込層2を形 1成すると共に
n−型エピタキシャル層8を成長させ、このエピタキシ
ャル層8の表面に熱拡散法等によりn+ドレイン領域4
お工びP+ゲート領域5を形成する。ドレイン領域4の
拡散深さは、これとソース領域2との間に形成するチャ
ンネル領域・の開閉を確実に行々うために、ゲート領域
5の拡”散深さよりも浅くする。ドレイン領域4にはド
レイン電極6を接合して設け、ゲート領域5には絶縁層
7を介してゲート電極8を設けることによりすなわちM
IS構造とすることによりゲートコンデンサを形成する
。また、隣接するSITは、それらの間にエピタキシャ
ル層8を分離するように絶縁層9を設けて相互に電気的
に分離する。
As shown in FIGS. 1A and 1B, the SIT
At the same time as forming an n-type buried layer 2 constituting a source of
A rough P+ gate region 5 is formed. The diffusion depth of the drain region 4 is made shallower than that of the gate region 5 in order to ensure the opening and closing of the channel region formed between the drain region 4 and the source region 2. A drain electrode 6 is bonded to and provided on the gate region 5, and a gate electrode 8 is provided on the gate region 5 with an insulating layer 7 interposed therebetween.
A gate capacitor is formed by forming an IS structure. Further, adjacent SITs are electrically isolated from each other by providing an insulating layer 9 between them so as to separate the epitaxial layer 8.

このような構成においては、光入力のない定常状態にお
いてゲート領域5をソース領域2に対しMで逆バイアス
に設定すわば、チャンネル領域は空乏化されるから、ソ
ースドレイン間が順方向にバイアスされてもソースドレ
イン間には電流が流れない。このような状態で、光入力
によって正孔−電子対が発生すると、電子はソース領域
2またはI・ドレイン領域4に向かい蓄積またははき出
さね、正孔はゲート領域5に蓄積されてMIS構造によ
るゲートコンデンサを充電し、ゲート電位をΔvGだけ
変化させる。ここで、ゲートコンデンサノ容量と、エピ
タキシャル層8に対する空乏層容址と−・・・の和を0
゜、光入力によって発生され、ゲート領1域5に蓄積さ
れた電荷量をQLとすると、ΔVo= QI、/、oと
なる。成る蓄積時間が経過した後、ゲート電極8にゲー
ト読出しパルスφGを与えると、ゲート電位はφGにΔ
voが加わったものとな。
In such a configuration, if the gate region 5 is set to a reverse bias of M with respect to the source region 2 in a steady state with no optical input, the channel region is depleted, so that the source-drain region is forward biased. Even if the current does not flow between the source and drain. In such a state, when hole-electron pairs are generated by optical input, the electrons are accumulated or expelled toward the source region 2 or the I/drain region 4, and the holes are accumulated in the gate region 5 and connected to the gate by the MIS structure. Charge the capacitor and change the gate potential by ΔvG. Here, the sum of the capacitance of the gate capacitor, the capacity of the depletion layer for the epitaxial layer 8, and -... is 0.
If the amount of charge generated by optical input and accumulated in the gate region 1 region 5 is QL, then ΔVo=QI,/,o. When a gate read pulse φG is applied to the gate electrode 8 after an accumulation time of
It's like adding vo.

す、ゲート領域5とドレイン領域4との間の電位は低下
して空乏層が減少し、ソース−ドレイン間に光入力に対
応したドレイン電流が流れる。このドレイン電流はSI
Tの増幅作用のためΔvoが増幅度倍されたものとなり
、大きなものとなる。11.。
Then, the potential between the gate region 5 and the drain region 4 decreases, the depletion layer decreases, and a drain current corresponding to the optical input flows between the source and the drain. This drain current is SI
Due to the amplification effect of T, Δvo is multiplied by the degree of amplification and becomes large. 11. .

た、SITのソースとじレインとを入れ替えても同様の
動作をするものである。
Furthermore, even if the source and the rain of the SIT are exchanged, the same operation will occur.

第2図人は上述したSITをマトリックス状に配列して
構成した固体撮像装置の回路構成を示すものであり、第
2図Bは同じくその動作を説明す。
FIG. 2 shows a circuit configuration of a solid-state imaging device constructed by arranging the above-mentioned SITs in a matrix, and FIG. 2B similarly explains its operation.

るための信号波形図である。各5ITIO−1,10−
2・・・・・・は上述した↓うにノーマリオフ形のnチ
ャネルBITで、光入力に対する出力ビデオ信号をXY
アドレス方式で読み出すようにしている。各画素を構成
するJTのソースは共通のリセット−1、線11に接続
してバイアス電圧v8を印加し、X方□向に配列された
一行のSIT群のゲートは、行ライン12−1.12−
2・・・・・・を介して垂直選択シフトレジスタ1Bに
接続する。また、Y方向に配列さねた一列のSIT群の
ドレインは列ライン14−1゜14−2・・・・・・に
接続し、とわらの列ラインはそれぞれ水平選択シフトレ
ジスター5によって選択駆動される水平選択トランジス
ター6−1.16−2・・・を介してビデオライン17
に共通に接続する。
FIG. Each 5ITIO-1,10-
2... is the normally-off type n-channel BIT mentioned above, and outputs the output video signal for the optical input by XY.
It is read using the address method. The sources of the JTs constituting each pixel are connected to the common reset-1 line 11 to apply a bias voltage v8, and the gates of the SIT groups in one row arranged in the X direction are connected to the row line 12-1. 12-
2... is connected to the vertical selection shift register 1B. In addition, the drains of the SIT groups in one row arranged in the Y direction are connected to the column lines 14-1, 14-2, etc., and the other column lines are selectively driven by the horizontal selection shift register 5. The video line 17 is connected to the video line 17 through horizontal selection transistors 6-1, 16-2...
Commonly connected to.

このビデオライン17には負荷抵抗18を経て電゛−圧
V を印加する@ 今、リセット線11へのバイアス電圧vsを適切に、例
えば零ボルトに設定して、1つのSIT画素の出力が読
出される場合について考えてみる。
A voltage V is applied to this video line 17 via a load resistor 18. Now, set the bias voltage vs to the reset line 11 appropriately, for example, to zero volts, and read out the output of one SIT pixel. Let's think about a case where this happens.

例えば、垂直選択シフトレジスター8から行うイ□ン1
2−1に行選択パルスφG1を供給している期間に、水
平選択シフトレジスター5から水平選択トランジスター
6−IKi出しパルスφD□を印加すると、3IT10
−1が選択され、この5ITIO−1には負荷抵抗18
、ビデオライン17、水平選択パトランジスター6−1
および列ライン14−1を経1てドレイン電流が流れ、
出力端子19に出力電圧■outが発生する。上述した
ようにこのドレイン電流はゲート電圧の関数であり、こ
のゲート電圧は光入力の関数と々るから、暗時の出力電
圧からの□増加分Δvou tは光入力に対応した電圧
となる。しかも、この電圧Δ■outはSITの増幅作
用によりΔvGが増幅度倍された大きなものとなる。次
に、水平選択シフトレジスター5から水平選択トランジ
スタ16−2に読出しパルスφDz”与えてS I T
 ”’10−2の読出しを行ない、−桁分の読出しが終
了したら、垂直選択シフトレジスター8から次の行に行
選択パルスφG2を与えて、その行の13ITを1諏次
に読出す。
For example, input 1 is performed from vertical selection shift register 8.
When the horizontal selection transistor 6-IKi output pulse φD□ is applied from the horizontal selection shift register 5 to the horizontal selection transistor 6-IKi during the period when the row selection pulse φG1 is supplied to the line selection transistor 2-1, 3IT10
-1 is selected, and this 5ITIO-1 has a load resistance of 18
, video line 17, horizontal selection transistor 6-1
and a drain current flows through the column line 14-1,
An output voltage ■out is generated at the output terminal 19. As described above, this drain current is a function of the gate voltage, and since this gate voltage is a function of the optical input, the □ increase Δvout from the output voltage in the dark becomes a voltage corresponding to the optical input. Moreover, this voltage Δ■out becomes a large value, which is ΔvG multiplied by the amplification degree, due to the amplification effect of the SIT. Next, a read pulse φDz" is applied from the horizontal selection shift register 5 to the horizontal selection transistor 16-2, and S I T
``'10-2 is read out, and when the reading of -digits is completed, the row selection pulse φG2 is applied to the next row from the vertical selection shift register 8, and 13IT of that row is read out one by one.

しかしながら、−上述した固体撮像装置において1は、
入射光の強度が高いとQLが非常に大きくなってΔvG
が高くなり、始めに設定した逆バイアス値Vに対し、v
G十Δ■G(ΔvG〉0)がSITの設定ソース電位v
sに対するピンチオフ電圧V、を上まわると、そのSI
Tが選択されていなくてもこれ−・・が不所望に導通し
て他の選択している行ラインか□ら流れ出次信号電流と
共に同一の列ラインを経て電、流が流れ、画素間の信号
干渉を起す不具合がある。このため、か\る固体撮像装
置は露光量に制限があり、実用上間順であった。
However, in the solid-state imaging device described above, 1 is
When the intensity of the incident light is high, QL becomes very large and ΔvG
becomes higher, and with respect to the initially set reverse bias value V, v
G+Δ■G (ΔvG〉0) is the set source potential v of SIT
When the pinch-off voltage V for s is exceeded, its SI
Even if T is not selected, this current becomes undesirably conductive and flows from the other selected row line □.The current flows along with the signal current through the same column line, and the current flows between the pixels. There is a problem that causes signal interference. For this reason, such solid-state imaging devices have limitations on the amount of exposure, and are limited in practical terms.

本発明の目的は、上述した不具合を解決し、入射光の強
度が高くても画素間の信号干渉を起すことなく、゛各画
素信号を有効に読出し得るよう適切に構成した固体撮像
装置を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems and provide a solid-state imaging device appropriately configured to effectively read out each pixel signal without causing signal interference between pixels even when the intensity of incident light is high. This is what I am trying to do.

本発明の固体撮像装置は、入射光を受光する感光用トラ
ンジスタと、この感光用トランジスタでの光電変換出力
を選択的に読出す読出し用トランジスタとを有し、それ
らの主電流通路を直列に接続して成る固体撮像素子を、
複数の行線および列l線で構成されるマトリックスの各
交点にそれぞれ設け、これら行線および列線に前記固体
撮像素子の読出し用トランジスタを接続し、その感光用
トランジスタをリセット線に接続したことを特徴とする
ものである。
The solid-state imaging device of the present invention has a photosensitive transistor that receives incident light and a readout transistor that selectively reads out the photoelectric conversion output of this photosensitive transistor, and their main current paths are connected in series. A solid-state image sensor made of
A readout transistor of the solid-state image sensor is provided at each intersection of a matrix composed of a plurality of row lines and a plurality of column lines, and a readout transistor of the solid-state image sensor is connected to the row line and column line, and the photosensitive transistor is connected to a reset line. It is characterized by:

以下図面を参照して本発明の詳細な説明する。′第8図
AおよびBは本発明の固体撮像装置に用いる固体撮像素
子の一例の構成を示す断面図および平面図である。本例
では、感光用トランジスタ21および読出し用トランジ
スタ22を共にSIT構造として同−基板に形成する。
The present invention will be described in detail below with reference to the drawings. 'FIGS. 8A and 8B are a sectional view and a plan view showing the structure of an example of a solid-state imaging device used in the solid-state imaging device of the present invention. In this example, both the photosensitive transistor 21 and the readout transistor 22 are formed on the same substrate as an SIT structure.

すなわち、P型基板28上に感光用5IS2]のドレイ
ン領域および読出し用5IT22のソース領域を構成す
るn+埋込層24を形成すると共に、これら基板28お
よび埋込層24上にn−エピタキシャル層g5を 1パ
成長させ、このエピタキシャル層25の表面に、感光用
5IT21を構成するn ソース領域26、P+ゲート
領域27および読出し用SIT’2を構成するn+ドレ
イン領域28、P+ゲート領域29をそれぞれ熱拡散法
等により形成する。感光用 1SIT21および続出し
用5IT22は、5IT21のドレイン領域および5I
T2Bのソース領域を共通のn+埋込層24をもって構
成する以外は、とのn+埋込層24からエピタキシャル
層25の表面に亘って設けた絶縁層80によって電気的
に分離2・・することによりそれらの主電流通路を直列
に接続□し、また隣接する固体撮像素子間はP型基板2
Bからエピタキシャル層25の表面に亘って同様に絶縁
層80を設けて相互に電気的に分離する。感光用SI’
141のソース領域26にはソース電極81を接合して
設け、また読出し用SIT2gのドレイン領域28およ
びゲート領域29にu −t h。
That is, an n+ buried layer 24 constituting the drain region of the photosensitive 5IS2] and the source region of the readout 5IT22 is formed on the P-type substrate 28, and an n- epitaxial layer g5 is formed on the substrate 28 and the buried layer 24. The n source region 26 and the P+ gate region 27 constituting the photosensitive 5IT 21 and the n+ drain region 28 and the P+ gate region 29 constituting the readout SIT'2 are heated on the surface of the epitaxial layer 25, respectively. Formed by a diffusion method or the like. 1SIT21 for photosensitive and 5IT22 for continuous printing are connected to the drain region of 5IT21 and 5I
Except for configuring the source region of T2B with a common n+ buried layer 24, it is electrically isolated by an insulating layer 80 provided from the n+ buried layer 24 to the surface of the epitaxial layer 25. Their main current paths are connected in series □, and a P-type substrate 2 is connected between adjacent solid-state image sensors.
An insulating layer 80 is similarly provided from B to the surface of the epitaxial layer 25 to electrically isolate them from each other. SI' for photosensitive
A source electrode 81 is connected to the source region 26 of 141, and u-th is connected to the drain region 28 and gate region 29 of the read SIT 2g.

ぞれドレイン電極82およびゲート電極8Bを接合して
設け、その他の表面は表面絶縁膜84で被覆する。すな
わち、本例では感光用SIT 21に′□はゲート電極
を設けない。したがって、ゲート電極による透過光量損
失がないから、短波長感度を向上させることができる。
A drain electrode 82 and a gate electrode 8B are connected to each other, and the other surfaces are covered with a surface insulating film 84. That is, in this example, the photosensitive SIT 21 is not provided with a gate electrode. Therefore, since there is no loss in the amount of transmitted light due to the gate electrode, short wavelength sensitivity can be improved.

また、本例のように感光用5IT21と読出し用5ET
22との分離お↓びこれら感光用SITと読出し用SI
Tとから成る −固体撮像素子間の分離を絶縁層80に
↓つて行えば、それらの電気的分離をほぼ完全にできる
から電流の制御性、増幅特性が良好となる。
In addition, as in this example, 5IT21 for photosensitive and 5ET for reading
Separation from 22 and these photosensitive SIT and readout SI
By separating the solid-state image sensing elements consisting of T by using the insulating layer 80, their electrical isolation can be almost completely achieved, resulting in good current controllability and amplification characteristics.

第41凶AおよびBは本発明の固体撮像装置に用いる固
体撮像素子の他の例の構成を示す断面図お−・・よび平
面図である。本例では、感光用5IS21と゛続出し用
5ET2.2との分離およびこれら感光用BITと読出
し用SITとから成る固体撮像素子間の分離を、上述し
た絶縁層80によらず、n−エピタキシャル層25の表
面に゛P+分離ゲート領域□86を形成すると共にこの
分離ゲート領域86に分離ゲート電極87を接合して設
け、この分離ゲート電極87に所定の電圧を印加するこ
とに工り分離ゲート領域86下のエピタキシャル層z5
に空乏層を形成して行なうようにした点のみが、第1′
8図のものと異なる本のであり、第8図に示す符号と同
一符号は同一のものを表わす。この↓うに分離ゲート領
域86を形成し、これにノ(イアスを与えることにより
形成される空乏層によって素子間の分離および素子中の
感光用SIT?に1と読出し1・用5IT22との電気
的分離を行なう場合には、素子の高密度化が計りる利点
がある。
41st figures A and B are a cross-sectional view and a plan view showing the structure of another example of the solid-state imaging device used in the solid-state imaging device of the present invention. In this example, the separation between the photosensitive 5IS 21 and the continuous output 5ET 2.2 and the solid-state image sensing device consisting of the photosensitive BIT and the readout SIT is performed using an n-epitaxial layer instead of the above-mentioned insulating layer 80. 25, a P+ isolation gate region 86 is formed, an isolation gate electrode 87 is bonded to this isolation gate region 86, and a predetermined voltage is applied to this isolation gate electrode 87. Epitaxial layer z5 below 86
The only point where the depletion layer is formed in the first
This book is different from the one shown in FIG. 8, and the same reference numerals as those shown in FIG. 8 represent the same things. An isolation gate region 86 is formed in this manner, and a depletion layer formed by applying a voltage to the isolation gate region 86 isolates the elements and electrically connects the photosensitive SIT? In the case of separation, there is an advantage that the density of elements can be increased.

第5図は本発明の固体撮像装置の要部の一例の構成を示
す回路図である。本例では、第8図あるいは第4図に示
した固体撮像素子を同一基板に多−・・数個マトリック
ス状に形成したものを用いる。各□固体撮像素子40−
1.40−2.・・・の感光用SITのソースは共通の
リセット線41に接続してバイアス電圧Vを印加し、X
方向に配列された一行の素子群の読出し用SITのゲー
トは、行ライン42−1.42−2.・・・を介して垂
直選択シフトレジスタ4Bに接続する。また、Y方向に
配列された一列の素子群の読出し用SITのドレインは
列 ゛ライン44−1.44−2.・・・に接続し、こ
れらの列ラインはそれぞれ水平選択シフトレジスタ45
1□′によって選択駆動される水平選択トランジスタ4
6−1.46−2.・・・を介してビデオライン47に
共通に接続する。このビデオライン47には負荷、抵抗
48を経て電圧V。f:印加し、垂直選択シフトレジス
タ4B、水平選択シフトレジスタ451を第2図におい
て説明したと同様に制御して出力端子49から時系列的
な画素情報を得るようにする。
FIG. 5 is a circuit diagram showing an example of the configuration of a main part of the solid-state imaging device of the present invention. In this example, a plurality of solid-state imaging devices shown in FIG. 8 or 4 are formed in a matrix on the same substrate. Each □solid-state image sensor 40-
1.40-2. The sources of the photosensitive SITs are connected to the common reset line 41, a bias voltage V is applied, and X
The readout SIT gates of one row of element groups arranged in the row line 42-1, 42-2. ... is connected to the vertical selection shift register 4B. In addition, the drains of the readout SITs of one row of element groups arranged in the Y direction are connected to the columns 44-1, 44-2. ..., and each of these column lines is connected to a horizontal selection shift register 45.
Horizontal selection transistor 4 selectively driven by 1□′
6-1.46-2. . . are commonly connected to the video line 47 via... A voltage V is applied to this video line 47 via a load and a resistor 48. f: is applied, and the vertical selection shift register 4B and horizontal selection shift register 451 are controlled in the same manner as explained in FIG. 2, so that time-series pixel information is obtained from the output terminal 49.

か\る構成において、ある列ラインが選択された場合、
その列ラインに接続された一列の素子群・・の読出(7
用SITのうち、行ラインが選択されて □いる素子の
読出し用SITを除き、他の読出し用SITはこれと直
列に接続された感光用SITのゲート電位が上昇してピ
ンチオフレベル以上に達していても、読出し用SITを
介して高いドレイン電位が印加されることはないから、
電流は流れず、したがって画素間の信号干渉は起らない
。また、こ\で感光用SITのゲート電位が更に上昇し
、そのソース電位(リセット線41に印加するバイアス
電圧vs)に対して順方向にバイアスされ1°゛てゲー
ト領域に蓄積された一定鎗以上の正孔がソースを通して
はき出されても、感光用SI’l’のオン動作に結びつ
くことはない。なお、素子のリセットはリセット+IJ
41に印加するバイアス電圧v8をパルス的に引下げて
、各感光用SITのソース 1・−ドレイン間を強制的
に順方向にバイアスすることにより全素子同時に行なう
ことができる。
In this configuration, if a certain column line is selected,
Reading out a column of elements connected to that column line (7
Among the readout SITs, except for the readout SIT of the element whose row line is selected □, the other readout SITs have the gate potential of the photosensitive SIT connected in series with it rise to reach the pinch-off level or higher. However, since a high drain potential is not applied via the read SIT,
No current flows, so no signal interference between pixels occurs. Also, at this point, the gate potential of the photosensitive SIT further rises, and the fixed beam accumulated in the gate region is biased in the forward direction by 1° with respect to its source potential (bias voltage vs. applied to the reset line 41). Even if more holes are ejected through the source, they will not turn on the photosensitive SI'l'. In addition, to reset the element, use reset + IJ.
By lowering the bias voltage v8 applied to 41 in a pulse manner and forcibly biasing the source 1 to drain of each photosensitive SIT in the forward direction, it is possible to perform the same operation on all the elements at the same time.

本例においては、入射光の強度が高く感光用SITのゲ
ート電位がピンチオフレベル以上になっても、続出用S
I’l’が選択されない限り、この−・・・読出し用S
工Tおよび感光用SITを通して電流カド流れることは
ないから、画素間の不所望な信号干渉が生じない。また
、各素子を第8図および第4図に示したように、その感
光用SITにゲート電極を設けず、これをフローティン
グにして入射光を受光するようにしたから、電極による
入射光、特に短波長成分の透過損失がなく、したがって
分光特性を向上させることができる。
In this example, even if the intensity of the incident light is high and the gate potential of the photosensitive SIT exceeds the pinch-off level,
Unless I'l' is selected, this --... read S
Since no current flows through the sensor T and photosensitive SIT, no unwanted signal interference between pixels occurs. Furthermore, as shown in FIGS. 8 and 4, the photosensitive SIT of each element is not provided with a gate electrode and is made floating to receive incident light. There is no transmission loss of short wavelength components, and therefore the spectral characteristics can be improved.

なお、本発明は上述した例にのみ限定されるものではな
く、幾多の変形または変更が可能である8・・例えば上
述した例では固体撮像素子を構成する感光用および読出
し用トランジスタをそれぞれSITをもって構成したが
、これらをそれぞれ電界効果トランジスタ(FET)を
もって構成することもできるし、一方をSIT、他方1
FETをもって構・成することもできる。また、これら
トランジスタはnチャンネル型に限らずnチャンネル型
で構成することもできる。更に、第8図および第4図で
は感光用SIT 21のドレイン領域および読出し用5
IT2 mのソース領域を共通のn埋込層24・・をも
って形成することにより、感光用5IT21お1よび読
出し用SIT 22の各主電流通路を直列に接続するよ
うにしたが、各領櫨を分離して形成してこれらを電気的
に接続する等の他の方法により接続することもできる。
Note that the present invention is not limited to the above-mentioned example, and can be modified in many ways.8 For example, in the above-mentioned example, the photosensitive and readout transistors constituting the solid-state image sensor are each provided with an SIT. However, each of these can also be configured with a field effect transistor (FET), or one can be configured with an SIT and the other with a field effect transistor (FET).
It can also be constructed using FETs. Further, these transistors are not limited to n-channel type transistors, but may also be configured as n-channel type transistors. Furthermore, in FIGS. 8 and 4, the drain region of the photosensitive SIT 21 and the readout 5
By forming the source region of the IT2m with a common n-buried layer 24..., the main current paths of the photosensitive 5IT21 and the readout SIT22 were connected in series. Connections can also be made by other methods, such as forming them separately and electrically connecting them.

更にまた、第5図においては全ての固体撮像素子40−
1.40−1.・・・の感光用SITのソースを共通の
リセット線41に接続して同時にリセットする工うにし
たが、リセット線41を行毎に分離して行毎にリセット
することもできる。
Furthermore, in FIG. 5, all the solid-state image sensors 40-
1.40-1. Although the sources of the photosensitive SITs of .

以上述べたように本発明によれば、入射光の強度が高く
ても画素間の信号干渉を起すことなく、各画素信号を有
効に読出すことができるから、露光量が制限されること
はない。
As described above, according to the present invention, each pixel signal can be effectively read out without causing signal interference between pixels even when the intensity of incident light is high, so the exposure amount is not limited. do not have.

【図面の簡単な説明】[Brief explanation of drawings]

第1図AおよびBはSITの構成を示す断面図および平
面図、 第2図AおよびBはSITを用いる固体メ像装置の構成
およびその動作t−説明するための回路図および信号波
形図、 第8図AおよびBは本発明の固体撮像装置に用□いる固
体撮像装置の一例の構成を示す断面図および平面図、 第4図Aお工びBは同じく他の例の構成を示す断面図お
よび平面図、 第6図は本発明の固体撮像装置の要部の一例の構成を示
す回路図である。 21・・・感光用SIT   22・・・読出し用SI
’l’2B・・・p型基板    24・・・n 埋込
層25・・・n−エピタキシャル層 26・・・n ソース領域 27.29・・・pゲート領域 28・・・n ドレイン領域 80・・・絶縁層81・
・・ソース電極   82・・・ドレイン電極8B・・
・ゲート電極   84・・・表面絶縁膜86−・・p
分離ゲート領域87・・・分離ゲート電極40−1.4
0−2・・・固体撮像装置41・・・リセット線  4
2−1.42−2・・・行ライン48・・・垂直選択シ
フトレジスタ 44−1.44−2・・・列ライン 45・・・水平選択シフトレジスタ 46−1.46−2・・・水平選択トランジスタ47・
・・ビデオライン  48・・・負荷抵抗49・・・出
力端子。 特許出願人  オリンパス光学工業株式会社同 出願人
  西  澤  潤  − 第1図 第2図 ψDf−ローー→→几−ヨ。 第5図 手続補正書 昭和59年 3 月8 日 、事件の表示 昭和57年 特 許 願第217753号:0発明の名
称 固体撮像装置 、補正をする者 事件との関係 特許出願人 (037)  オリンパス光学工業株式会社西  澤 
 潤  − 補正の対象 明細書の「発明の詳細な説明」の欄補正の
内容(別紙の通り) 1明細書第12頁第13行の「素子J?i:r感光用5
ITJに訂正し、 向頁第15〜16行°の「ソース−ドレイン」を1ゲー
ト−ソース」に訂正する。 (2) 313−
1A and B are a sectional view and a plan view showing the structure of the SIT; FIGS. 2A and B are a circuit diagram and a signal waveform diagram for explaining the structure and operation of a solid-state image device using the SIT; 8A and 8B are a sectional view and a plan view showing the configuration of an example of a solid-state imaging device used in the solid-state imaging device of the present invention, and FIG. 4A and B are a cross-sectional view showing the configuration of another example. Figures and Plan Views FIG. 6 is a circuit diagram showing an example of the configuration of a main part of the solid-state imaging device of the present invention. 21... SIT for photosensitive 22... SI for reading
'l'2B...p-type substrate 24...n buried layer 25...n-epitaxial layer 26...n source region 27.29...p gate region 28...n drain region 80 ...Insulating layer 81.
...Source electrode 82...Drain electrode 8B...
・Gate electrode 84...Surface insulating film 86-...p
Separation gate region 87... Separation gate electrode 40-1.4
0-2...Solid-state imaging device 41...Reset line 4
2-1.42-2...Row line 48...Vertical selection shift register 44-1.44-2...Column line 45...Horizontal selection shift register 46-1.46-2... Horizontal selection transistor 47
...Video line 48...Load resistor 49...Output terminal. Patent Applicant: Olympus Optical Industry Co., Ltd. Applicant: Jun Nishizawa - Figure 1 Figure 2 ψDf-Ro-→→R-Yo. Figure 5 Procedural Amendment Document March 8, 1980, Display of Case 1982 Patent Application No. 217753: 0 Name of Invention Solid-state Imaging Device, Person Making Amendment Relationship to Case Patent Applicant (037) Olympus Optical Industry Co., Ltd. Nishizawa
Jun - Target of amendment Contents of amendment in the "Detailed Description of the Invention" column of the specification (as attached) 1 "Element J?i:r photosensitive 5
ITJ, and on the 15th and 16th lines of the opposite page, ``source-drain'' is corrected to ``1 gate-source''. (2) 313-

Claims (1)

【特許請求の範囲】[Claims] 1 入射光を受光する感光用トランジスタと、この感光
用トランジスタの光重変換出力を選択的に読出す読出し
用トランジスタとを有し、それらの主電流通路を直列に
接続して成る固体撮像素子を、複数の行線および列線で
構成されるマトリックスの各交点にそれぞれ設け、これ
ら行線および列線に前記固体撮像素子の1”続出し用ト
ランジスタを接続し、その感光用トランジスタをリセッ
ト線に接続したことを特徴とする固体撮像装置。
1. A solid-state image sensor comprising a photosensitive transistor that receives incident light and a readout transistor that selectively reads out the light weight conversion output of this photosensitive transistor, and whose main current paths are connected in series. , are provided at each intersection of a matrix consisting of a plurality of row lines and column lines, and the 1" continuous output transistor of the solid-state image sensor is connected to these row lines and column lines, and the photosensitive transistor is connected to the reset line. A solid-state imaging device characterized in that:
JP57217753A 1982-12-14 1982-12-14 Solid-state image pickup device Pending JPS59108460A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57217753A JPS59108460A (en) 1982-12-14 1982-12-14 Solid-state image pickup device
DE3345147A DE3345147C2 (en) 1982-12-14 1983-12-14 Solid-state image pickup converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57217753A JPS59108460A (en) 1982-12-14 1982-12-14 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS59108460A true JPS59108460A (en) 1984-06-22

Family

ID=16709203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57217753A Pending JPS59108460A (en) 1982-12-14 1982-12-14 Solid-state image pickup device

Country Status (2)

Country Link
JP (1) JPS59108460A (en)
DE (1) DE3345147C2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058781A (en) * 1983-09-09 1985-04-04 Olympus Optical Co Ltd Solid-state image pickup device
US4746984A (en) * 1985-04-24 1988-05-24 Olympus Optical Co., Ltd. Solid state image sensor with lateral-type stactic induction transistors
JPH0714042B2 (en) * 1986-02-26 1995-02-15 三菱電機株式会社 Solid-state image sensor
JPH06334920A (en) * 1993-03-23 1994-12-02 Nippon Hoso Kyokai <Nhk> Solid state image pickup element and driving method thereof
DE19740612B4 (en) * 1997-08-30 2005-10-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Arrangement of image sensor elements
EP1013076B1 (en) 1997-09-12 2001-02-28 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Image detection members

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515229A (en) 1978-07-18 1980-02-02 Semiconductor Res Found Semiconductor photograph device
JPS58105672A (en) * 1981-12-17 1983-06-23 Fuji Photo Film Co Ltd Semiconductor image pickup device
JPS5930376A (en) * 1982-08-13 1984-02-17 Olympus Optical Co Ltd Solid-state image pickup device
DE3236073A1 (en) * 1982-09-29 1984-03-29 Siemens AG, 1000 Berlin und 8000 München TWO-DIMENSIONAL SEMICONDUCTOR IMAGE SENSOR WITH AN ARRANGEMENT FOR REDUCING OVER-RADIATION

Also Published As

Publication number Publication date
DE3345147A1 (en) 1984-06-14
DE3345147C2 (en) 1986-10-02

Similar Documents

Publication Publication Date Title
US5471515A (en) Active pixel sensor with intra-pixel charge transfer
US3946151A (en) Semiconductor image sensor
EP0046396B1 (en) Solid state image pickup device
JPS58105672A (en) Semiconductor image pickup device
US20090244341A1 (en) Active pixel sensor (aps) readout structure with amplification
CA1080345A (en) Semiconductor optical image sensing device
US6528832B1 (en) Photoelectric conversion device and image sensor
US6184516B1 (en) Photoelectric conversion device and image sensor
US4267469A (en) Solid-state imaging device having a clamping circuit for drawing out excess charge
US6449014B1 (en) Image sensor having a low impedance reading block between pixel data lines and output line
JPH0414545B2 (en)
JPH01194353A (en) Photoelectric conversion device
US4876585A (en) Contact type image sensor with separate charge transfer device
JPH0453149B2 (en)
JPS59108460A (en) Solid-state image pickup device
JPH0443428B2 (en)
JPS60254886A (en) Solid-state image pickup device
JPH07234737A (en) Sync formation circuit
US10425601B1 (en) Three-transistor active reset pixel
JPS6333075A (en) Solid-state image pickup device
JPS58177086A (en) Solid-state image pickup element
JPH02208974A (en) Solid-state image sensing device
JP2519208B2 (en) Color solid-state imaging device
JP2000174247A (en) Solid-state image pickup element
USRE27951E (en) Device for converting a physical pattern into an electric signal as a function of time utilizing an analog shift register